TS4871 OUTPUT RAIL TO TAIL 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE ■ OPERATING FROM VCC = 2.5V to 5.5V PIN CONNECTIONS (Top View) ■ 1W RAIL TO RAIL OUTPUT POWER @ Vcc=5V, THD=1%, f=1kHz, with 8Ω Load TS4871IS-TS4871IST - MiniSO8 ■ ULTRA LOW CONSUMPTION IN STANDBY MODE (10nA) ■ 75dB PSRR @ 217Hz from 5V to 2.6V ■ ULTRA LOW POP & CLICK ■ ULTRA LOW DISTORTION (0.1%) ■ UNITY GAIN STABLE Standby 1 8 VOUT 2 Bypass 2 7 GND VIN + 3 6 VCC VIN- 4 5 VOUT1 ■ AVAILABLE IN MiniSO8 & SO8 DESCRIPTION The TS4871 (MiniSO8 & SO8) is an Audio Power Amplifier capable of delivering 1W of continuous RMS Ouput Power into 8Ω load @ 5V. This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode control reduces the supply current to less than 10nA. An internal thermal shutdown protection is also provided. TS4871ID-TS4871IDT - SO8 Standby 1 8 VOUT2 Bypass 2 7 GND VIN+ 3 6 VCC VIN- 4 5 VOUT1 The TS4871 has been designed for high quality audio applications such as mobile phones and to minimize the number of external components. The unity-gain stable amplifier can be configured by external gain setting resistors. APPLICATIONS ■ Mobile Phones (Cellular / Cordless) TYPICAL APPLICATION SCHEMATIC ■ Laptop / Notebook Computers Cfeed ■ PDAs Rfeed Audio Input ORDER CODE Temperature Range -40, +85°C 3 VinVin+ - Vout1 5 + Package RL 8 Ohms Vcc S D • 2 Bypass 1 Standby Av=-1 + Rstb • Cb S = MiniSO Package (MiniSO) - also available in Tape & Reel (ST) D = Small Outline Package (SO) - also available in Tape & Reel (DT) November 2001 4 Vout2 8 Bias GND TS4871IS TS4871ID Rin Cin Cs Vcc ■ Portable Audio Devices Part Number Vcc 6 TS4871 7 1/28 TS4871 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Parameter Supply voltage 1) 2) Unit 6 V GND to VCC V Toper Operating Free Air Temperature Range -40 to + 85 °C Tstg Storage Temperature Tj R thja Pd Input Voltage -65 to +150 °C Maximum Junction Temperature 150 °C Thermal Resistance Junction to Ambient 3) SO8 MiniSO8 175 215 °C/W Internally Limited4) 2 200 Class A 260 °C Value Unit 2.5 to 5.5 V GND to VCC - 1.5V V GND ≤ VSTB ≤ 0.5V VCC - 0.5V ≤ VSTB ≤ VCC V 4 - 32 Ω Power Dissipation ESD Human Body Model ESD Machine Model Latch-up Latch-up Immunity Lead Temperature (soldering, 10sec) 1. 2. 3. 4. Value kV V All voltages values are measured with respect to the ground pin. The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V Device is protected in case of over temperature by a thermal shutdown active @ 150°C. Exceeding the power derating curves during a long period, involves abnormal operating condition. OPERATING CONDITIONS Symbol Parameter VCC Supply Voltage VICM Common Mode Input Voltage Range VSTB Standby Voltage Input : Device ON Device OFF RL R thja Load Resistor Thermal Resistance Junction to Ambient SO8 MiniSO8 1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 20) 2/28 °C/W 1) 150 190 TS4871 ELECTRICAL CHARACTERISTICS VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 6 8 mA Standby Current 1) No input signal, Vstdby = Vcc, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 1 W 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 75 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 1. Standby mode is actived when Vstdby is tied to Vcc 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified)3) Symbol Typ. Max. Unit Supply Current No input signal, no load 5.5 8 mA Standby Current 1) No input signal, Vstdby = Vcc, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 450 mW Total Harmonic Distortion + Noise Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 75 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to Vcc 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz 3. All electrical values are made by correlation between 2.6V and 5V measurements 3/28 TS4871 ELECTRICAL CHARACTERISTICS VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol Typ. Max. Unit Supply Current No input signal, no load 5.5 8 mA Standby Current 1) No input signal, Vstdby = Vcc, RL = 8Ω 10 1000 nA Voo Output Offset Voltage No input signal, RL = 8Ω 5 20 mV Po Output Power THD = 1% Max, f = 1kHz, RL = 8Ω 260 mW Total Harmonic Distortion + Noise Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω 0.15 % Power Supply Rejection Ratio2) f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms 75 dB ΦM Phase Margin at Unity Gain RL = 8Ω, CL = 500pF 70 Degrees GM Gain Margin RL = 8Ω, CL = 500pF 20 dB GBP Gain Bandwidth Product RL = 8Ω 2 MHz ICC ISTANDBY THD + N PSRR Parameter Min. 1. Standby mode is actived when Vstdby is tied to Vcc 2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz Components Functiona l Description Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin)) Cin Input coupling capacitor which blocks the DC voltage at the amplifier input terminal Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin Cs Supply Bypass capacitor which provides power supply filtering Cb Bypass pin capacitor which provides half supply filtering Cfeed Rstb Gv Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed)) Pull-up resistor which fixes the right supply level on the standby pin Closed loop gain in BTL configuration = 2 x (Rfeed / Rin) REMARKS 1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF. 2. External resistors are not needed for having better stability when supply @ Vcc down to 3V. By the way, the quiescent current remains the same. 3. The standby response time is about 1µs. 4/28 TS4871 Fig. 1 : Open Loop Frequency Response Fig. 2 : Open Loop Frequency Response 0 0 -40 40 -120 0 -140 Gain (dB) -100 Phase (Deg) -80 20 Vcc = 5V ZL = 8Ω + 560pF Tamb = 25 C -20 -40 40 -60 Phase Gain (dB) Gain -60 -80 Phase 20 -100 -120 0 -140 -160 -20 -180 -160 -20 -180 -200 1 10 100 1000 Frequency (kHz) -220 10000 Fig. 3 : Open Loop Frequency Response 80 Vcc = 3.3V RL = 8Ω Tamb = 25 C 40 -60 -140 0 -160 Phase (Deg) -120 100 1000 Frequency (kHz) Vcc = 3.3V ZL = 8Ω + 560pF Tamb = 25 C 40 10 100 1000 Frequency (kHz) 10000 -140 -160 -180 -20 -200 -220 -40 0.3 -240 Fig. 5 : Open Loop Frequency Response 80 Gain 60 1 10 100 1000 Frequency (kHz) 10000 80 0 -20 Gain 60 -40 Vcc = 2.6V ZL = 8Ω + 560pF Tamb = 25 C -60 -100 20 -120 -140 0 -160 Gain (dB) Phase -200 -100 20 -120 -140 0 -160 -180 -20 -200 -220 -40 0.3 -240 1 10 100 1000 Frequency (kHz) 10000 -40 -80 Phase -180 -20 -20 -60 40 -80 Phase (Deg) Gain (dB) 40 -240 Fig. 6 : Open Loop Frequency Response 0 Vcc = 2.6V RL = 8Ω Tamb = 25 C -60 -120 0 -200 1 -40 -100 20 -220 -40 0.3 -20 -80 Phase -180 -20 -220 10000 0 Gain 60 -40 -100 20 10 80 -20 -80 Phase 1 Fig. 4 : Open Loop Frequency Response 0 Gain 60 Gain (dB) -200 -40 0.3 Gain (dB) -40 0.3 Phase (Deg) Gain 60 -20 Phase (Deg) Vcc = 5V RL = 8Ω Tamb = 25 C Phase (Deg) 60 -220 -40 0.3 -240 1 10 100 1000 Frequency (kHz) 10000 5/28 TS4871 Phase 60 -80 100 -100 80 -120 60 Gain (dB) Gain -140 40 -160 20 -180 0 -20 -40 0.3 -160 -180 1 -220 10 100 1000 Frequency (kHz) -40 0.3 10000 -80 -100 Phase Gain -140 40 -160 20 -180 0 -200 Vcc = 2.6V CL = 560pF Tamb = 25 C -220 -240 1 10 100 1000 Frequency (kHz) 10000 Phase (Deg) -120 60 Gain (dB) -140 20 -20 80 6/28 -120 40 -200 Vcc = 5V CL = 560pF Tamb = 25 C 100 -40 0.3 -100 0 Fig. 9 : Open Loop Frequency Response -20 -80 Phase Gain Gain (dB) 80 Phase (Deg) 100 Fig. 8 : Open Loop Frequency Response -200 Vcc = 3.3V CL = 560pF Tamb = 25 C -220 -240 1 10 100 1000 Frequency (kHz) 10000 Phase (Deg) Fig. 7 : Open Loop Frequency Response TS4871 Fig. 10 : Power Supply Rejection Ratio (PSRR) vs Power supply Fig. 11 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor −30 −50 −60 −20 −30 PSRR (dB) PSRR (dB) −40 −10 Vripple = 200mVrms Rfeed = 22kΩ Input = floating RL = 8Ω Tamb = 25°C Vcc = 5V, 3.3V & 2.6V Cb = 1µF & 0.1µF −40 Vcc = 5, 3.3 & 2.6V Cb = 1µF & 0.1µF Rfeed = 22kΩ Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Cfeed=0 Cfeed=150pF Cfeed=330pF −50 −60 −70 −70 −80 10 100 1000 10000 Frequency (Hz) Fig. 12 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor Cb=10µF PSRR (dB) −30 −20 PSRR (dB) Cb=1µF Cb = 1µF Vcc = & 2.6V Cb5,=3.3 10µF Rfeed Cb= =22k 100µF Rin =Cb 22k, Cin = 47µF= 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C −40 Cb=47µF −50 100 1000 10000 Frequency (Hz) 100000 Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor −10 −10 −20 −80 10 100000 Cfeed=680pF Cin=1µF Vcc = 5, 3.3 & 2.6V Rfeed = 22k, Rin = 22k Cb = 1µF Rg = 100Ω, RL = 8Ω Tamb = 25°C Cin=330nF Cin=220nF −30 −40 Cin=100nF −60 −50 Cin=22nF −70 −60 10 Cb=100µF −80 10 100 1000 10000 100000 100 1000 10000 100000 Frequency (Hz) Frequency (Hz) Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor −10 −20 PSRR (dB) −30 −40 Vcc = 5, 3.3 & 2.6V Cb = 1µF & 0.1µF Vripple = 200mVrms Input = floating RL = 8Ω Tamb = 25°C Rfeed=110kΩ Rfeed=47kΩ −50 −60 Rfeed=22kΩ −70 Rfeed=10kΩ −80 10 100 1000 10000 Frequency (Hz) 100000 7/28 TS4871 Fig. 15 : Pout @ THD + N = 1% vs Supply Voltage vs RL Fig. 16 : Pout @ THD + N = 10% vs Supply Voltage vs RL 1.2 1.0 1.4 Gv = 2 & 10 Cb = 1 F F = 1kHz BW < 125kHz Tamb = 25 C 8Ω Output power @ 1% THD + N (W) Output power @ 1% THD + N (W) 1.4 6Ω 4Ω 0.8 16 Ω 0.6 0.4 0.2 0.0 2.5 32 Ω 3.0 3.5 4.0 4.5 Gv = 2 & 10 Cb = 1 F F = 1kHz BW < 125kHz Tamb = 25 C 1.2 1.0 4Ω 0.8 16 Ω 0.6 0.4 0.2 32 Ω 0.0 2.5 5.0 8Ω 6Ω 3.0 3.5 Vcc (V) 4.5 5.0 Fig. 18 : Power Dissipation vs Pout 1.4 0.6 Vcc=5V 1.2 F=1kHz THD+N<1% Vcc=3.3V F=1kHz 0.5 THD+N<1% RL=4Ω Power Dissipation (W) Power Dissipation (W) Fig. 17 : Power Dissipation vs Pout 1.0 0.8 0.6 RL=8Ω 0.4 RL=4Ω 0.4 0.3 0.2 RL=8Ω 0.1 0.2 RL=16Ω 0.0 0.0 4.0 Vcc (V) 0.2 0.4 0.6 0.8 RL=16Ω 1.0 1.2 0.0 0.0 1.4 0.2 Output Power (W) 0.4 0.6 0.8 Output Power (W) Fig. 19 : Power Dissipation vs Pout Fig. 20 : Power Derating Curves Vcc=2.6V 0.35 F=1kHz THD+N<1% 0.30 RL=4Ω 0.25 0.20 0.15 RL=8Ω 0.10 0.05 0.00 0.0 1.0 MiniSO8 on demoboard 0.8 0.6 0.4 MiniSO8 SO8 0.2 RL=16Ω 0.0 0.1 0.2 Output Power (W) 8/28 SO8 on demoboard 1.2 Power Dissipation (W) Power Dissipation (W) 0.40 0.3 0.4 0 25 50 75 100 Ambiant Temperature (°C) 125 150 TS4871 Fig. 21 : THD + N vs Output Power Fig. 22 : THD + N vs Output Power 10 10 RL = 4Ω, Vcc = 5V Gv = 10 Cb = Cin = 1 F BW < 125kHz, Tamb = 25 C THD + N (%) THD + N (%) Rl = 4Ω Vcc = 5V Gv = 2 Cb = Cin = 1 F BW < 12 5kHz Tamb = 25 C 1 20 kHz 20kHz 1 20Hz 1k Hz 20Hz, 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) 0.1 1E-3 1 Fig. 23 : THD + N vs Output Power 1 Fig. 24 : THD + N vs Output Power 10 10 RL = 4Ω , Vcc = 3.3V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) 1 RL = 4Ω , Vcc = 3.3V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20kHz 1 20kHz 0.1 20Hz 1kHz 20Hz, 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) 1 Fig. 25 : THD + N vs Output Power 0.01 0.1 Output Power (W) 1 Fig. 26 : THD + N vs Output Power 10 RL = 4Ω, Vcc = 2.6V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 10 1E-3 1 RL = 4Ω, Vcc = 2.6V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20kHz 20kHz 20Hz 0.1 1kHz 20Hz, 1kHz 0.1 1E-3 0.01 Output Power (W) 0.1 1E-3 0.01 Output Power (W) 0.1 9/28 TS4871 Fig. 27 : THD + N vs Output Power Fig. 28 : THD + N vs Output Power 10 RL = 8Ω Vcc = 5V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz, 1kHz THD + N (%) THD + N (%) 10 20k Hz 0.1 RL = 8Ω Vcc = 5V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz 20kHz 0.1 1kHz 1E-3 0.01 0.1 Output Power (W) 1 1E-3 Fig. 29 : THD + N vs Output Power 1 Fig. 30 : THD + N vs Output Power 10 10 RL = 8Ω , Vcc = 3.3V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 0.01 0.1 Output Power (W) 1 RL = 8Ω, Vcc = 3.3V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz 20kHz 20kHz 20Hz, 1kHz 0.1 0.1 1kHz 1E-3 0.01 0.1 Output Power (W) 1 Fig. 31 : THD + N vs Output Power 1 20Hz, 1kHz RL = 8Ω, Vcc = 2.6V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz 20kHz 20kHz 0.1 10/28 1 10 RL = 8Ω, Vcc = 2.6V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1E-3 0.01 0.1 Output Power (W) Fig. 32 : THD + N vs Output Power THD + N (%) THD + N (%) 10 1E-3 0.1 0.01 Output Power (W) 0.1 1E-3 1kHz 0.01 Output Power (W) 0.1 TS4871 Fig. 33 : THD + N vs Output Power Fig. 34 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 5V, Gv = 10 Cb = 0.1 F, Cin = 1 F BW < 125kHz, Tamb = 25 C RL = 8Ω Vcc = 5V Gv = 2 Cb = 0.1 F, Cin = 1 F BW < 125kHz Tamb = 25 C 1 20kHz 20Hz 1kHz THD + N (%) THD + N (%) 10 20Hz 1 20kHz 1kHz 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 1E-3 Fig. 35 : THD + N vs Output Power 10 RL = 8Ω, Vcc = 3.3V, Gv = 10 Cb = 0.1 F, Cin = 1 F BW < 125kHz, Tamb = 25 C THD + N (%) RL = 8Ω , Vcc = 3.3V Gv = 2 Cb = 0.1 F, Cin = 1 F BW < 125kHz Tamb = 25 C 1 20Hz 20kHz 1 20kHz 20Hz 1kHz 1kHz 0.1 0.1 1E-3 0.01 0.1 Output Power (W) 1 Fig. 37 : THD + N vs Output Power 10 1E-3 1 10 RL = 8Ω, Vcc = 2.6V Gv = 2 Cb = 0.1 F, Cin = 1 F BW < 125kHz Tamb = 25 C RL = 8Ω, Vcc = 2.6V, Gv = 10 Cb = 0.1 F, Cin = 1 F BW < 125kHz, Tamb = 25 C 1 20Hz 20kHz 1 20kHz 1kHz 20Hz 1kHz 0.1 1E-3 0.01 0.1 Output Power (W) Fig. 38 : THD + N vs Output Power THD + N (%) THD + N (%) 1 Fig. 36 : THD + N vs Output Power 10 THD + N (%) 0.01 0.1 Output Power (W) 0.1 0.01 Output Power (W) 0.1 1E-3 0.01 Output Power (W) 0.1 11/28 TS4871 Fig. 39 : THD + N vs Output Power Fig. 40 : THD + N vs Output Power 10 10 20kHz RL = 16Ω , Vcc = 5V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 THD + N (%) THD + N (%) 1 RL = 16Ω, Vcc = 5V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20kHz 0.1 0.1 1kHz 20Hz, 1kHz 0.01 1E-3 0.01 0.1 Output Power (W) 1 Fig. 41 : THD + N vs Output Power 0.01 1E-3 0.01 0.1 Output Power (W) 10 THD + N (%) RL = 16Ω, Vcc = 3.3V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20kHz 0.1 RL = 16Ω Vcc = 3.3V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 1 20kHz 0.1 1kHz 20Hz 20Hz, 1kHz 0.01 1E-3 0.01 Output Power (W) 0.01 1E-3 0.1 Fig. 43 : THD + N vs Output Power RL = 16Ω Vcc = 2.6V Gv = 2 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C THD + N (%) THD + N (%) 0.1 10 20kHz 1 RL = 16Ω Vcc = 2.6V Gv = 10 Cb = Cin = 1 F BW < 125kHz Tamb = 25 C 20Hz 20Hz, 1kHz 0.01 1E-3 20kHz 0.1 0.1 12/28 0.01 Output Power (W) Fig. 44 : THD + N vs Output Power 10 1 1 Fig. 42 : THD + N vs Output Power 10 THD + N (%) 20Hz 0.01 Output Power (W) 1kHz 0.1 0.01 1E-3 0.01 Output Power (W) 0.1 TS4871 Fig. 45 : THD + N vs Frequency Pout = 1.2W RL = 4Ω , Vcc = 5V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 1 Fig. 46 : THD + N vs Frequency Pout = 1.2W RL = 4Ω, Vcc = 5V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 600mW 0.1 20 100 1000 Frequency (Hz) 0.01 20 10000 Pout = 600mW 0.1 100 1000 Frequency (Hz) Fig. 47 : THD + N vs Frequency Fig. 48 : THD + N vs Frequency RL = 4Ω , Vcc = 3.3V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C RL = 4Ω, Vcc = 3.3V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C 1 THD + N (%) THD + N (%) 1 Pout = 540mW Pout = 540mW Pout = 270mW 100 1000 Frequency (Hz) Pout = 270mW 10000 Fig. 49 : THD + N vs Frequency THD + N (%) 1 0.1 20 100 1000 Frequency (Hz) 10000 Fig. 50 : THD + N vs Frequency RL = 4Ω , Vcc = 2.6V Gv = 2 Cb = 1µF BW < 125kHz Tamb = 25°C RL = 4Ω , Vcc = 2.6V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C 1 Pout = 240mW THD + N (%) 0.1 20 10000 Pout = 240 & 120mW Pout = 120mW 0.1 20 100 1000 Frequency (Hz) 10000 0.1 20 100 1000 Frequency (Hz) 10000 13/28 TS4871 Fig. 51 : THD + N vs Frequency Fig. 52 : THD + N vs Frequency 1 Cb = 0.1µF Cb = 1µF RL = 8Ω Vcc = 5V Gv = 2 Pout = 450mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) 1 RL = 8Ω Vcc = 5V Gv = 2 Pout = 900mW BW < 125kHz Tamb = 25°C Cb = 0.1µF Cb = 1µF 0.1 100 1000 Frequency (Hz) Fig. 53 : THD + N vs Frequency THD + N (%) Cb = 0.1µF RL = 8Ω , Vcc = 5V Gv = 10 Pout = 450mW BW < 125kHz Tamb = 25°C Cb = 0.1µF 0.1 100 1000 Frequency (Hz) 10000 Fig. 55 : THD + N vs Frequency 20 100 1000 Frequency (Hz) 10000 Fig. 56 : THD + N vs Frequency 1 1 Cb = 0.1µF Cb = 1µF RL = 8Ω, Vcc = 3.3V Gv = 2 Pout = 200mW BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 8Ω, Vcc = 3.3V Gv = 2 Pout = 400mW BW < 125kHz Tamb = 25°C 0.1 14/28 10000 Cb = 1µF 0.1 20 1000 Frequency (Hz) 1 Cb = 1µF 20 100 Fig. 54 : THD + N vs Frequency RL = 8Ω, Vcc = 5V Gv = 10 Pout = 900mW BW < 125kHz Tamb = 25°C 1 0.1 20 10000 THD + N (%) 20 Cb = 0.1µF Cb = 1µF 0.1 100 1000 Frequency (Hz) 10000 20 100 1000 Frequency (Hz) 10000 TS4871 RL = 8Ω, Vcc = 3.3V Gv = 10 Pout = 400mW BW < 125kHz Tamb = 25°C 1 THD + N (%) Fig. 58 : THD + N vs Frequency Cb = 0.1µF Cb = 1µF RL = 8Ω, Vcc = 3.3V Gv = 10 Pout = 200mW BW < 125kHz Tamb = 25°C 1 THD + N (%) Fig. 57 : THD + N vs Frequency Cb = 0.1µF Cb = 1µF 0.1 0.1 20 100 1000 Frequency (Hz) 10000 Fig. 59 : THD + N vs Frequency 20 100 1000 Frequency (Hz) 10000 Fig. 60 : THD + N vs Frequency 1 THD + N (%) Cb = 0.1µF RL = 8Ω, Vcc = 2.6V Gv = 2 Pout = 220mW BW < 125kHz Tamb = 25°C Cb = 1µF RL = 8Ω , Vcc = 2.6V Gv = 2 Pout = 110mW BW < 125kHz Tamb = 25°C THD + N (%) 1 Cb = 0.1µF Cb = 1µF 0.1 100 1000 Frequency (Hz) 10000 Fig. 61 : THD + N vs Frequency THD + N (%) 100 1000 Frequency (Hz) 10000 Fig. 62 : THD + N vs Frequency RL = 8Ω, Vcc = 2.6V Gv = 10 Pout = 220mW BW < 125kHz Tamb = 25°C 1 20 Cb = 0.1µF 1 Cb = 0.1µF THD + N (%) 20 0.1 RL = 8Ω , Vcc = 2.6V Gv = 10 Pout = 110mW BW < 125kHz Tamb = 25°C Cb = 1µF Cb = 1µF 0.1 0.1 20 100 1000 Frequency (Hz) 10000 20 100 1000 Frequency (Hz) 10000 15/28 TS4871 Fig. 63 : THD + N vs Frequency Fig. 64 : THD + N vs Frequency 1 1 RL = 16Ω , Vcc = 5V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C THD + N (%) THD + N (%) RL = 16Ω , Vcc = 5V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 310mW 0.1 Pout = 620mW 0.1 Pout = 310mW Pout = 620mW 0.01 20 100 1000 Frequency (Hz) 0.01 20 10000 Fig. 65 : THD + N vs Frequency 100 1000 Frequency (Hz) 10000 Fig. 66 : THD + N vs Frequency 1 1 THD + N (%) THD + N (%) RL = 16Ω , Vcc = 3.3V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 270mW 0.1 RL = 16Ω, Vcc = 3.3V Gv = 10 Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 270mW 0.1 Pout = 135mW Pout = 135mW 0.01 20 100 1000 Frequency (Hz) 20 10000 Fig. 67 : THD + N vs Frequency THD + N (%) RL = 16Ω , Vcc = 2.6V Gv = 10, Cb = 1µF BW < 125kHz Tamb = 25°C Pout = 80mW 0.1 100 1000 Frequency (Hz) Pout = 160mW 0.1 Pout = 80mW Pout = 160mW 16/28 10000 1 RL = 16Ω , Vcc = 2.6V Gv = 2, Cb = 1µF BW < 125kHz Tamb = 25°C 0.01 20 1000 Frequency (Hz) Fig. 68 : THD + N vs Frequency 1 THD + N (%) 100 10000 0.01 20 100 1000 Frequency (Hz) 10000 TS4871 Fig. 69 : Signal to Noise Ratio vs Power Supply with Unweighted Filter (20Hz to 20kHz) Fig. 70 : Signal to Noise Ratio Vs Power Supply with Unweighted Filter (20Hz to 20kHz) 100 90 90 RL=8Ω 80 RL=4 Ω 80 SNR (dB) SNR (dB) RL=16 Ω 70 Gv = 2 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 60 50 2.5 RL=8Ω 3.0 3.5 4.0 4.5 RL=16Ω 70 RL=4Ω Gv = 10 Cb = Cin = 1µF THD+N < 0.7% Tamb = 25°C 60 50 2.5 5.0 3.0 3.5 4.0 4.5 5.0 Vcc (V) Vcc (V) Fig. 71 : Signal to Noise Ratio vs Power Supply with Weighted Filter type A Fig. 72 : Signal to Noise Ratio vs Power Supply with Weighted Filter Type A 110 100 100 RL=8Ω 90 RL=4 Ω 90 SNR (dB) SNR (dB) RL=16 Ω 80 Gv = 2 Cb = Cin = 1µF THD+N < 0.4% Tamb = 25°C 70 60 2.5 3.0 3.5 4.0 4.5 RL=8Ω RL=16Ω 80 RL=4Ω Gv = 10 Cb = Cin = 1µF THD+N < 0.7% Tamb = 25°C 70 60 2.5 5.0 3.0 3.5 Fig. 73 : Frequency Response Gain vs Cin, & Cfeed 7 5 6 Cfeed = 680pF -15 -20 -25 10 Cin = 470nF Icc (mA) Gain (dB) -10 Cfeed = 2.2nF 4 3 Rin = Rfeed = 22kΩ Tamb = 25 C 1 0 100 Vstandby = 0V Tamb = 25°C 2 Cin = 22nF Cin = 82nF 5.0 5 Cfeed = 330pF -5 4.5 Fig. 74 : Current Consumption vs Power Supply Voltage 10 0 4.0 Vcc (V) Vcc (V) 1000 Frequency (Hz) 10000 0 1 2 3 4 5 Vcc (V) 17/28 TS4871 Fig. 75 : Current Consumption vs Standby Voltage @ Vcc = 5V Fig. 76 : Current Consumption vs Standby Voltage @ Vcc = 3.3V 6 7 Vcc = 5V Tamb = 25°C 6 5 4 Icc (mA) Icc (mA) Vcc = 3.3V Tamb = 25°C 5 4 3 3 2 2 1 1 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 0.0 5.0 0.5 1.0 Vstandby (V) 1.5 2.0 2.5 3.0 Vstandby (V) Fig. 77 : Current Consumption vs Standby Voltage @ Vcc = 2.6V Fig. 78 : Clipping Voltage vs Power Supply Voltage and Load Resistor 1.0 6 0.9 5 Vout1 & Vout2 Clipping Voltage Low side (V) Vcc = 2.6V Tamb = 25°C Icc (mA) 4 3 2 1 0.5 1.0 1.5 Vstandby (V) 2.0 2.5 1.0 Vout1 & Vout2 Clipping Voltage High side (V) 0.7 0.6 Tamb = 25 C 0.8 0.7 0.6 0.5 RL = 4Ω RL = 8Ω 0.4 0.3 0.2 0.1 0.0 2.5 RL = 16Ω 3.0 3.5 4.0 Power supply Voltage (V) 4.5 RL = 4Ω 0.5 RL = 8Ω 0.4 0.3 0.2 0.1 RL = 16Ω 3.0 3.5 4.0 Power supply Voltage (V) Fig. 79 : Clipping Voltage vs Power Supply Voltage and Load Resistor 18/28 0.8 0.0 2.5 0 0.0 0.9 Tamb = 25 C 5.0 4.5 5.0 TS4871 APPLICATION INFORMATION Fig. 80 : Demoboard Schematic C1 R2 C2 R1 Vcc S1 Vcc Vcc S2 GND C6 + 100µ R3 6 C3 C5 R4 C4 Pos input P2 S6 Vcc Neg. input P1 C7 100n 4 R5 VinVin+ 3 - Vout1 5 C9 + 470µ + S5 Positive Input mode Vcc Av=-1 + Vcc R7 330k 2 Bypass 1 Standby S8 Standby Vout2 8 C10 + 470µ Bias GND D1 PW ON GND S4 GND S7 R6 R8 OUT1 S3 TS4871 7 C11 + C12 1u C8 Fig. 81 : SO8 & MiniSO8 Demoboard Components Side 19/28 TS4871 Fig. 82 : SO8 & MiniSO8 Demoboard Top Solder Layer The output power is: Pout = (2 Vout RMS ) 2 (W ) RL For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration. ■ Gain In Typical Application Schematic (cf. page 1) In flat region (no effect of Cin), the output voltage of the first stage is: Rfeed Vout1 = – Vin -------------------- (V) Rin For the second stage : Vout2 = -Vout1 (V) Fig. 83 : SO8 & MiniSO8 Demoboard Bottom Solder Layer The differential output voltage is: Rf eed Vout2 – Vout1 = 2Vin -------------------- (V) Rin The differential gain named gain (Gv) for more convenient usage is: Vout2 – Vout1 Rfeed Gv = --------------------------------------- = 2 -------------------Vin Ri n Remark : Vout2 is in phase with Vin and Vout1 is 180 phased with Vin. It means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1. ■ Low and high frequency response ■ BTL Configuration Principle The TS4871 is a monolithic power amplifier with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single ended output amplifiers. Thus, we have : Single ended output 1 = Vout1 = Vout (V) Single ended output 2 = Vout2 = -Vout (V) And Vout1 - Vout2 = 2Vout (V) 20/28 In low frequency region, the effect of Cin starts. Cin with Rin forms a high pass filter with a -3dB cut off frequency. 1 F C L = -------------------------------- ( Hz ) 2π Rin Cin In high frequency region, you can limit the bandwidth by adding a capacitor (Cfeed) in parallel on Rfeed. Its form a low pass filter with a -3dB cut off frequency. 1 F C H = ----------------------------------------------- ( Hz ) 2π Rfeed Cfeed TS4871 ■ Power dissipation and efficiency Hypothesis : The maximum theoretical value is reached when Vpeak = Vcc, so π ----- = 78.5% 4 • Voltage and current in the load are sinusoidal (Vout and Iout) • Supply voltage is a pure DC source (Vcc) ■ Decoupling of the circuit Regarding the load we have: Two capacitors are needed to bypass properly the TS4871, a power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb. V OU T = V PEAK sinωt (V) and V OU T I OU T = ----------------- (A) RL and 2 VPEAK P O U T = ---------------------- (W) 2R L Then, the average current delivered by the supply voltage is: I CC AVG VPE AK = 2 -------------------- (A) πR L The power delivered by the supply voltage is Psupply = Vcc IccAVG (W) Then, the power dissipated by the amplifier is Pdiss = Psupply - Pout (W) 2 2Vcc P di ss = ---------------------- P OU T – P OU T (W) π RL and the maximum value is obtained when: ∂Pdi ss ---------------------- = 0 ∂P OU T and its value is: Pdiss max = 2 Vcc 2 π2RL (W) Remark : This maximum value is only depending on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply P O UT πV P E A K η = ------------------------ = ----------------------Psupply 4V C C Cs has especially an influence on the THD+N in high frequency (above 7kHz) and indirectly on the power supply disturbances. With 100µF, you can expect similar THD+N performances like shown in the datasheet. If Cs is lower than 100µF, in high frequency increases, THD+N and disturbances on the power supply rail are less filtered. To the contrary, if Cs is higher than 100µF, those disturbances on the power supply rail are more filtered. Cb has an influence on THD+N in lower frequency, but its function is critical on the final result of PSRR with input grounded in lower frequency. If Cb is lower than 1µF, THD+N increase in lower frequency (see THD+N vs frequency curves) and the PSRR worsens up If Cb is higher than 1µF, the benefit on THD+N in lower frequency is small but the benefit on PSRR is substantial (see PSRR vs. Cb curve : fig.12). Note that Cin has a non-negligible effect on PSRR in lower frequency. Lower is its value, higher is the PSRR (see fig. 13). ■ Pop and Click performance Pop and Click performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor Cb. Size of Cin is due to the lower cut-off frequency and PSRR value requested. Size of Cb is due to THD+N and PSRR requested always in lower frequency. Moreover, Cb determines the speed that the amplifier turns ON. The slower the speed is, the softer the turn ON noise is. 21/28 TS4871 The charge time of Cb is directly proportional to the internal generator resistance 50kΩ. Then, the charge time constant for Cb is τb = 50kΩxCb (s) As Cb is directly connected to the non-inverting input (pin 2 & 3) and if we want to minimize, in amplitude and duration, the output spike on Vout1 (pin 5), Cin must be charged faster than Cb. The charge time constant of Cin is τin = (Rin+Rfeed)xCin (s) Thus we have the relation τin << τb (s) The respect of this relation permits to minimize the pop and click noise. Remark : Minimize Cin and Cb has a benefit on pop and click phenomena but also on cost and size of the application. Example : your target for the -3dB cut off frequency is 100 Hz. With Rin=Rfeed=22 kΩ, Cin=72nF (in fact 82nF or 100nF). With Cb=1µF, if you choose the one of the latest two values of Cin, the pop and click phenomena at power supply ON or standby function ON/OFF will be very small 50 kΩx1µF >> 44kΩx100nF (50ms >> 4.4ms). Increasing Cin value increases the pop and click phenomena to an unpleasant sound at power supply ON and standby function ON/OFF. Why Cs is not important in pop and click consideration ? Hypothesis : • Cs = 100µF • Supply voltage = 5V • Supply voltage internal resistor = 0.1Ω • Supply current of the amplifier Icc = 6mA At power ON of the supply, the supply capacitor is charged through the internal power supply resistor. So, to reach 5V you need about five to ten times the charging time constant of Cs (τs = 0.1xCs (s)). Then, this time equal 50µs to 100µs << τb in the majority of application. 22/28 At power OFF of the supply, Cs is discharged by a constant current Icc. The discharge time from 5V to 0V of Cs is: 5Cs t D i schC s = -------------- = 83 ms Icc Now, we must consider the discharge time of Cb. At power OFF or standby ON, Cb is discharged by a 100kΩ resistor. So the discharge time is about τbDisch ≈ 3xCbx100kΩ (s). In the majority of application, Cb=1µF, then τbDisch≈300ms >> tdischCs. ■ Power amplifier design examples Given : • Load impedance : 8Ω • Output power @ 1% THD+N : 0.5W • Input impedance : 10kΩ min. • Input voltage peak to peak : 1Vpp • Bandwidth frequency : 20Hz to 20kHz (0, -3dB) • Ambient temperature max = 50°C • SO8 package First of all, we must calculate the minimum power supply voltage to obtain 0.5W into 8Ω. With curves in fig. 15, we can read 3.5V. Thus, the power supply voltage value min. will be 3.5V. Following equation the maximum Pdiss max = power 2 Vcc 2 π2RL dissipation (W) with 3.5V we have Pdissmax=0.31W. Refer to power derating curves (fig. 20), with 0.31W the maximum ambient temperature will be 100°C. This last value could be higher if you follow the example layout shown on the demoboard (better dissipation). The gain of the amplifier in flat region will be: V OU T P P 2 2R L P OUT G V = --------------------- = ------------------------------------ = 5.65 VIN PP VINP P TS4871 We have Rin > 10kΩ. Let’s take Rin = 10kΩ, then Rfeed = 28.25kΩ. We could use for Rfeed = 30kΩ in normalized value and the gain will be Gv = 6. In lower frequency we want 20 Hz (-3dB cut off frequency). Then: Application n°1 : 20Hz to 20kHz bandwidth and 6dB gain BTL power amplifier. Components : Designator Part Type R1 22k / 0.125W R4 22k / 0.125W R6 Short Cicuit So, we could use for Cin a 1µF capacitor value which gives 16Hz. R7 330k / 0.125W R8* (Vcc-Vf_led)/If_led In Higher frequency we want 20kHz (-3dB cut off frequency). The Gain Bandwidth Product of the TS4871 is 2MHz typical and doesn’t change when the amplifier delivers power into the load. The first amplifier has a gain of: C5 470nF C6 100µF C7 100nF C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch S8 3 pts connector 2.54mm pitch P1 PCB Phono Jack D1* Led 3mm U1 TS4871ID or TS4871IS CIN 1 = ------------------------------ = 795nF 2π Ri nF C L Rf eed ----------------- = 3 R in and the theoretical value of the -3dB cut-off higher frequency is 2MHz/3 = 660kHz. We can keep this value or limit the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. Then: 1 C F E E D = --------------------------------------- = 265pF 2π R F E E D F C H So, we could use for Cfeed a 220pF capacitor value that gives 24kHz. Now, we can calculate the value of Cb with the formula τb = 50kΩxCb >> τin = (Rin+Rfeed)xCin which permits to reduce the pop and click effects. Then Cb >> 0.8µF. We can choose for Cb a normalized value of 2.2µF that gives good results in THD+N and PSRR. In the following tables, you could find three another examples with values required for the demoboard. Remark : components with (*) marking are optional. Application n°2 : 20Hz to 20kHz bandwidth and 20dB gain BTL power amplifier. Components : Designator Part Type R1 110k / 0.125W R4 22k / 0.125W R6 Short Cicuit R7 330k / 0.125W R8* (Vcc-Vf_led)/If_led C5 470nF C6 100µF C7 100nF 23/28 TS4871 Designator Part Type Application n°4 : Differential inputs BTL power amplifier. C9 Short Circuit C10 Short Circuit C12 1µF S1, S2, S6, S7 2mm insulated Plug 10.16mm pitch We have also : R4 = R5, R1 = R6, C4 = C5. S8 3 pts connector 2.54mm pitch The gain of the amplifier is: P1 PCB Phono Jack D1* Led 3mm U1 TS4871ID or TS4871IS Application n°3 : 50Hz to 10kHz bandwidth and 10dB gain BTL power amplifier. In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12. R1 G V D I F F = 2 -------- (Pos. Input - Neg.Input) R4 For a 20Hz to 20kHz bandwidth and 6dB gain BTL power amplifier you could follow the bill of material below. Components : Components : Designator Designator Part Type Part Type R1 33k / 0.125W R1 22k / 0.125W R2 Short Circuit R4 22k / 0.125W R4 22k / 0.125W R5 22k / 0.125W R6 Short Cicuit R6 22k / 0.125W R7 330k / 0.125W R7 330k / 0.125W R8* (Vcc-Vf_led)/If_led R8* (Vcc-Vf_led)/If_led C2 470pF C4 470nF C5 150nF C5 470nF C6 100µF C6 100µF C7 100nF C7 100nF C9 Short Circuit C9 Short Circuit C10 Short Circuit C10 Short Circuit C12 1µF C12 1µF 2mm insulated Plug 10.16mm pitch D1* Led 3mm S1, S2, S6, S7 S1, S2, S6, S7 S8 3 pts connector 2.54mm pitch 2mm insulated Plug 10.16mm pitch P1 PCB Phono Jack D1* U1 24/28 S8 3 pts connector 2.54mm pitch Led 3mm P1, P2 PCB Phono Jack TS4871ID or TS4871IS U1 TS4871ID or TS4871IS TS4871 ■ Note on how to use the PSRR curves Fig. 84 : PSRR changes with Cb (page 7) We have finished a design and we have chosen the components values : −40 PSRR (dB) • Rin=Rfeed=22kΩ • Cin=100nF • Cb=1µF Cin=100nF Cb=1µF −50 −60 Now, on fig. 13, we can see the PSRR (input grounded) vs frequency curves. At 217Hz we have a PSRR value of -36dB. In reality we want a value about -70dB. So, we need a gain of 34dB ! Now, on fig. 12 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With Cb=100µF, we can reach the -70dB value. Vcc = 5, 3.3 & 2.6V Rfeed = 22k, Rin = 22k Rg = 100Ω, RL = 8Ω Tamb = 25°C −30 Cin=100nF Cb=100µF −70 10 100 1000 10000 100000 Frequency (Hz) The process to obtain the final curve (Cb=100µF, Cin=100nF, Rin=Rfeed=22kΩ) is a simple transfer point by point on each frequency of the curve on fig. 13 to the curve on fig. 12. The measurement result is shown on the next figure. 25/28 TS4871 ■ Note on PSRR measurement ■ Principle of operation What is the PSRR ? • We fixed the DC voltage supply (Vcc) • We fixed the AC sinusoidal ripple voltage (Vripple) • No bypass capacitor Cs is used The PSRR is the Power Supply Rejection Ratio. It’s a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output. Fig. 85 : PSRR measurement schematic Rfeed 6 Vcc Vcc 4 Rin 3 VinVin+ - Vout1 5 + Cin Bypass 1 Standby Av=-1 + Cb Vout2 Bias GND Rg 100 Ohms 26/28 Vs- RL 2 7 TS4871 R ms ( V r i ppl e ) PSRR ( dB ) = 20 x Log 10 -------------------------------------------Rms ( Vs + - Vs - ) Remark : The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise. How we measure the PSRR ? Vripple The PSRR value for each frequency is: 8 Vs+ TS4871 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) s b1 b a1 A a2 C c1 a3 L E e3 D M 5 1 4 F 8 Millimeters Inches Dimensions Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S Typ. Max. Min. Typ. Max. 0.65 1.75 0.25 1.65 0.85 0.026 0.069 0.010 0.065 0.033 0.35 0.19 0.25 0.48 0.25 0.5 0.014 0.007 0.010 0.019 0.010 0.020 4.8 5.8 5.0 6.2 0.189 0.228 0.197 0.244 0.1 0.004 45° (typ.) 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 8° (max.) 27/28 TS4871 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (miniSO) k 0,25mm .010inch c C PLANE SEATING E1 L1 L GA GEPLANE A E A2 A1 4 8 1 e C ccc b D 5 PIN1IDENTIFICA TION Millimeters Inches Dimensions A A1 A2 b c D E E1 e L L1 k aaa Min. Typ. 0.050 0.780 0.250 0.130 2.900 4.750 2.900 0.100 0.860 0.330 0.180 3.000 4.900 3.000 0.650 0.550 0.950 3d 0.400 0d Max. Min. Typ. 1.100 0.150 0.940 0.400 0.230 3.100 5.050 3.100 0.002 0.031 0.010 0.005 0.114 0.187 0.114 0.700 0.016 6d 0.100 0d 0.004 0.034 0.013 0.007 0.118 0.193 0.118 0.026 0.022 0.037 3d Max. 0.043 0.006 0.037 0.016 0.009 0.122 0.199 0.122 0.028 6d 0.004 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibil ity for the consequences of use of such information nor for any infring ement of patents or other righ ts of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change witho ut notice. This publ ication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life suppo rt devices or systems withou t express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Swit zerland - United Kingdom - United States http://www. st.com 28/28