TS488-TS489 Pop-free 120mW stereo headphone amplifier Features ■ Pop and click noise protection circuitry ■ Operating range from VCC = 2.2V to 5.5V ■ Standby mode active low (TS488) or high (TS489) ■ Output power: – 120mW @5V, into 16Ω with 0.1% THD+N max (1kHz) – 55mW @3.3V, into 16Ω with 0.1% THD+N max (1kHz) ■ Low current consumption: 2.7mA max @5V ■ Ultra low standby current consumption: 10nA typical TS488IST - MiniSO-8 OUT (1) 1 8 VCC VIN (1) 2 7 OUT (2) BYPASS 3 6 VIN (2) 4 5 GND SHUTDOWN TS488IQT - DFN8 Vcc 1 8 OUT (2) OUT (1) 2 7 VIN (2) VIN (1) 3 6 Shutdown Bypass 4 5 GND ■ High signal-to-noise ratio ■ High crosstalk immunity: 102dB (F = 1kHz) ■ PSRR: 70dB typ. (F = 1kHz), inputs grounded @5V OUT (1) 1 8 VCC VIN (1) 2 7 OUT (2) Unity-gain stable BYPASS 3 6 GND 4 5 ■ ■ Short-circuit protection circuitry ■ Available in lead-free MiniSO-8 & DFN8 2mm x 2mm TS489IST - MiniSO-8 TS489IQT - DFN8 Description The TS488/9 is an enhancement of TS486/7 that eliminates pop and click noise and reduces the number of external passive components. The TS488/9 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16Ω or a 32Ω stereo headset. Capable of descending to low voltages, it delivers up to 31mW per channel (into 16Ω loads) of continuous average power with 0.1% THD+N in the audio bandwidth from a 2.5V power supply. VIN (2) SHUTDOWN Vcc 1 8 OUT (2) OUT (1) 2 7 VIN (2) VIN (1) 3 6 Shutdown Bypass 4 5 GND Applications ■ Headphone amplifier ■ Mobile phone, PDA, computer motherboard ■ High-end TV, portable audio player An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS488/9 is configured by external gainsetting resistors. September 2006 Rev 4 1/32 www.st.com 32 Contents TS488-TS489 Contents 1 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Lower cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Higher cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.5 Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.6 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.7 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.8 Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.9 POP performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Connecting the headphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 MiniSO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 DFN8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2/32 TS488-TS489 1 Typical application schematic Typical application schematic Figure 1. Typical application for the TS488-TS489 TS488=stdby TS489=stdby Table 1. Application component information Component Functional description Rin1,2 Inverting input resistor that sets the closed loop gain in conjunction with Rfeed. This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)). Cin1,2 Input coupling capacitor that blocks the DC voltage at the amplifier’s input terminal. Rfeed1,2 Feedback resistor that sets the closed loop gain in conjunction with Rin. AV= Closed Loop Gain= -Rfeed/Rin. Cs Supply output capacitor that provides power supply filtering. Cb Bypass capacitor that provides half supply filtering. Cout1,2 Output coupling capacitor that blocks the DC voltage at the load input terminal. This capacitor also forms a high pass with RL (Fc = 1 / (2 x Pi x RL x Cout)). 3/32 Absolute maximum ratings and operating conditions 2 TS488-TS489 Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings Symbol Value Unit 6 V -0.3V to VCC +0.3V V -65 to +150 °C Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient MiniSO-8 DFN8 215 70 °C/W Pdiss Power dissipation(2): MiniSO-8 DFN8 0.58 1.79 W ESD Human body model (pin to pin) 2 kV ESD Machine model 220pF - 240pF (pin to pin) 200 V Latch-up immunity (all pins) 200 mA Lead temperature (soldering, 10sec) 250 VCC Vi Tstg Tj Latch-up Parameter Supply voltage (1) Input voltage Storage temperature Output short-circuit to VCC or GND continuous °C (3) 1. All voltage values are measured with respect to the ground pin. 2. Pdiss is calculated with Tamb = 25°C, Tj = 150°C. 3. Attention must be paid to continuous power dissipation (VDD x 250mA). Short-circuits can cause excessive heating and destructive dissipation. Exposing the IC to a short-circuit for an extended period of time will dramatically reduce the product’s life expectancy. Table 3. Operating conditions Symbol VCC RL Toper CL VSTBY Rthja Parameter Supply voltage Load resistor Operating free air temperature range Load capacitor: RL = 16 to 100Ω RL > 100Ω Standby voltage input: TS488 active, TS489 in standby TS488 in standby, TS489 active Thermal resistance junction to ambient MiniSO-8 DFN8(2) Value Unit 2.2 to 5.5 V ≥ 16 Ω -40 to + 85 °C 400 100 pF 1.5 ≤ V ≤ VCC GND ≤ VSTBY ≤ 0.4 (1) V 190 40 °C/W 1. The minimum current consumption (ISTBY) is guaranteed at GND (TS488) or VCC (TS489) for the whole temperature range. 2. When mounted on a 4-layer PCB. 4/32 TS488-TS489 Electrical characteristics 3 Electrical characteristics Table 4. Electrical characteristics at VCC = +5V with GND = 0V, Tamb = 25°C (unless otherwise specified) Symbol ICC ISTBY Pout Parameter Supply current Standby current Output power Conditions Typ. Max. Unit No input signal, no load 2 2.7 mA No input signal, VSTBY = GND for TS488, RL=32Ω 10 1000 No input signal, VSTBY = VCC for TS489, RL=32Ω 10 THD+N = 0.1% max, F = 1kHz, RL = 32Ω 75 THD+N = 1% max, F = 1kHz, RL = 32Ω PSRR nA 70 Total harmonic distortion + noise Power supply rejection ratio, inputs grounded(1) Output swing 100 0.3 AV=-1, RL = 16Ω, Pout = 90mW, 20Hz ≤ F ≤ 20kHz 0.3 % AV=-1, RL ≥ 16Ω, Cb=1µF, F = 1kHz, Vripple = 200mVpp 64 AV=-1, RL ≥ 16Ω, Cb=1µF, F = 217Hz, Vripple = 200mVpp 62 VOH: RL = 32Ω Crosstalk Channel separation Ci A weighted, AV=-1, RL = 32Ω, THD+N < 0.4%, 20Hz ≤ F ≤ 20kHz RL = 32Ω, AV = -1 F = 1kHz F = 20Hz to 20kHz Input capacitance 70 dB 68 0.23 4.53 0.31 4.72 V VOL: RL = 16Ω Signal-to-noise ratio 130 AV=-1, RL = 32Ω, Pout = 60mW, 20Hz ≤ F ≤ 20kHz VOH: RL = 16Ω SNR 80 120 VOL: RL = 32Ω VO 1000 mW THD+N = 0.1% max, F = 1kHz, RL = 16Ω THD+N = 1% max, F = 1kHz, RL = 16Ω THD+N Min. 0.44 4.18 0.57 4.48 105 dB -102 -84 dB 1 pF Gain bandwidth product RL = 32Ω 1.1 MHz SR Slew rate, unity gain inverting RL = 16Ω 0.65 V/μs VIO Input offset voltage Vicm=VCC/2 twu Wake-up time GBP 1 100 20 mV ms 1. Guaranteed by design and evaluation. 5/32 Electrical characteristics Table 5. Symbol ICC ISTBY Pout TS488-TS489 Electrical characteristics at VCC = +3.3V with GND = 0V, Tamb = 25°C (unless otherwise specified) (1) Parameter Supply current Standby current Output power Conditions Typ. Max. Unit No input signal, no load 1.8 2.5 mA No input signal, VSTBY = GND for TS488, RL=32Ω 10 1000 No input signal, VSTBY = VCC for TS489, RL=32Ω 10 1000 THD+N = 0.1% max, F = 1kHz, RL = 32Ω 34 THD+N = 1% max, F = 1kHz, RL = 32Ω PSRR nA 30 Total harmonic distortion + noise Power supply rejection ratio, inputs grounded(2) 55 47 Output swing 0.3 AV = -1, RL = 16Ω, Pout = 35mW, 20Hz ≤ F ≤ 20kHz 0.3 % AV = -1, RL ≥ 16Ω, Cb=1µF, F = 1kHz, Vripple = 200mVpp 63 69 AV = -1, RL ≥ 16Ω, Cb=1µF, F = 217Hz, Vripple = 200mVpp 61 67 VOH: RL = 32Ω dB Signal-to-noise ratio Crosstalk Channel separation Ci 0.15 3.03 A weighted, AV = -1, RL = 32Ω, THD+N < 0.4%, 20Hz ≤F ≤20kHz RL = 32Ω, AV = -1 F = 1kHz F = 20Hz to 20kHz Input capacitance 0.2 3.12 V VOL: RL = 16Ω VOH: RL = 16Ω SNR 57 AV = -1, RL = 32Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz VOL: RL = 32Ω VO 35 mW THD+N = 0.1% max, F = 1kHz, RL = 16Ω THD+N = 1% max, F = 1kHz, RL = 16Ω THD+N Min. 0.28 2.82 0.36 2.97 102 dB -102 -84 dB 1 pF Gain bandwidth product RL = 32Ω 1.1 MHz SR Slew rate, unity gain inverting RL = 16Ω 0.6 V/μs VIO Input offset voltage Vicm=VCC/2 twu Wake-up time GBP 1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V. 2. Guaranteed by design and evaluation. 6/32 1 100 20 mV ms TS488-TS489 Table 6. Symbol ICC ISTBY Pout Electrical characteristics Electrical characteristics at VCC = +2.5V with GND = 0V, Tamb = 25°C (unless otherwise specified) Parameter Supply current Standby current Output power Conditions Typ. Max. Unit No input signal, no load 1.8 2.5 mA No input signal, VSTBY = GND for TS488, RL=32Ω 10 1000 No input signal, VSTBY = VCC for TS489, RL=32Ω 10 THD+N = 0.1% max, F = 1kHz, RL = 32Ω 19 THD+N = 1% max, F = 1kHz, RL = 32Ω PSRR nA 18 Total harmonic distortion + noise Power supply rejection ratio, inputs grounded (1) Output swing 27 0.3 AV=-1, RL = 16Ω, Pout = 16mW, 20Hz ≤ F ≤ 20kHz 0.3 AV=-1, RL ≥ 16Ω, Cb=1µF, F = 1kHz, Vripple = 200mVpp 68 AV=-1, RL ≥ 16Ω, Cb=1µF, F = 217Hz, Vripple = 200mVpp 66 % dB VOH: RL = 32Ω Crosstalk Channel separation Ci 0.12 2.3 A weighted, AV=-1, RL = 32Ω, THD+N < 0.4%, 20Hz ≤ F ≤ 20kHz RL = 32Ω, AV=-1 F = 1kHz F = 20Hz to 20kHz Input capacitance 0.16 2.36 V VOL: RL = 16Ω Signal-to-noise ratio 32 AV=-1, RL = 32Ω, Pout = 10mW, 20Hz ≤ F ≤ 20kHz VOH: RL = 16Ω SNR 20 31 VOL: RL = 32Ω VO 1000 mW THD+N = 0.1% max, F = 1kHz, RL = 16Ω THD+N = 1% max, F = 1kHz, RL = 16Ω THD+N Min. 0.22 2.15 0.28 2.25 100 dB -102 -84 dB 1 pF Gain bandwidth product RL = 32Ω 1.1 MHz SR Slew rate, unity gain inverting RL = 16Ω 0.6 V/μs VIO Input offset voltage Vicm=VCC/2 twu Wake-up time GBP 1 100 20 mV ms 1. Guaranteed by design and evaluation. 7/32 Electrical characteristics Table 7. TS488-TS489 Index of graphics Description Open-loop frequency response Figure 2 to Figure 11 Power derating curves Figure 12 to Figure 13 Signal to noise ratio vs. power supply voltage Figure 14 to Figure 19 Power dissipation vs. output power per channel Figure 20 to Figure 22 Power supply rejection ratio vs. frequency Figure 23 to Figure 25 Total harmonic distortion plus noise vs. output power Figure 26 to Figure 43 Total harmonic distortion plus noise vs. frequency Figure 44 to Figure 52 Output power vs. load resistance Figure 53 to Figure 55 Output power vs. power supply voltage 8/32 Figure Figure 56, Figure 57 Output voltage swing vs. power supply voltage Figure 58 Current consumption vs. power supply voltage Figure 59 Current consumption vs. standby voltage Figure 60 to Figure 65 Crosstalk vs. frequency Figure 66 to Figure 77 TS488-TS489 225 125 Vcc=2.5V RL=16Ω T AMB =25°C Open-loop frequency response 225 125 50 90 50 90 25 45 25 45 0 0 Gain (dB) 75 Phase (°) 100 135 gain 75 gain 135 0 phase -25 -45 -25 -45 -50 -90 -50 -90 -75 0 10 -135 -75 0 10 2 10 4 10 6 10 8 10 2 Figure 4. 10 4 10 -135 6 10 8 Frequency (Hz) Open-loop frequency response 125 gain 225 125 180 100 Open-loop frequency response 225 gain Vcc=2.5V RL=16Ω CL=400pF T AMB =25°C 100 Figure 5. Vcc=5V RL=16 Ω CL=400pF TAMB=25°C 180 50 90 25 45 25 45 0 0 Gain (dB) 75 90 Phase (°) 135 50 75 135 0 0 phase phase -25 -45 -25 -45 -50 -90 -50 -90 -75 0 10 -135 -75 0 10 10 2 10 4 10 6 10 8 10 2 Frequency (Hz) Figure 6. Open-loop frequency response 100 10 4 10 -135 6 10 8 Frequency (Hz) 125 Vcc=2.5V RL=32Ω T AMB =25°C gain Figure 7. 225 125 180 100 Open-loop frequency response 225 Vcc=5V RL=32 Ω TAMB=25°C gain 180 50 90 25 45 25 45 0 0 Gain (dB) 75 90 Phase (°) 135 50 75 135 0 0 phase phase -25 -45 -25 -45 -50 -90 -50 -90 -135 -75 0 10 -75 0 10 Phase (°) 10 Frequency (Hz) Gain (dB) 180 0 phase Gain (dB) Vcc=5V RL=16 Ω TAMB=25°C 180 100 Gain (dB) Figure 3. Phase (°) Open-loop frequency response Phase (°) Figure 2. Electrical characteristics 10 2 10 4 Frequency (Hz) 10 6 10 8 10 2 10 4 10 6 -135 10 8 Frequency (Hz) 9/32 Electrical characteristics Open-loop frequency response 225 125 gain Open-loop frequency response 225 125 gain Vcc=2.5V RL=32Ω CL=400pF T AMB =25°C 50 90 50 90 25 45 25 45 0 0 Gain (dB) 75 Phase (°) 100 135 75 135 0 phase -25 -45 -25 -45 -50 -90 -50 -90 -75 0 10 -135 -75 0 10 2 10 4 10 6 10 8 10 2 4 10 -135 6 10 8 Frequency (Hz) Figure 10. Open-loop frequency response 125 100 10 Vcc=2.5V RL=600 Ω T AMB =25°C gain Figure 11. Open-loop frequency response 225 125 180 100 225 Vcc=5V RL=600 Ω TAMB=25°C gain 180 50 90 25 45 25 45 0 0 Gain (dB) 75 90 Phase (°) 135 50 75 135 0 0 phase Phase (°) 10 Frequency (Hz) Gain (dB) 180 0 phase phase -25 -45 -25 -45 -50 -90 -50 -90 -75 0 10 -135 -75 0 10 10 2 10 4 10 6 10 8 10 Frequency (Hz) 4 10 -135 6 10 Package Power Dissipation (W) 4-layer PCB 0.4 0.2 No Heat sink 3 25 50 75 100 Ambiant Temperature (° C) 125 150 4-layer PCB 2 No heatsink 1 0 0 8 DFN8 MiniSO8 0.6 10/32 10 Figure 13. Power derating curves 0.8 0.0 2 Frequency (Hz) Figure 12. Power derating curves Package Power Dissipation (W) Vcc=5V RL=32 Ω CL=400pF TAMB=25°C 180 100 Gain (dB) Figure 9. Phase (°) Figure 8. TS488-TS489 0 25 50 75 100 Ambiant Temperature (° C) 125 150 TS488-TS489 Electrical characteristics Figure 14. Signal to noise ratio vs. power supply voltage Figure 15. Signal to noise ratio vs. power supply voltage 106 A-weighted Filter Av=-1, T AMB =25°C 108 Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 110 Cb=1μ F THD+N<0.4% 106 104 102 RL=16Ω 100 98 3 4 Unweighted Filter (20Hz-20kHz) Av=-1, T AMB =25°C 102 Cb=1μ F THD+N<0.4% 100 RL=16Ω 98 RL=32Ω 96 RL=32Ω 2 104 5 94 6 2 3 4 Power Supply Voltage (V) Figure 16. Signal to noise ratio vs. power supply voltage Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 102 A-weighted Filter Av=-2, T AMB =25°C 104 Cb=1μ F THD+N<0.4% 102 100 98 RL=16Ω RL=32Ω 96 2 3 4 Unweighted Filter (20Hz-20kHz) Av=-2, T AMB =25°C 100 Cb=1μ F THD+N<0.4% 98 RL=16Ω 96 94 RL=32 Ω 92 5 90 6 2 3 4 Power Supply Voltage (V) 6 Figure 19. Signal to noise ratio vs. power supply voltage 100 98 A-weighted Filter Av=-4, T AMB =25°C 98 Signal to Noise Ratio (dB) Signal to Noise Ratio (dB) 5 Power Supply Voltage (V) Figure 18. Signal to noise ratio vs. power supply voltage Cb=1μ F THD+N<0.4% 96 94 RL=16Ω 92 RL=32Ω 90 88 6 Figure 17. Signal to noise ratio vs. power supply voltage 106 94 5 Power Supply Voltage (V) 96 Unweighted Filter (20Hz-20kHz) Av=-4, T AMB =25°C 94 Cb=1μ F THD+N<0.4% 92 RL=16Ω 90 RL=32Ω 88 2 3 4 Power Supply Voltage (V) 5 6 86 2 3 4 5 6 Power Supply Voltage (V) 11/32 Electrical characteristics TS488-TS489 Figure 20. Power dissipation vs. output power Figure 21. Power dissipation vs. output power per channel per channel 30 40 Vcc=3.3V, F=1kHz, THD+N<1% 35 RL=16Ω 25 Power Dissipation (mW) Power Dissipation (mW) Vcc=2.5V, F=1kHz, THD+N<1% 20 15 RL=32 Ω 10 5 30 RL=16 Ω 25 RL=32 Ω 20 15 10 5 0 0 5 10 15 20 25 30 Output Power (mW) 35 0 40 0 10 20 30 40 50 Output Power (mW) 60 70 Figure 22. Power dissipation vs. output power Figure 23. Power supply rejection ratio vs. per channel frequency 0 100 RL=16Ω Inputs grounded, Av=-1, RL= 16Ω , Cb=1μ F, T AMB =25°C -10 80 -20 PSRR (dB) Power Dissipation (mW) Vcc=5V, F=1kHz, THD+N<1% 60 RL=32Ω 40 -30 Vcc=2.5V -40 Vcc=3.3V -50 Vcc=5V -60 20 -70 0 -80 0 20 40 60 80 100 120 Output Power (mW) 140 20 160 10k 20k Figure 25. Power supply rejection ratio vs. frequency 0 0 Inputs grounded, Vcc=3.3V, RL=16Ω , Cb=1μ F, T AMB =25°C -10 Inputs grounded, Av=-1, RL=16Ω , Vcc=3.3V, TAMB =25°C -10 -20 -20 Cb=1μ F Av=-4 -30 PSRR (dB) PSRR (dB) 1k Frequency (Hz) Figure 24. Power supply rejection ratio vs. frequency Av=-2 -40 Av=-1 -50 -30 -70 -70 20 100 1k Frequency (Hz) 10k 20k Cb=220nF Cb=100nF -50 -60 -80 Cb=470nF -40 -60 12/32 100 -80 20 100 1k Frequency (Hz) 10k 20k TS488-TS489 Electrical characteristics Figure 26. Total harmonic distortion plus noise vs. output power Figure 27. Total harmonic distortion plus noise vs. output power 10 10 F=20kHz, R L=16Ω A V =-1, T AMB =25°C A V =-1, T AMB =25°C BW=20Hz-120kHz 1 BW=20Hz-120kHz V CC =5V THD+N (%) THD+N (%) F=1kHz, R L=16Ω V CC =3.3V 0.1 V CC =2.5V 1 V CC =5V V CC =3.3V V CC=2.5V 0.1 0.01 1E-3 1 10 100 0.01 200 1 10 Output Power (mW) Figure 28. Total harmonic distortion plus noise vs. output power 200 Figure 29. Total harmonic distortion plus noise vs. output power 10 10 F=1kHz, R L=32Ω F=20kHz, R L=32Ω A V =-1, T AMB =25°C A V =-1, T AMB =25°C BW=20Hz-120kHz 1 BW=20Hz-120kHz V CC =5V THD+N (%) THD+N (%) 100 Output Power (mW) V CC =3.3V 0.1 V CC =2.5V 1 V CC =5V V CC=3.3V V CC =2.5V 0.1 0.01 1E-3 1 10 100 0.01 200 1 Output Power (mW) Figure 30. Total harmonic distortion plus noise vs. output power F=20kHz, R L=600 Ω A V =-1, T AMB =25°C BW=20Hz-120kHz 1 THD+N (%) THD+N (%) A V =-1, T AMB=25°C V CC=5V V CC=3.3V V CC =2.5V 0.01 1E-3 0.01 200 10 F=1kHz, R L=600 Ω 0.1 100 Figure 31. Total harmonic distortion plus noise vs. output power 10 1 10 Output Power (mW) V CC =5V BW=20Hz-120kHz V CC =3.3V 0.1 V CC =2.5V 0.01 0.1 Output Voltage (V RMS ) 1 3 1E-3 0.01 0.1 1 3 Output Voltage (V RMS ) 13/32 Electrical characteristics TS488-TS489 Figure 32. Total harmonic distortion plus noise vs. output power Figure 33. Total harmonic distortion plus noise vs. output power 10 10 F=20kHz, R L=16Ω A V =-2, T AMB =25°C A V =-2, T AMB =25°C BW=20Hz-120kHz 1 V CC =3.3V 0.1 V CC =5V BW=20Hz-120kHz V CC =5V THD+N (%) THD+N (%) F=1kHz, R L=16Ω V CC =2.5V 1 V CC =3.3V V CC =2.5V 0.1 0.01 1E-3 1 10 100 0.01 200 1 10 Output Power (mW) Figure 34. Total harmonic distortion plus noise vs. output power 200 Figure 35. Total harmonic distortion plus noise vs. output power 10 10 F=1kHz, R L=32Ω F=20kHz, R L=32Ω A V =-2, T AMB =25°C A V =-2, T AMB =25°C BW=20Hz-120kHz 1 BW=20Hz-120kHz V CC =5V THD+N (%) THD+N (%) 100 Output Power (mW) V CC =3.3V 0.1 V CC =2.5V 1 V CC =5V V CC=3.3V V CC =2.5V 0.1 0.01 1E-3 1 10 100 0.01 200 1 Output Power (mW) Figure 36. Total harmonic distortion plus noise vs. output power F=20kHz, R L=600 Ω A V =-2, T AMB =25°C A V =-2, T AMB=25°C V CC=5V BW=20Hz-120kHz V CC =5V BW=20Hz-120kHz THD+N (%) V CC=3.3V THD+N (%) 200 10 F=1kHz, R L=600 Ω 0.1 100 Figure 37. Total harmonic distortion plus noise vs. output power 10 1 10 Output Power (mW) V CC =2.5V V CC =3.3V 1 V CC =2.5V 0.1 0.01 1E-3 0.01 0.1 Output Voltage (V RMS ) 14/32 1 3 0.01 0.01 0.1 Output Voltage (V RMS ) 1 3 TS488-TS489 Electrical characteristics Figure 38. Total harmonic distortion plus noise vs. output power Figure 39. Total harmonic distortion plus noise vs. output power 10 10 F=20kHz, R L=16Ω A V =-4, T AMB =25°C A V =-4, T AMB =25°C BW=20Hz-120kHz BW=20Hz-120kHz V CC =5V THD+N (%) 1 THD+N (%) F=1kHz, R L=16Ω V CC =3.3V 0.1 V CC =2.5V V CC =5V 1 V CC =3.3V 0.01 1E-3 V CC =2.5V 1 10 100 0.1 200 1 10 Output Power (mW) Figure 40. Total harmonic distortion plus noise vs. output power 200 Figure 41. Total harmonic distortion plus noise vs. output power 10 10 F=1kHz, R L=32Ω F=20kHz, R L=32Ω V CC=5V A V =-4, T AMB =25°C V CC=5V A V =-4, T AMB =25°C BW=20Hz-120kHz THD+N (%) BW=20Hz-120kHz 1 THD+N (%) 100 Output Power (mW) V CC =3.3V 0.1 V CC =2.5V 1 V CC =3.3V V CC =2.5V 0.1 0.01 1E-3 1 10 100 0.01 200 1 Output Power (mW) Figure 42. Total harmonic distortion plus noise vs. output power F=20kHz, R L=600Ω A V =-4, T AMB =25°C A V =-4, T AMB=25°C V CC=5V BW=20Hz-120kHz V CC =5V BW=20Hz-120kHz V CC=3.3V THD+N (%) THD+N (%) 200 10 F=1kHz, R L=600Ω 0.1 100 Figure 43. Total harmonic distortion plus noise vs. output power 10 1 10 Output Power (mW) V CC =2.5V V CC =3.3V 1 V CC =2.5V 0.1 0.01 1E-3 0.01 0.1 Output Voltage (V RMS ) 1 3 0.01 0.01 0.1 1 3 Output Voltage (V RMS ) 15/32 Electrical characteristics TS488-TS489 Figure 44. Total harmonic distortion plus noise vs. frequency Figure 45. Total harmonic distortion plus noise vs. frequency 1 R L=16Ω , A V =-1 R L=32Ω , A V =-1 BW=20Hz-120kHz TAMB =25°C BW=20Hz-120kHz TAMB =25°C 0.1 THD+N (%) THD+N (%) 1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW 0.01 0.1 Vcc=2.5V, Po=12mW Vcc=3.3V, Po=25mW Vcc=5V, Po=60mW 0.01 1E-3 20 100 1k 10k 1E-3 20k 20 100 1k Frequency (Hz) Figure 46. Total harmonic distortion plus noise vs. frequency R L=16Ω , A V =-2 BW=20Hz-120kHz TAMB =25°C BW=20Hz-120kHz TAMB =25°C 0.1 THD+N (%) THD+N (%) 1 R L=600Ω , A V =-1 Vcc=2.5V, Vo=0.7V RMS Vcc=3.3V, Vo=1V RMS Vcc=5V, Po=1.6V RMS 0.01 1E-3 20 100 1k 0.1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW Vcc=5V, Po=100mW 0.01 10k 1E-3 20k 20 100 1k Frequency (Hz) 10k 20k Frequency (Hz) Figure 48. Total harmonic distortion plus noise vs. frequency Figure 49. Total harmonic distortion plus noise vs. frequency 1 1 0.1 R L=32Ω , A V =-2 R L=600Ω , A V =-2 BW=20Hz-120kHz TAMB =25°C BW=20Hz-120kHz TAMB =25°C Vcc=2.5V, Po=12mW THD+N (%) THD+N (%) 20k Figure 47. Total harmonic distortion plus noise vs. frequency 1 Vcc=3.3V, Po=25mW Vcc=5V, Po=60mW 0.01 0.1 Vcc=2.5V, Vo=0.7V RMS Vcc=3.3V, Vo=1V RMS Vcc=5V, Po=1.6V RMS 0.01 1E-3 20 100 1k Frequency (Hz) 16/32 10k Frequency (Hz) 10k 20k 1E-3 20 100 1k Frequency (Hz) 10k 20k TS488-TS489 Electrical characteristics Figure 50. Total harmonic distortion plus noise vs. frequency Figure 51. Total harmonic distortion plus noise vs. frequency 1 R L=16Ω , A V =-4 R L=32Ω , A V =-4 BW=20Hz-120kHz TAMB =25°C BW=20Hz-120kHz TAMB =25°C 0.1 THD+N (%) THD+N (%) 1 Vcc=2.5V, Po=20mW Vcc=3.3V, Po=40mW 0.01 0.1 Vcc=2.5V, Po=12mW Vcc=3.3V, Po=25mW 0.01 Vcc=5V, Po=100mW 1E-3 100 20 1k Vcc=5V, Po=60mW 10k 1E-3 20k 100 20 1k Frequency (Hz) Figure 52. Total harmonic distortion plus noise vs. frequency Figure 53. Output power vs. load resistance 1 75 R L=600Ω , A V =-4 Vcc=2.5V, F=1kHz TAMB =25°C Output Power (mW) BW=20Hz-120kHz TAMB =25°C THD+N (%) 20k 10k Frequency (Hz) 0.1 Vcc=2.5V, Vo=0.7V RMS Vcc=3.3V, Vo=1V RMS 0.01 BW=20Hz-120kHz THD+N=10% 50 THD+N=1% 25 Vcc=5V, Po=1.6V RMS 1E-3 100 20 1k 10k 0 20k 8 16 24 Figure 54. Output power vs. load resistance 48 56 64 250 Vcc=3.3V, F=1kHz TAMB =25°C 100 Vcc=5V, F=1kHz TAMB =25°C 200 BW=20Hz-120kHz THD+N=10% Output Power (mW) Output Power (mW) 40 Figure 55. Output power vs. load resistance 125 75 THD+N=1% 50 25 0 32 Load Resistance (Ω ) Frequency (Hz) THD+N=10% BW=20Hz-120kHz 150 THD+N=1% 100 50 8 16 24 32 40 Load Resistance (Ω ) 48 56 64 0 8 16 24 32 40 48 56 64 Load Resistance (Ω ) 17/32 Electrical characteristics TS488-TS489 Figure 56. Output power vs. power supply voltage Figure 57. Output power vs. power supply voltage 140 240 R L=32Ω , F=1kHz R L=16Ω , F=1kHz 200 BW=20Hz-120kHz Output Power (mW) Output Power (mW) 120 TAMB =25°C 160 120 THD+N=10% 80 40 0 3 4 BW=20Hz-120kHz 100 80 60 THD+N=10% 40 THD+N=1% 20 THD+N=1% 2 T AMB =25°C 5 0 6 2 3 Power Supply Voltage (V) Figure 58. Output voltage swing vs. power supply voltage 6 3 No Loads T AMB =25°C Current Consumption (mA) 5 VOH & VOL (V) 5 Figure 59. Current consumption vs. power supply voltage 6 4 3 RL=32Ω 2 RL=16Ω 1 0 4 Power Supply Voltage (V) 2 3 4 5 TAMB = 25°C 2 1 T AMB= -40°C 0 6 T AMB = 85°C 2 3 Power Supply Voltage (V) 4 5 6 Power Supply Voltage (V) Figure 60. Current consumption vs. standby voltage Figure 61. Current consumption vs. standby voltage 2.5 2.5 Current Consumption (mA) Current Consumption (mA) TS488, T AMB =85°C 2.0 TS488, T AMB =25°C 1.5 TS488, TAMB =-40°C 1.0 0.5 2.0 1.5 TS489, T AMB=85°C 1.0 TS489, TAMB =25°C TS489, TAMB =-40°C 0.5 V CC =2.5V V CC=2.5V 0.0 0.0 0.5 1.0 1.5 Standby Voltage (V) 18/32 2.0 2.5 0.0 0.0 0.5 1.0 1.5 Standby Voltage (V) 2.0 2.5 TS488-TS489 Electrical characteristics Figure 62. Current consumption vs. standby voltage Figure 63. Current consumption vs. standby voltage 3.5 2.5 Current Consumption (mA) Current Consumption (mA) TS488, TAMB =85°C 2.0 TS488, T AMB =25°C 1.5 TS488, T AMB =-40°C 1.0 0.5 3.0 TS489, T AMB=85°C 2.5 TS489, T AMB =25°C 2.0 TS489, T AMB=-40°C 1.5 1.0 0.5 V CC =3.3V 0.0 0.0 0.5 1.0 1.5 2.0 2.5 V CC =3.3V 0.0 0.0 3.0 0.5 1.0 1.5 Figure 64. Current consumption vs. standby voltage 2.5 6 TS489, T AMB =85°C Current Consumption (mA) 5 TS489, T AMB =25°C 4 TS489, T AMB =-40°C 3 2 1 TS489, TAMB =85°C 5 TS489, T AMB =25°C 4 TS489, TAMB =-40°C 3 2 1 V CC =5V 0 0.0 0.5 1.0 1.5 2.0 4 V CC=5V 0 0.0 5 0.5 1.0 Standby Voltage (V) 1.5 2.0 4 5 Standby Voltage (V) Figure 66. Crosstalk vs. frequency Figure 67. Crosstalk vs. frequency 0 0 Vcc=2.5V, RL=16Ω Av=-1, Po=20mW T AMB=25°C -40 -60 Vcc=2.5V, RL=32Ω Av=-1, Po=12mW T AMB =25°C -20 Crosstalk (dB) -20 Crosstalk (dB) 3.0 Figure 65. Current consumption vs. standby voltage 6 Current Consumption (mA) 2.0 Standby Voltage (V) Standby Voltage (V) OUT2 to OUT1 OUT1 to OUT2 -80 -100 -40 -60 OUT1 to OUT2 OUT2 to OUT1 -80 -100 -120 20 100 1k Frequency (Hz) 10k 20k -120 20 100 1k 10k 20k Frequency (Hz) 19/32 Electrical characteristics TS488-TS489 Figure 68. Crosstalk vs. frequency Figure 69. Crosstalk vs. frequency 0 0 Vcc=3.3V, RL=16Ω Av=-1, Po=40mW TAMB =25°C -40 -60 Vcc=3.3V, RL=32Ω Av=-1, Po=25mW TAMB =25°C -20 Crosstalk (dB) Crosstalk (dB) -20 OUT2 to OUT1 OUT1 to OUT2 -80 -100 -40 -60 OUT2 to OUT1 -100 -120 20 100 1k 10k -120 20k 20 100 Figure 70. Crosstalk vs. frequency 20k 10k 20k 0 Vcc=5V, RL=16Ω Av=-1, Po=100mW TAMB =25°C -40 -60 Vcc=5V, RL=32Ω Av=-1, Po=60mW T AMB =25°C -20 Crosstalk (dB) -20 Crosstalk (dB) 10k Figure 71. Crosstalk vs. frequency 0 OUT2 to OUT1 OUT1 to OUT2 -80 -100 -40 -60 OUT2 to OUT1 OUT1 to OUT2 -80 -100 -120 20 100 1k 10k -120 20k 20 100 1k Frequency (Hz) Frequency (Hz) Figure 72. Crosstalk vs. frequency Figure 73. Crosstalk vs. frequency 0 0 Vcc=2.5V, RL=16Ω Av=-4, Po=20mW T AMB=25°C -40 OUT2 to OUT1 -60 Vcc=2.5V, RL=32Ω Av=-4, Po=12mW T AMB =25°C -20 Crosstalk (dB) -20 Crosstalk (dB) 1k Frequency (Hz) Frequency (Hz) OUT1 to OUT2 -80 -100 -40 OUT1 to OUT2 OUT2 to OUT1 -60 -80 -100 -120 20 100 1k Frequency (Hz) 20/32 OUT1 to OUT2 -80 10k 20k -120 20 100 1k Frequency (Hz) 10k 20k TS488-TS489 Electrical characteristics Figure 74. Crosstalk vs. frequency Figure 75. Crosstalk vs. frequency 0 0 Vcc=3.3V, RL=16Ω Av=-4, Po=40mW TAMB =25°C -40 OUT2 to OUT1 -60 Vcc=3.3V, RL=32Ω Av=-4, Po=25mW TAMB =25°C -20 Crosstalk (dB) Crosstalk (dB) -20 OUT1 to OUT2 -80 -100 -40 -60 OUT2 to OUT1 -80 -100 -120 20 100 1k 10k -120 20k 20 100 1k 10k 20k 10k 20k Frequency (Hz) Frequency (Hz) Figure 76. Crosstalk vs. frequency Figure 77. Crosstalk vs. frequency 0 0 Vcc=5V, RL=16Ω Av=-4, Po=100mW TAMB =25°C -40 OUT2 to OUT1 -60 Vcc=5V, RL=32Ω Av=-4, Po=60mW T AMB =25°C -20 Crosstalk (dB) -20 Crosstalk (dB) OUT1 to OUT2 OUT1 to OUT2 -80 -100 -40 -60 OUT2 to OUT1 OUT1 to OUT2 -80 -100 -120 20 100 1k Frequency (Hz) 10k 20k -120 20 100 1k Frequency (Hz) 21/32 Application information TS488-TS489 4 Application information 4.1 Power dissipation and efficiency Hypotheses: ■ Voltage and current in the load are sinusoidal (Vout and Iout). ■ Supply voltage is a pure DC source (VCC). Regarding the load we have: V OUT = V PEAK sin ωt ( V ) and V OUT I OUT = -------------- ( A ) RL and 2 P OUT V PEAK = ----------------- ( A ) 2R L The average current delivered by the power supply voltage is: π I CC AVG V PEAK V PEAK 1 = ------ ∫ ----------------- sin ( t ) dt = ----------------- ( A ) RL πR L 2π 0 Figure 78. Current delivered by power supply voltage in single-ended configuration Icc (t) Vpeak/RL IccAVG 0 T/2 T 3T/2 The power delivered by power supply voltage is: P supply = V CC I CC AVG (W) So, the power dissipation by each power amplifier is P diss = P supply – P OUT ( W ) 2V CC P diss = ------------------- P OUT – P OUT ( W ) π RL and the maximum value is obtained when: ∂P diss = 0 ∂P OUT 22/32 2T Time TS488-TS489 Application information and its value is: 2 P diss Note: MAX V CC -(W) = -----------2 π RL This maximum value depends only on power supply voltage and load values. The efficiency is the ratio between the output power and the power supply: πV peak P OUT η = ------------------ = -----------------P supply 2V CC The maximum theoretical value is reached when Vpeak = VCC/2, so η = --π- = 78.5% 4 4.2 Total power dissipation The TS488/9 is stereo (dual channel) amplifier. It has two independent power amplifiers. Each amplifier produces heat due to its power dissipation. Therefore the maximum die temperature is the sum of each amplifier’s maximum power dissipation. It is calculated as follows: ■ Pdiss R = Power dissipation due to the right channel power amplifier. ■ Pdiss L = Power dissipation due to the left channel power amplifier. ■ Total Pdiss = Pdiss R + Pdiss L (W) Typically, Pdiss R is equal to Pdiss L, giving: TotalP diss = 2P dissR = 2P dissL 2 2V CC TotalP diss = ---------------------- P OUT – 2P OUT π RL 4.3 Lower cut-off frequency The lower cut-off frequency FCL of the amplifier depends on input capacitors Cin and output capacitors Cout. The input capacitor Cin (output capacitor Cout) in serial with the input resistor Rin (load resistor RL) of the amplifier is equivalent to a first order high pass filter. Assuming that FCL is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of the Cin (Cout) is: 1 C in = --------------------------------------2π ⋅ F CL ⋅ R in 1 C out = -------------------------------------2π ⋅ F CL ⋅ R L 23/32 Application information TS488-TS489 Figure 79. Lower cut-off frequency vs. input capacitor Figure 80. Lower cut-off frequency vs. output capacitor 10k 10k R L =16 Ω Lower Cut-off frequency (Hz) Lower Cut-off frequency (Hz) Rin=10kΩ Rin=20kΩ 1k Rin=50kΩ Rin=100kΩ 100 10 1 10 100 R L=32 Ω 1k R L =600 Ω 100 10 0.1 1000 1 Cin (nF) Note: 4.4 10 Cout ( μ F) 100 1000 In case FCL is kept the same for calculation, It must be taken in account that the 1st order high-pass filter on the input and the 1st order high-pass filter on the output create a 2nd order high-pass filter in the audio signal path with an attenuation 6dB on FCL and a roll-off 40db⁄ decade. Higher cut-off frequency In the high frequency region, you can limit the bandwidth by adding a capacitor Cfeed in parallel with Rfeed. It forms a low-pass filter with a -3dB cut-off frequency FCH. Assuming that FCH is highest frequency to be amplified (with a 3dB attenuation), the maximum value of Cfeed is: 1 F CH = -------------------------------------------------2π ⋅ R feed ⋅ C feed Figure 81. Higher cut-off frequency vs. feedback capacitor Higher Cut-off Frequency (kHz) 100k Rfeed=10kΩ Rfeed=40kΩ 1k Rfeed=80kΩ 100 0.01 24/32 Rfeed=20kΩ 10k 0.1 1 Cfeed (μ F ) 10 100 TS488-TS489 4.5 Application information Gain setting In the flat frequency response region (with no effect from Cin, Cout, Cfeed), the output voltage is: R feed⎞ V OUT = V IN ⋅ ⎛⎝ – ------------- = V IN ⋅ A V R ⎠ in The gain AV is: R feed A V = – ------------R in 4.6 Decoupling of the circuit Two capacitors are needed to properly bypass the TS488 (TS489), a power supply capacitor Cs and a bias voltage bypass capacitor Cb. Cs has a strong influence on the THD+N in the high frequency range (above 7kHz) and indirectly on the power supply disturbances. With 1µF, you can expect THD+N performance to be similar to the one shown in the datasheet. If Cs is lower than 1µF, the THD+N increases in the higher frequencies and disturbances on the power supply rail are less filtered. On the contrary, if Cs is higher than 1µF, the disturbances on the power supply rail are more filtered. Cb has an influence on the THD+N in the low frequency range. Its value is critical on the PSRR with grounded inputs in the lower frequencies: ■ If Cb is lower than 1µF, the THD+N improves and the PSRR worsens. ■ If Cb is higher than 1µF, the benefit on the THD+N and PSRR is small. Note: The input capacitor Cin also has a significant effect on the PSRR at lower frequencies. The lower the value of Cin, the higher the PSRR. 4.7 Standby mode When the standby mode is activated an internal circuit of the TS488 (TS489) is charged (see Figure 82). A time required to change the internal circuit is a few microseconds. Figure 82. Internal equivalent schematic of the TS488 (TS489) in standby mode TS488/9 Vin1 Vout1 25K 600K BYPASS GND 25K Vin2 600K Vout2 25/32 Application information 4.8 TS488-TS489 Wake-up time When the standby is released to put the device ON, the bypass capacitor Cb is charged immediately. As Cb is directly linked to the bias of the amplifier, the bias will not work properly until the Cb voltage is correct. The time to reach this voltage plus a time delay of 20ms (pop precaution) is called the wake-up time or tWU; it is specified in the electrical characteristics table with Cb = 1µF. If Cb has a value other than 1µF, tWU can be calculated by applying the following formulas or can be read directly from Figure 83. C b ⋅ 2.5 - + 20 t WU = --------------------0.03125 [ms;μF ] Figure 83. Typical wake-up time vs. bypass capacitance 400 TAMB=25°C Wake-up Time (ms) 350 300 250 200 150 100 50 0 0 1 2 3 4 5 Cb (μ F) Note: It is assumed that the Cb voltage is equal to 0V. If the Cb voltage is not equal to 0V, the wake-up time is shorter. 4.9 POP performance Pop performance is closely related to the size of the input capacitor Cin. The size of Cin is dependent on the lower cut-off frequency and PSRR values requested. In order to reach low pop, Cin must be charged to VCC/2 in less than 20ms. To follow this rule, the equivalent input constant time (RinCin) should be less then 6.7ms: τ in = Rin x Cin < 0.0067 (s) Example calculation: In the typical application schematic Rin is 20kΩ and Cin is 330nF. The lower cut-off frequency (-3db attenuation) is given by the following formula: 1 F CL = ------------------------------------2π ⋅ R in ⋅ C in 26/32 TS488-TS489 Application information With the values above, the result is FCL=25Hz. In this case, τ in = Rin x Cin=6.6ms. This value is sufficient with regard to the previous formula, thus we can state that the pop is imperceptible. Connecting the headphones Generally headphones are connected using jack connectors. To prevent a pop in the headphones when plugging in the jack, a pulldown resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when the headphones are not plugged in. Pulldown resistors with a value of 1 kΩ are high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second. Note: The pop&click reduction circuitry works properly only when both channels have the same value for the external components Cin, Cout, Rload and Rpulldown. 27/32 Package mechanical data 5 TS488-TS489 Package mechanical data In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 5.1 28/32 MiniSO-8 package TS488-TS489 DFN8 package QFN8 (2x2) MECHANICAL DATA D mm. inch DIM. MIN. TYP 0.51 0.80 0.55 0.90 0.60 1.00 A1 0.02 0.05 A3 0.15 A MAX. MIN. TYP. MAX. 0.020 0.031 0.022 0.035 0.024 0.039 0.001 0.002 0.006 b 0.20 0.25 0.30 0.008 0.010 0.012 D2 1.45 1.60 1.70 0.057 0.063 0.067 E2 0.75 0.90 1.00 0.030 0.035 0.039 L 0.225 0.325 0.425 0.009 0.013 0.017 D 2.00 0.079 E 2.00 0.079 aaa 0.15 0.006 bbb 0.10 0.004 ccc 0.10 0.004 D A B INDEX AREA (D/2 xE/2) aaa C 2x E 4 aaa C 2x 10 TOP VIEW A A3 ccc C C SEATING PLANE A1 8 NX SIDE VIEW 0.08 C e INDEX AREA (D/2 xE/2) 7 NX b bbb PIN#1 ID C A B E2 Exposed Pad D2 BOTTOM VIEW NX L 4 NX k 5.2 Package mechanical data 29/32 Ordering information 6 TS488-TS489 Ordering information Table 8. Order codes Part number Package TS488IST MiniSO-8 TS488IQT DFN8 TS489IST TS489IQT 30/32 Temperature range -40°C to +85°C MiniSO-8 DFN8 Packing Marking K488 Tape & reel K88 K489 K89 TS488-TS489 7 Revision history Revision history Table 9. Document revision history Date Revision Changes 2-Jan-2006 1 First release corresponding to the product preview version. 1-Feb-2006 2 Removal of typical application schematic on first page (it appears in Figure 1 on page 3). Minor grammatical and formatting corrections throughout. 4-Aug-2006 3 Update of marking. Update of DFN8 package height. Editorial update. 15-Sep-2006 4 Revision corresponding to the release to production of the TS488 TS489. 31/32 TS488-TS489 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 32/32