STMICROELECTRONICS TS488IQT

TS488-TS489
Pop-free 120mW stereo headphone amplifier
Features
■
Pop and click noise protection circuitry
■
Operating range from VCC = 2.2V to 5.5V
■
Standby mode active low (TS488) or high (TS489)
■
Output power:
– 120mW @5V, into 16Ω with 0.1% THD+N
max (1kHz)
– 55mW @3.3V, into 16Ω with 0.1% THD+N
max (1kHz)
■
Low current consumption: 2.7mA max @5V
■
Ultra low standby current consumption: 10nA
typical
TS488IST - MiniSO-8
OUT (1)
1
8
VCC
VIN (1)
2
7
OUT (2)
BYPASS
3
6
VIN (2)
4
5
GND
SHUTDOWN
TS488IQT - DFN8
Vcc
1
8
OUT (2)
OUT (1)
2
7
VIN (2)
VIN (1)
3
6
Shutdown
Bypass
4
5 GND
■
High signal-to-noise ratio
■
High crosstalk immunity: 102dB (F = 1kHz)
■
PSRR: 70dB typ. (F = 1kHz), inputs grounded
@5V
OUT (1)
1
8
VCC
VIN (1)
2
7
OUT (2)
Unity-gain stable
BYPASS
3
6
GND
4
5
■
■
Short-circuit protection circuitry
■
Available in lead-free MiniSO-8 & DFN8
2mm x 2mm
TS489IST - MiniSO-8
TS489IQT - DFN8
Description
The TS488/9 is an enhancement of TS486/7 that
eliminates pop and click noise and reduces the
number of external passive components.
The TS488/9 is a dual audio power amplifier
capable of driving, in single-ended mode, either a
16Ω or a 32Ω stereo headset.
Capable of descending to low voltages, it delivers
up to 31mW per channel (into 16Ω loads) of
continuous average power with 0.1% THD+N in
the audio bandwidth from a 2.5V power supply.
VIN (2)
SHUTDOWN
Vcc
1
8
OUT (2)
OUT (1)
2
7
VIN (2)
VIN (1)
3
6
Shutdown
Bypass
4
5 GND
Applications
■
Headphone amplifier
■ Mobile phone, PDA, computer motherboard
■ High-end TV, portable audio player
An externally-controlled standby mode reduces
the supply current to 10nA (typ.). The unity gain
stable TS488/9 is configured by external gainsetting resistors.
September 2006
Rev 4
1/32
www.st.com
32
Contents
TS488-TS489
Contents
1
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2
Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3
Lower cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4
Higher cut-off frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5
Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8
Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.9
POP performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Connecting the headphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1
MiniSO-8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2
DFN8 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2/32
TS488-TS489
1
Typical application schematic
Typical application schematic
Figure 1.
Typical application for the TS488-TS489
TS488=stdby
TS489=stdby
Table 1.
Application component information
Component
Functional description
Rin1,2
Inverting input resistor that sets the closed loop gain in conjunction with Rfeed.
This resistor also forms a high pass filter with Cin (Fc = 1 / (2 x Pi x Rin x Cin)).
Cin1,2
Input coupling capacitor that blocks the DC voltage at the amplifier’s input terminal.
Rfeed1,2
Feedback resistor that sets the closed loop gain in conjunction with Rin.
AV= Closed Loop Gain= -Rfeed/Rin.
Cs
Supply output capacitor that provides power supply filtering.
Cb
Bypass capacitor that provides half supply filtering.
Cout1,2
Output coupling capacitor that blocks the DC voltage at the load input terminal.
This capacitor also forms a high pass with RL (Fc = 1 / (2 x Pi x RL x Cout)).
3/32
Absolute maximum ratings and operating conditions
2
TS488-TS489
Absolute maximum ratings and operating conditions
Table 2.
Absolute maximum ratings
Symbol
Value
Unit
6
V
-0.3V to VCC +0.3V
V
-65 to +150
°C
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient
MiniSO-8
DFN8
215
70
°C/W
Pdiss
Power dissipation(2):
MiniSO-8
DFN8
0.58
1.79
W
ESD
Human body model (pin to pin)
2
kV
ESD
Machine model
220pF - 240pF (pin to pin)
200
V
Latch-up immunity (all pins)
200
mA
Lead temperature (soldering, 10sec)
250
VCC
Vi
Tstg
Tj
Latch-up
Parameter
Supply voltage (1)
Input voltage
Storage temperature
Output short-circuit to VCC or GND
continuous
°C
(3)
1. All voltage values are measured with respect to the ground pin.
2. Pdiss is calculated with Tamb = 25°C, Tj = 150°C.
3. Attention must be paid to continuous power dissipation (VDD x 250mA). Short-circuits can cause excessive
heating and destructive dissipation. Exposing the IC to a short-circuit for an extended period of time will
dramatically reduce the product’s life expectancy.
Table 3.
Operating conditions
Symbol
VCC
RL
Toper
CL
VSTBY
Rthja
Parameter
Supply voltage
Load resistor
Operating free air temperature range
Load capacitor:
RL = 16 to 100Ω
RL > 100Ω
Standby voltage input:
TS488 active, TS489 in standby
TS488 in standby, TS489 active
Thermal resistance junction to ambient
MiniSO-8
DFN8(2)
Value
Unit
2.2 to 5.5
V
≥ 16
Ω
-40 to + 85
°C
400
100
pF
1.5 ≤ V ≤ VCC
GND ≤ VSTBY ≤ 0.4 (1)
V
190
40
°C/W
1. The minimum current consumption (ISTBY) is guaranteed at GND (TS488) or VCC (TS489) for the whole
temperature range.
2. When mounted on a 4-layer PCB.
4/32
TS488-TS489
Electrical characteristics
3
Electrical characteristics
Table 4.
Electrical characteristics at VCC = +5V
with GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol
ICC
ISTBY
Pout
Parameter
Supply current
Standby current
Output power
Conditions
Typ.
Max.
Unit
No input signal, no load
2
2.7
mA
No input signal, VSTBY = GND for TS488,
RL=32Ω
10
1000
No input signal, VSTBY = VCC for TS489,
RL=32Ω
10
THD+N = 0.1% max, F = 1kHz, RL = 32Ω
75
THD+N = 1% max, F = 1kHz, RL = 32Ω
PSRR
nA
70
Total harmonic distortion
+ noise
Power supply rejection
ratio, inputs grounded(1)
Output swing
100
0.3
AV=-1, RL = 16Ω, Pout = 90mW,
20Hz ≤ F ≤ 20kHz
0.3
%
AV=-1, RL ≥ 16Ω, Cb=1µF, F = 1kHz,
Vripple = 200mVpp
64
AV=-1, RL ≥ 16Ω, Cb=1µF, F = 217Hz,
Vripple = 200mVpp
62
VOH: RL = 32Ω
Crosstalk Channel separation
Ci
A weighted, AV=-1, RL = 32Ω,
THD+N < 0.4%, 20Hz ≤ F ≤ 20kHz
RL = 32Ω, AV = -1
F = 1kHz
F = 20Hz to 20kHz
Input capacitance
70
dB
68
0.23
4.53
0.31
4.72
V
VOL: RL = 16Ω
Signal-to-noise ratio
130
AV=-1, RL = 32Ω, Pout = 60mW,
20Hz ≤ F ≤ 20kHz
VOH: RL = 16Ω
SNR
80
120
VOL: RL = 32Ω
VO
1000
mW
THD+N = 0.1% max, F = 1kHz, RL = 16Ω
THD+N = 1% max, F = 1kHz, RL = 16Ω
THD+N
Min.
0.44
4.18
0.57
4.48
105
dB
-102
-84
dB
1
pF
Gain bandwidth product
RL = 32Ω
1.1
MHz
SR
Slew rate, unity gain
inverting
RL = 16Ω
0.65
V/μs
VIO
Input offset voltage
Vicm=VCC/2
twu
Wake-up time
GBP
1
100
20
mV
ms
1. Guaranteed by design and evaluation.
5/32
Electrical characteristics
Table 5.
Symbol
ICC
ISTBY
Pout
TS488-TS489
Electrical characteristics at VCC = +3.3V
with GND = 0V, Tamb = 25°C (unless otherwise specified) (1)
Parameter
Supply current
Standby current
Output power
Conditions
Typ.
Max.
Unit
No input signal, no load
1.8
2.5
mA
No input signal, VSTBY = GND for TS488,
RL=32Ω
10
1000
No input signal, VSTBY = VCC for TS489,
RL=32Ω
10
1000
THD+N = 0.1% max, F = 1kHz, RL = 32Ω
34
THD+N = 1% max, F = 1kHz, RL = 32Ω
PSRR
nA
30
Total harmonic distortion
+ noise
Power supply rejection
ratio, inputs grounded(2)
55
47
Output swing
0.3
AV = -1, RL = 16Ω, Pout = 35mW,
20Hz ≤ F ≤ 20kHz
0.3
%
AV = -1, RL ≥ 16Ω, Cb=1µF, F = 1kHz,
Vripple = 200mVpp
63
69
AV = -1, RL ≥ 16Ω, Cb=1µF, F = 217Hz,
Vripple = 200mVpp
61
67
VOH: RL = 32Ω
dB
Signal-to-noise ratio
Crosstalk Channel separation
Ci
0.15
3.03
A weighted, AV = -1, RL = 32Ω,
THD+N < 0.4%, 20Hz ≤F ≤20kHz
RL = 32Ω, AV = -1
F = 1kHz
F = 20Hz to 20kHz
Input capacitance
0.2
3.12
V
VOL: RL = 16Ω
VOH: RL = 16Ω
SNR
57
AV = -1, RL = 32Ω, Pout = 16mW,
20Hz ≤ F ≤ 20kHz
VOL: RL = 32Ω
VO
35
mW
THD+N = 0.1% max, F = 1kHz, RL = 16Ω
THD+N = 1% max, F = 1kHz, RL = 16Ω
THD+N
Min.
0.28
2.82
0.36
2.97
102
dB
-102
-84
dB
1
pF
Gain bandwidth product
RL = 32Ω
1.1
MHz
SR
Slew rate, unity gain
inverting
RL = 16Ω
0.6
V/μs
VIO
Input offset voltage
Vicm=VCC/2
twu
Wake-up time
GBP
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Guaranteed by design and evaluation.
6/32
1
100
20
mV
ms
TS488-TS489
Table 6.
Symbol
ICC
ISTBY
Pout
Electrical characteristics
Electrical characteristics at VCC = +2.5V
with GND = 0V, Tamb = 25°C (unless otherwise specified)
Parameter
Supply current
Standby current
Output power
Conditions
Typ.
Max.
Unit
No input signal, no load
1.8
2.5
mA
No input signal, VSTBY = GND for TS488,
RL=32Ω
10
1000
No input signal, VSTBY = VCC for TS489,
RL=32Ω
10
THD+N = 0.1% max, F = 1kHz, RL = 32Ω
19
THD+N = 1% max, F = 1kHz, RL = 32Ω
PSRR
nA
18
Total harmonic distortion
+ noise
Power supply rejection
ratio, inputs grounded (1)
Output swing
27
0.3
AV=-1, RL = 16Ω, Pout = 16mW,
20Hz ≤ F ≤ 20kHz
0.3
AV=-1, RL ≥ 16Ω, Cb=1µF, F = 1kHz,
Vripple = 200mVpp
68
AV=-1, RL ≥ 16Ω, Cb=1µF, F = 217Hz,
Vripple = 200mVpp
66
%
dB
VOH: RL = 32Ω
Crosstalk Channel separation
Ci
0.12
2.3
A weighted, AV=-1, RL = 32Ω,
THD+N < 0.4%, 20Hz ≤ F ≤ 20kHz
RL = 32Ω, AV=-1
F = 1kHz
F = 20Hz to 20kHz
Input capacitance
0.16
2.36
V
VOL: RL = 16Ω
Signal-to-noise ratio
32
AV=-1, RL = 32Ω, Pout = 10mW,
20Hz ≤ F ≤ 20kHz
VOH: RL = 16Ω
SNR
20
31
VOL: RL = 32Ω
VO
1000
mW
THD+N = 0.1% max, F = 1kHz, RL = 16Ω
THD+N = 1% max, F = 1kHz, RL = 16Ω
THD+N
Min.
0.22
2.15
0.28
2.25
100
dB
-102
-84
dB
1
pF
Gain bandwidth product
RL = 32Ω
1.1
MHz
SR
Slew rate, unity gain
inverting
RL = 16Ω
0.6
V/μs
VIO
Input offset voltage
Vicm=VCC/2
twu
Wake-up time
GBP
1
100
20
mV
ms
1. Guaranteed by design and evaluation.
7/32
Electrical characteristics
Table 7.
TS488-TS489
Index of graphics
Description
Open-loop frequency response
Figure 2 to Figure 11
Power derating curves
Figure 12 to Figure 13
Signal to noise ratio vs. power supply voltage
Figure 14 to Figure 19
Power dissipation vs. output power per channel
Figure 20 to Figure 22
Power supply rejection ratio vs. frequency
Figure 23 to Figure 25
Total harmonic distortion plus noise vs. output power
Figure 26 to Figure 43
Total harmonic distortion plus noise vs. frequency
Figure 44 to Figure 52
Output power vs. load resistance
Figure 53 to Figure 55
Output power vs. power supply voltage
8/32
Figure
Figure 56, Figure 57
Output voltage swing vs. power supply voltage
Figure 58
Current consumption vs. power supply voltage
Figure 59
Current consumption vs. standby voltage
Figure 60 to Figure 65
Crosstalk vs. frequency
Figure 66 to Figure 77
TS488-TS489
225
125
Vcc=2.5V
RL=16Ω
T AMB =25°C
Open-loop frequency response
225
125
50
90
50
90
25
45
25
45
0
0
Gain (dB)
75
Phase (°)
100
135
gain
75
gain
135
0
phase
-25
-45
-25
-45
-50
-90
-50
-90
-75
0
10
-135
-75
0
10
2
10
4
10
6
10
8
10
2
Figure 4.
10
4
10
-135
6
10
8
Frequency (Hz)
Open-loop frequency response
125
gain
225
125
180
100
Open-loop frequency response
225
gain
Vcc=2.5V
RL=16Ω
CL=400pF
T AMB =25°C
100
Figure 5.
Vcc=5V
RL=16 Ω
CL=400pF
TAMB=25°C
180
50
90
25
45
25
45
0
0
Gain (dB)
75
90
Phase (°)
135
50
75
135
0
0
phase
phase
-25
-45
-25
-45
-50
-90
-50
-90
-75
0
10
-135
-75
0
10
10
2
10
4
10
6
10
8
10
2
Frequency (Hz)
Figure 6.
Open-loop frequency response
100
10
4
10
-135
6
10
8
Frequency (Hz)
125
Vcc=2.5V
RL=32Ω
T AMB =25°C
gain
Figure 7.
225
125
180
100
Open-loop frequency response
225
Vcc=5V
RL=32 Ω
TAMB=25°C
gain
180
50
90
25
45
25
45
0
0
Gain (dB)
75
90
Phase (°)
135
50
75
135
0
0
phase
phase
-25
-45
-25
-45
-50
-90
-50
-90
-135
-75
0
10
-75
0
10
Phase (°)
10
Frequency (Hz)
Gain (dB)
180
0
phase
Gain (dB)
Vcc=5V
RL=16 Ω
TAMB=25°C
180
100
Gain (dB)
Figure 3.
Phase (°)
Open-loop frequency response
Phase (°)
Figure 2.
Electrical characteristics
10
2
10
4
Frequency (Hz)
10
6
10
8
10
2
10
4
10
6
-135
10
8
Frequency (Hz)
9/32
Electrical characteristics
Open-loop frequency response
225
125
gain
Open-loop frequency response
225
125
gain
Vcc=2.5V
RL=32Ω
CL=400pF
T AMB =25°C
50
90
50
90
25
45
25
45
0
0
Gain (dB)
75
Phase (°)
100
135
75
135
0
phase
-25
-45
-25
-45
-50
-90
-50
-90
-75
0
10
-135
-75
0
10
2
10
4
10
6
10
8
10
2
4
10
-135
6
10
8
Frequency (Hz)
Figure 10. Open-loop frequency response
125
100
10
Vcc=2.5V
RL=600 Ω
T AMB =25°C
gain
Figure 11. Open-loop frequency response
225
125
180
100
225
Vcc=5V
RL=600 Ω
TAMB=25°C
gain
180
50
90
25
45
25
45
0
0
Gain (dB)
75
90
Phase (°)
135
50
75
135
0
0
phase
Phase (°)
10
Frequency (Hz)
Gain (dB)
180
0
phase
phase
-25
-45
-25
-45
-50
-90
-50
-90
-75
0
10
-135
-75
0
10
10
2
10
4
10
6
10
8
10
Frequency (Hz)
4
10
-135
6
10
Package Power Dissipation (W)
4-layer PCB
0.4
0.2
No Heat sink
3
25
50
75
100
Ambiant Temperature (° C)
125
150
4-layer PCB
2
No heatsink
1
0
0
8
DFN8
MiniSO8
0.6
10/32
10
Figure 13. Power derating curves
0.8
0.0
2
Frequency (Hz)
Figure 12. Power derating curves
Package Power Dissipation (W)
Vcc=5V
RL=32 Ω
CL=400pF
TAMB=25°C
180
100
Gain (dB)
Figure 9.
Phase (°)
Figure 8.
TS488-TS489
0
25
50
75
100
Ambiant Temperature (° C)
125
150
TS488-TS489
Electrical characteristics
Figure 14. Signal to noise ratio vs. power
supply voltage
Figure 15. Signal to noise ratio vs. power
supply voltage
106
A-weighted Filter
Av=-1, T AMB =25°C
108
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
110
Cb=1μ F
THD+N<0.4%
106
104
102
RL=16Ω
100
98
3
4
Unweighted Filter
(20Hz-20kHz)
Av=-1, T AMB =25°C
102
Cb=1μ F
THD+N<0.4%
100
RL=16Ω
98
RL=32Ω
96
RL=32Ω
2
104
5
94
6
2
3
4
Power Supply Voltage (V)
Figure 16. Signal to noise ratio vs. power
supply voltage
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
102
A-weighted Filter
Av=-2, T AMB =25°C
104
Cb=1μ F
THD+N<0.4%
102
100
98
RL=16Ω
RL=32Ω
96
2
3
4
Unweighted Filter
(20Hz-20kHz)
Av=-2, T AMB =25°C
100
Cb=1μ F
THD+N<0.4%
98
RL=16Ω
96
94
RL=32 Ω
92
5
90
6
2
3
4
Power Supply Voltage (V)
6
Figure 19. Signal to noise ratio vs. power
supply voltage
100
98
A-weighted Filter
Av=-4, T AMB =25°C
98
Signal to Noise Ratio (dB)
Signal to Noise Ratio (dB)
5
Power Supply Voltage (V)
Figure 18. Signal to noise ratio vs. power
supply voltage
Cb=1μ F
THD+N<0.4%
96
94
RL=16Ω
92
RL=32Ω
90
88
6
Figure 17. Signal to noise ratio vs. power
supply voltage
106
94
5
Power Supply Voltage (V)
96
Unweighted Filter
(20Hz-20kHz)
Av=-4, T AMB =25°C
94
Cb=1μ F
THD+N<0.4%
92
RL=16Ω
90
RL=32Ω
88
2
3
4
Power Supply Voltage (V)
5
6
86
2
3
4
5
6
Power Supply Voltage (V)
11/32
Electrical characteristics
TS488-TS489
Figure 20. Power dissipation vs. output power Figure 21. Power dissipation vs. output power
per channel
per channel
30
40
Vcc=3.3V, F=1kHz, THD+N<1%
35
RL=16Ω
25
Power Dissipation (mW)
Power Dissipation (mW)
Vcc=2.5V, F=1kHz, THD+N<1%
20
15
RL=32 Ω
10
5
30
RL=16 Ω
25
RL=32 Ω
20
15
10
5
0
0
5
10
15
20
25
30
Output Power (mW)
35
0
40
0
10
20
30
40
50
Output Power (mW)
60
70
Figure 22. Power dissipation vs. output power Figure 23. Power supply rejection ratio vs.
per channel
frequency
0
100
RL=16Ω
Inputs grounded, Av=-1,
RL= 16Ω , Cb=1μ F, T AMB =25°C
-10
80
-20
PSRR (dB)
Power Dissipation (mW)
Vcc=5V, F=1kHz, THD+N<1%
60
RL=32Ω
40
-30
Vcc=2.5V
-40
Vcc=3.3V
-50
Vcc=5V
-60
20
-70
0
-80
0
20
40
60
80
100
120
Output Power (mW)
140
20
160
10k
20k
Figure 25. Power supply rejection ratio vs.
frequency
0
0
Inputs grounded, Vcc=3.3V,
RL=16Ω , Cb=1μ F, T AMB =25°C
-10
Inputs grounded, Av=-1,
RL=16Ω , Vcc=3.3V, TAMB =25°C
-10
-20
-20
Cb=1μ F
Av=-4
-30
PSRR (dB)
PSRR (dB)
1k
Frequency (Hz)
Figure 24. Power supply rejection ratio vs.
frequency
Av=-2
-40
Av=-1
-50
-30
-70
-70
20
100
1k
Frequency (Hz)
10k
20k
Cb=220nF
Cb=100nF
-50
-60
-80
Cb=470nF
-40
-60
12/32
100
-80
20
100
1k
Frequency (Hz)
10k
20k
TS488-TS489
Electrical characteristics
Figure 26. Total harmonic distortion plus
noise vs. output power
Figure 27. Total harmonic distortion plus
noise vs. output power
10
10
F=20kHz, R L=16Ω
A V =-1, T AMB =25°C
A V =-1, T AMB =25°C
BW=20Hz-120kHz
1
BW=20Hz-120kHz
V CC =5V
THD+N (%)
THD+N (%)
F=1kHz, R L=16Ω
V CC =3.3V
0.1
V CC =2.5V
1
V CC =5V
V CC =3.3V
V CC=2.5V
0.1
0.01
1E-3
1
10
100
0.01
200
1
10
Output Power (mW)
Figure 28. Total harmonic distortion plus
noise vs. output power
200
Figure 29. Total harmonic distortion plus
noise vs. output power
10
10
F=1kHz, R L=32Ω
F=20kHz, R L=32Ω
A V =-1, T AMB =25°C
A V =-1, T AMB =25°C
BW=20Hz-120kHz
1
BW=20Hz-120kHz
V CC =5V
THD+N (%)
THD+N (%)
100
Output Power (mW)
V CC =3.3V
0.1
V CC =2.5V
1
V CC =5V
V CC=3.3V
V CC =2.5V
0.1
0.01
1E-3
1
10
100
0.01
200
1
Output Power (mW)
Figure 30. Total harmonic distortion plus
noise vs. output power
F=20kHz, R L=600 Ω
A V =-1, T AMB =25°C
BW=20Hz-120kHz
1
THD+N (%)
THD+N (%)
A V =-1, T AMB=25°C
V CC=5V
V CC=3.3V
V CC =2.5V
0.01
1E-3
0.01
200
10
F=1kHz, R L=600 Ω
0.1
100
Figure 31. Total harmonic distortion plus
noise vs. output power
10
1
10
Output Power (mW)
V CC =5V
BW=20Hz-120kHz
V CC =3.3V
0.1
V CC =2.5V
0.01
0.1
Output Voltage (V RMS )
1
3
1E-3
0.01
0.1
1
3
Output Voltage (V RMS )
13/32
Electrical characteristics
TS488-TS489
Figure 32. Total harmonic distortion plus
noise vs. output power
Figure 33. Total harmonic distortion plus
noise vs. output power
10
10
F=20kHz, R L=16Ω
A V =-2, T AMB =25°C
A V =-2, T AMB =25°C
BW=20Hz-120kHz
1
V CC =3.3V
0.1
V CC =5V
BW=20Hz-120kHz
V CC =5V
THD+N (%)
THD+N (%)
F=1kHz, R L=16Ω
V CC =2.5V
1
V CC =3.3V
V CC =2.5V
0.1
0.01
1E-3
1
10
100
0.01
200
1
10
Output Power (mW)
Figure 34. Total harmonic distortion plus
noise vs. output power
200
Figure 35. Total harmonic distortion plus
noise vs. output power
10
10
F=1kHz, R L=32Ω
F=20kHz, R L=32Ω
A V =-2, T AMB =25°C
A V =-2, T AMB =25°C
BW=20Hz-120kHz
1
BW=20Hz-120kHz
V CC =5V
THD+N (%)
THD+N (%)
100
Output Power (mW)
V CC =3.3V
0.1
V CC =2.5V
1
V CC =5V
V CC=3.3V
V CC =2.5V
0.1
0.01
1E-3
1
10
100
0.01
200
1
Output Power (mW)
Figure 36. Total harmonic distortion plus
noise vs. output power
F=20kHz, R L=600 Ω
A V =-2, T AMB =25°C
A V =-2, T AMB=25°C
V CC=5V
BW=20Hz-120kHz
V CC =5V
BW=20Hz-120kHz
THD+N (%)
V CC=3.3V
THD+N (%)
200
10
F=1kHz, R L=600 Ω
0.1
100
Figure 37. Total harmonic distortion plus
noise vs. output power
10
1
10
Output Power (mW)
V CC =2.5V
V CC =3.3V
1
V CC =2.5V
0.1
0.01
1E-3
0.01
0.1
Output Voltage (V RMS )
14/32
1
3
0.01
0.01
0.1
Output Voltage (V RMS )
1
3
TS488-TS489
Electrical characteristics
Figure 38. Total harmonic distortion plus
noise vs. output power
Figure 39. Total harmonic distortion plus
noise vs. output power
10
10
F=20kHz, R L=16Ω
A V =-4, T AMB =25°C
A V =-4, T AMB =25°C
BW=20Hz-120kHz
BW=20Hz-120kHz
V CC =5V
THD+N (%)
1
THD+N (%)
F=1kHz, R L=16Ω
V CC =3.3V
0.1
V CC =2.5V
V CC =5V
1
V CC =3.3V
0.01
1E-3
V CC =2.5V
1
10
100
0.1
200
1
10
Output Power (mW)
Figure 40. Total harmonic distortion plus
noise vs. output power
200
Figure 41. Total harmonic distortion plus
noise vs. output power
10
10
F=1kHz, R L=32Ω
F=20kHz, R L=32Ω
V CC=5V
A V =-4, T AMB =25°C
V CC=5V
A V =-4, T AMB =25°C
BW=20Hz-120kHz
THD+N (%)
BW=20Hz-120kHz
1
THD+N (%)
100
Output Power (mW)
V CC =3.3V
0.1
V CC =2.5V
1
V CC =3.3V
V CC =2.5V
0.1
0.01
1E-3
1
10
100
0.01
200
1
Output Power (mW)
Figure 42. Total harmonic distortion plus
noise vs. output power
F=20kHz, R L=600Ω
A V =-4, T AMB =25°C
A V =-4, T AMB=25°C
V CC=5V
BW=20Hz-120kHz
V CC =5V
BW=20Hz-120kHz
V CC=3.3V
THD+N (%)
THD+N (%)
200
10
F=1kHz, R L=600Ω
0.1
100
Figure 43. Total harmonic distortion plus
noise vs. output power
10
1
10
Output Power (mW)
V CC =2.5V
V CC =3.3V
1
V CC =2.5V
0.1
0.01
1E-3
0.01
0.1
Output Voltage (V RMS )
1
3
0.01
0.01
0.1
1
3
Output Voltage (V RMS )
15/32
Electrical characteristics
TS488-TS489
Figure 44. Total harmonic distortion plus
noise vs. frequency
Figure 45. Total harmonic distortion plus
noise vs. frequency
1
R L=16Ω , A V =-1
R L=32Ω , A V =-1
BW=20Hz-120kHz
TAMB =25°C
BW=20Hz-120kHz
TAMB =25°C
0.1
THD+N (%)
THD+N (%)
1
Vcc=2.5V, Po=20mW
Vcc=3.3V, Po=40mW
Vcc=5V, Po=100mW
0.01
0.1
Vcc=2.5V, Po=12mW
Vcc=3.3V, Po=25mW
Vcc=5V, Po=60mW
0.01
1E-3
20
100
1k
10k
1E-3
20k
20
100
1k
Frequency (Hz)
Figure 46. Total harmonic distortion plus
noise vs. frequency
R L=16Ω , A V =-2
BW=20Hz-120kHz
TAMB =25°C
BW=20Hz-120kHz
TAMB =25°C
0.1
THD+N (%)
THD+N (%)
1
R L=600Ω , A V =-1
Vcc=2.5V, Vo=0.7V RMS
Vcc=3.3V, Vo=1V RMS
Vcc=5V, Po=1.6V RMS
0.01
1E-3
20
100
1k
0.1
Vcc=2.5V, Po=20mW
Vcc=3.3V, Po=40mW
Vcc=5V, Po=100mW
0.01
10k
1E-3
20k
20
100
1k
Frequency (Hz)
10k
20k
Frequency (Hz)
Figure 48. Total harmonic distortion plus
noise vs. frequency
Figure 49. Total harmonic distortion plus
noise vs. frequency
1
1
0.1
R L=32Ω , A V =-2
R L=600Ω , A V =-2
BW=20Hz-120kHz
TAMB =25°C
BW=20Hz-120kHz
TAMB =25°C
Vcc=2.5V, Po=12mW
THD+N (%)
THD+N (%)
20k
Figure 47. Total harmonic distortion plus
noise vs. frequency
1
Vcc=3.3V, Po=25mW
Vcc=5V, Po=60mW
0.01
0.1
Vcc=2.5V, Vo=0.7V RMS
Vcc=3.3V, Vo=1V RMS
Vcc=5V, Po=1.6V RMS
0.01
1E-3
20
100
1k
Frequency (Hz)
16/32
10k
Frequency (Hz)
10k
20k
1E-3
20
100
1k
Frequency (Hz)
10k
20k
TS488-TS489
Electrical characteristics
Figure 50. Total harmonic distortion plus
noise vs. frequency
Figure 51. Total harmonic distortion plus
noise vs. frequency
1
R L=16Ω , A V =-4
R L=32Ω , A V =-4
BW=20Hz-120kHz
TAMB =25°C
BW=20Hz-120kHz
TAMB =25°C
0.1
THD+N (%)
THD+N (%)
1
Vcc=2.5V, Po=20mW
Vcc=3.3V, Po=40mW
0.01
0.1
Vcc=2.5V, Po=12mW
Vcc=3.3V, Po=25mW
0.01
Vcc=5V, Po=100mW
1E-3
100
20
1k
Vcc=5V, Po=60mW
10k
1E-3
20k
100
20
1k
Frequency (Hz)
Figure 52. Total harmonic distortion plus
noise vs. frequency
Figure 53. Output power vs. load resistance
1
75
R L=600Ω , A V =-4
Vcc=2.5V, F=1kHz
TAMB =25°C
Output Power (mW)
BW=20Hz-120kHz
TAMB =25°C
THD+N (%)
20k
10k
Frequency (Hz)
0.1
Vcc=2.5V, Vo=0.7V RMS
Vcc=3.3V, Vo=1V RMS
0.01
BW=20Hz-120kHz
THD+N=10%
50
THD+N=1%
25
Vcc=5V, Po=1.6V RMS
1E-3
100
20
1k
10k
0
20k
8
16
24
Figure 54. Output power vs. load resistance
48
56
64
250
Vcc=3.3V, F=1kHz
TAMB =25°C
100
Vcc=5V, F=1kHz
TAMB =25°C
200
BW=20Hz-120kHz
THD+N=10%
Output Power (mW)
Output Power (mW)
40
Figure 55. Output power vs. load resistance
125
75
THD+N=1%
50
25
0
32
Load Resistance (Ω )
Frequency (Hz)
THD+N=10%
BW=20Hz-120kHz
150
THD+N=1%
100
50
8
16
24
32
40
Load Resistance (Ω )
48
56
64
0
8
16
24
32
40
48
56
64
Load Resistance (Ω )
17/32
Electrical characteristics
TS488-TS489
Figure 56. Output power vs. power supply
voltage
Figure 57. Output power vs. power supply
voltage
140
240
R L=32Ω , F=1kHz
R L=16Ω , F=1kHz
200
BW=20Hz-120kHz
Output Power (mW)
Output Power (mW)
120
TAMB =25°C
160
120
THD+N=10%
80
40
0
3
4
BW=20Hz-120kHz
100
80
60
THD+N=10%
40
THD+N=1%
20
THD+N=1%
2
T AMB =25°C
5
0
6
2
3
Power Supply Voltage (V)
Figure 58. Output voltage swing vs. power
supply voltage
6
3
No Loads
T AMB =25°C
Current Consumption (mA)
5
VOH & VOL (V)
5
Figure 59. Current consumption vs. power
supply voltage
6
4
3
RL=32Ω
2
RL=16Ω
1
0
4
Power Supply Voltage (V)
2
3
4
5
TAMB = 25°C
2
1
T AMB= -40°C
0
6
T AMB = 85°C
2
3
Power Supply Voltage (V)
4
5
6
Power Supply Voltage (V)
Figure 60. Current consumption vs. standby
voltage
Figure 61. Current consumption vs. standby
voltage
2.5
2.5
Current Consumption (mA)
Current Consumption (mA)
TS488, T AMB =85°C
2.0
TS488, T AMB =25°C
1.5
TS488, TAMB =-40°C
1.0
0.5
2.0
1.5
TS489, T AMB=85°C
1.0
TS489, TAMB =25°C
TS489, TAMB =-40°C
0.5
V CC =2.5V
V CC=2.5V
0.0
0.0
0.5
1.0
1.5
Standby Voltage (V)
18/32
2.0
2.5
0.0
0.0
0.5
1.0
1.5
Standby Voltage (V)
2.0
2.5
TS488-TS489
Electrical characteristics
Figure 62. Current consumption vs. standby
voltage
Figure 63. Current consumption vs. standby
voltage
3.5
2.5
Current Consumption (mA)
Current Consumption (mA)
TS488, TAMB =85°C
2.0
TS488, T AMB =25°C
1.5
TS488, T AMB =-40°C
1.0
0.5
3.0
TS489, T AMB=85°C
2.5
TS489, T AMB =25°C
2.0
TS489, T AMB=-40°C
1.5
1.0
0.5
V CC =3.3V
0.0
0.0
0.5
1.0
1.5
2.0
2.5
V CC =3.3V
0.0
0.0
3.0
0.5
1.0
1.5
Figure 64. Current consumption vs. standby
voltage
2.5
6
TS489, T AMB =85°C
Current Consumption (mA)
5
TS489, T AMB =25°C
4
TS489, T AMB =-40°C
3
2
1
TS489, TAMB =85°C
5
TS489, T AMB =25°C
4
TS489, TAMB =-40°C
3
2
1
V CC =5V
0
0.0
0.5
1.0
1.5
2.0
4
V CC=5V
0
0.0
5
0.5
1.0
Standby Voltage (V)
1.5
2.0
4
5
Standby Voltage (V)
Figure 66. Crosstalk vs. frequency
Figure 67. Crosstalk vs. frequency
0
0
Vcc=2.5V, RL=16Ω
Av=-1, Po=20mW
T AMB=25°C
-40
-60
Vcc=2.5V, RL=32Ω
Av=-1, Po=12mW
T AMB =25°C
-20
Crosstalk (dB)
-20
Crosstalk (dB)
3.0
Figure 65. Current consumption vs. standby
voltage
6
Current Consumption (mA)
2.0
Standby Voltage (V)
Standby Voltage (V)
OUT2 to OUT1
OUT1 to OUT2
-80
-100
-40
-60
OUT1 to OUT2
OUT2 to OUT1
-80
-100
-120
20
100
1k
Frequency (Hz)
10k
20k
-120
20
100
1k
10k
20k
Frequency (Hz)
19/32
Electrical characteristics
TS488-TS489
Figure 68. Crosstalk vs. frequency
Figure 69. Crosstalk vs. frequency
0
0
Vcc=3.3V, RL=16Ω
Av=-1, Po=40mW
TAMB =25°C
-40
-60
Vcc=3.3V, RL=32Ω
Av=-1, Po=25mW
TAMB =25°C
-20
Crosstalk (dB)
Crosstalk (dB)
-20
OUT2 to OUT1
OUT1 to OUT2
-80
-100
-40
-60
OUT2 to OUT1
-100
-120
20
100
1k
10k
-120
20k
20
100
Figure 70. Crosstalk vs. frequency
20k
10k
20k
0
Vcc=5V, RL=16Ω
Av=-1, Po=100mW
TAMB =25°C
-40
-60
Vcc=5V, RL=32Ω
Av=-1, Po=60mW
T AMB =25°C
-20
Crosstalk (dB)
-20
Crosstalk (dB)
10k
Figure 71. Crosstalk vs. frequency
0
OUT2 to OUT1
OUT1 to OUT2
-80
-100
-40
-60
OUT2 to OUT1
OUT1 to OUT2
-80
-100
-120
20
100
1k
10k
-120
20k
20
100
1k
Frequency (Hz)
Frequency (Hz)
Figure 72. Crosstalk vs. frequency
Figure 73. Crosstalk vs. frequency
0
0
Vcc=2.5V, RL=16Ω
Av=-4, Po=20mW
T AMB=25°C
-40
OUT2 to OUT1
-60
Vcc=2.5V, RL=32Ω
Av=-4, Po=12mW
T AMB =25°C
-20
Crosstalk (dB)
-20
Crosstalk (dB)
1k
Frequency (Hz)
Frequency (Hz)
OUT1 to OUT2
-80
-100
-40
OUT1 to OUT2
OUT2 to OUT1
-60
-80
-100
-120
20
100
1k
Frequency (Hz)
20/32
OUT1 to OUT2
-80
10k
20k
-120
20
100
1k
Frequency (Hz)
10k
20k
TS488-TS489
Electrical characteristics
Figure 74. Crosstalk vs. frequency
Figure 75. Crosstalk vs. frequency
0
0
Vcc=3.3V, RL=16Ω
Av=-4, Po=40mW
TAMB =25°C
-40
OUT2 to OUT1
-60
Vcc=3.3V, RL=32Ω
Av=-4, Po=25mW
TAMB =25°C
-20
Crosstalk (dB)
Crosstalk (dB)
-20
OUT1 to OUT2
-80
-100
-40
-60
OUT2 to OUT1
-80
-100
-120
20
100
1k
10k
-120
20k
20
100
1k
10k
20k
10k
20k
Frequency (Hz)
Frequency (Hz)
Figure 76. Crosstalk vs. frequency
Figure 77. Crosstalk vs. frequency
0
0
Vcc=5V, RL=16Ω
Av=-4, Po=100mW
TAMB =25°C
-40
OUT2 to OUT1
-60
Vcc=5V, RL=32Ω
Av=-4, Po=60mW
T AMB =25°C
-20
Crosstalk (dB)
-20
Crosstalk (dB)
OUT1 to OUT2
OUT1 to OUT2
-80
-100
-40
-60
OUT2 to OUT1
OUT1 to OUT2
-80
-100
-120
20
100
1k
Frequency (Hz)
10k
20k
-120
20
100
1k
Frequency (Hz)
21/32
Application information
TS488-TS489
4
Application information
4.1
Power dissipation and efficiency
Hypotheses:
■
Voltage and current in the load are sinusoidal (Vout and Iout).
■
Supply voltage is a pure DC source (VCC).
Regarding the load we have:
V OUT = V PEAK sin ωt ( V )
and
V OUT
I OUT = -------------- ( A )
RL
and
2
P OUT
V PEAK
= ----------------- ( A )
2R L
The average current delivered by the power supply voltage is:
π
I CC
AVG
V PEAK
V PEAK
1
= ------ ∫ ----------------- sin ( t ) dt = ----------------- ( A )
RL
πR L
2π
0
Figure 78. Current delivered by power supply voltage in single-ended configuration
Icc (t)
Vpeak/RL
IccAVG
0
T/2
T
3T/2
The power delivered by power supply voltage is:
P supply = V CC I CC
AVG
(W)
So, the power dissipation by each power amplifier is
P diss = P supply – P OUT ( W )
2V CC
P diss = ------------------- P OUT – P OUT ( W )
π RL
and the maximum value is obtained when:
∂P diss
= 0
∂P OUT
22/32
2T Time
TS488-TS489
Application information
and its value is:
2
P diss
Note:
MAX
V CC
-(W)
= -----------2
π RL
This maximum value depends only on power supply voltage and load values.
The efficiency is the ratio between the output power and the power supply:
πV peak
P OUT
η = ------------------ = -----------------P supply
2V CC
The maximum theoretical value is reached when Vpeak = VCC/2, so
η = --π- = 78.5%
4
4.2
Total power dissipation
The TS488/9 is stereo (dual channel) amplifier. It has two independent power amplifiers.
Each amplifier produces heat due to its power dissipation. Therefore the maximum die
temperature is the sum of each amplifier’s maximum power dissipation. It is calculated as
follows:
■
Pdiss R = Power dissipation due to the right channel power amplifier.
■
Pdiss L = Power dissipation due to the left channel power amplifier.
■
Total Pdiss = Pdiss R + Pdiss L (W)
Typically, Pdiss R is equal to Pdiss L, giving:
TotalP diss = 2P dissR = 2P dissL
2 2V CC
TotalP diss = ---------------------- P OUT – 2P OUT
π RL
4.3
Lower cut-off frequency
The lower cut-off frequency FCL of the amplifier depends on input capacitors Cin and output
capacitors Cout.
The input capacitor Cin (output capacitor Cout) in serial with the input resistor Rin (load
resistor RL) of the amplifier is equivalent to a first order high pass filter. Assuming that FCL is
the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of the Cin
(Cout) is:
1
C in = --------------------------------------2π ⋅ F CL ⋅ R in
1
C out = -------------------------------------2π ⋅ F CL ⋅ R L
23/32
Application information
TS488-TS489
Figure 79. Lower cut-off frequency vs.
input capacitor
Figure 80. Lower cut-off frequency vs.
output capacitor
10k
10k
R L =16 Ω
Lower Cut-off frequency (Hz)
Lower Cut-off frequency (Hz)
Rin=10kΩ
Rin=20kΩ
1k
Rin=50kΩ
Rin=100kΩ
100
10
1
10
100
R L=32 Ω
1k
R L =600 Ω
100
10
0.1
1000
1
Cin (nF)
Note:
4.4
10
Cout ( μ F)
100
1000
In case FCL is kept the same for calculation, It must be taken in account that the
1st order high-pass filter on the input and the 1st order high-pass filter on the
output create a 2nd order high-pass filter in the audio signal path with an
attenuation 6dB on FCL and a roll-off 40db⁄ decade.
Higher cut-off frequency
In the high frequency region, you can limit the bandwidth by adding a capacitor Cfeed in
parallel with Rfeed. It forms a low-pass filter with a -3dB cut-off frequency FCH. Assuming
that FCH is highest frequency to be amplified (with a 3dB attenuation), the maximum value of
Cfeed is:
1
F CH = -------------------------------------------------2π ⋅ R feed ⋅ C feed
Figure 81. Higher cut-off frequency vs. feedback capacitor
Higher Cut-off Frequency (kHz)
100k
Rfeed=10kΩ
Rfeed=40kΩ
1k
Rfeed=80kΩ
100
0.01
24/32
Rfeed=20kΩ
10k
0.1
1
Cfeed (μ F )
10
100
TS488-TS489
4.5
Application information
Gain setting
In the flat frequency response region (with no effect from Cin, Cout, Cfeed), the output voltage
is:
R feed⎞
V OUT = V IN ⋅ ⎛⎝ – ------------- = V IN ⋅ A V
R ⎠
in
The gain AV is:
R feed
A V = – ------------R in
4.6
Decoupling of the circuit
Two capacitors are needed to properly bypass the TS488 (TS489), a power supply capacitor
Cs and a bias voltage bypass capacitor Cb.
Cs has a strong influence on the THD+N in the high frequency range (above 7kHz) and
indirectly on the power supply disturbances. With 1µF, you can expect THD+N performance
to be similar to the one shown in the datasheet. If Cs is lower than 1µF, the THD+N
increases in the higher frequencies and disturbances on the power supply rail are less
filtered. On the contrary, if Cs is higher than 1µF, the disturbances on the power supply rail
are more filtered.
Cb has an influence on the THD+N in the low frequency range. Its value is critical on the
PSRR with grounded inputs in the lower frequencies:
■
If Cb is lower than 1µF, the THD+N improves and the PSRR worsens.
■
If Cb is higher than 1µF, the benefit on the THD+N and PSRR is small.
Note:
The input capacitor Cin also has a significant effect on the PSRR at lower frequencies. The
lower the value of Cin, the higher the PSRR.
4.7
Standby mode
When the standby mode is activated an internal circuit of the TS488 (TS489) is charged
(see Figure 82). A time required to change the internal circuit is a few microseconds.
Figure 82. Internal equivalent schematic of the TS488 (TS489) in standby mode
TS488/9
Vin1
Vout1
25K
600K
BYPASS
GND
25K
Vin2
600K
Vout2
25/32
Application information
4.8
TS488-TS489
Wake-up time
When the standby is released to put the device ON, the bypass capacitor Cb is charged
immediately. As Cb is directly linked to the bias of the amplifier, the bias will not work
properly until the Cb voltage is correct. The time to reach this voltage plus a time delay of
20ms (pop precaution) is called the wake-up time or tWU; it is specified in the electrical
characteristics table with Cb = 1µF.
If Cb has a value other than 1µF, tWU can be calculated by applying the following formulas or
can be read directly from Figure 83.
C b ⋅ 2.5
- + 20
t WU = --------------------0.03125
[ms;μF ]
Figure 83. Typical wake-up time vs. bypass capacitance
400
TAMB=25°C
Wake-up Time (ms)
350
300
250
200
150
100
50
0
0
1
2
3
4
5
Cb (μ F)
Note:
It is assumed that the Cb voltage is equal to 0V. If the Cb voltage is not equal to 0V, the
wake-up time is shorter.
4.9
POP performance
Pop performance is closely related to the size of the input capacitor Cin. The size of Cin is
dependent on the lower cut-off frequency and PSRR values requested.
In order to reach low pop, Cin must be charged to VCC/2 in less than 20ms. To follow this
rule, the equivalent input constant time (RinCin) should be less then 6.7ms:
τ in = Rin x Cin < 0.0067 (s)
Example calculation:
In the typical application schematic Rin is 20kΩ and Cin is 330nF. The lower cut-off frequency
(-3db attenuation) is given by the following formula:
1
F CL = ------------------------------------2π ⋅ R in ⋅ C in
26/32
TS488-TS489
Application information
With the values above, the result is FCL=25Hz.
In this case, τ in = Rin x Cin=6.6ms.
This value is sufficient with regard to the previous formula, thus we can state that the pop is
imperceptible.
Connecting the headphones
Generally headphones are connected using jack connectors. To prevent a pop in the
headphones when plugging in the jack, a pulldown resistor should be connected in parallel
with each headphone output. This allows the capacitors Cout to be charged even when the
headphones are not plugged in.
Pulldown resistors with a value of 1 kΩ are high enough to be a negligible load, and low
enough to charge the capacitors Cout in less than one second.
Note:
The pop&click reduction circuitry works properly only when both channels have the same
value for the external components Cin, Cout, Rload and Rpulldown.
27/32
Package mechanical data
5
TS488-TS489
Package mechanical data
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a Lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
5.1
28/32
MiniSO-8 package
TS488-TS489
DFN8 package
QFN8 (2x2) MECHANICAL DATA
D
mm.
inch
DIM.
MIN.
TYP
0.51
0.80
0.55
0.90
0.60
1.00
A1
0.02
0.05
A3
0.15
A
MAX.
MIN.
TYP.
MAX.
0.020
0.031
0.022
0.035
0.024
0.039
0.001
0.002
0.006
b
0.20
0.25
0.30
0.008
0.010
0.012
D2
1.45
1.60
1.70
0.057
0.063
0.067
E2
0.75
0.90
1.00
0.030
0.035
0.039
L
0.225
0.325
0.425
0.009
0.013
0.017
D
2.00
0.079
E
2.00
0.079
aaa
0.15
0.006
bbb
0.10
0.004
ccc
0.10
0.004
D
A
B
INDEX AREA
(D/2 xE/2)
aaa C 2x
E
4
aaa C 2x
10
TOP VIEW
A
A3
ccc C
C
SEATING
PLANE
A1
8 NX
SIDE VIEW
0.08 C
e
INDEX AREA
(D/2 xE/2)
7
NX b
bbb
PIN#1 ID
C A B
E2
Exposed Pad
D2
BOTTOM VIEW
NX L
4
NX k
5.2
Package mechanical data
29/32
Ordering information
6
TS488-TS489
Ordering information
Table 8.
Order codes
Part number
Package
TS488IST
MiniSO-8
TS488IQT
DFN8
TS489IST
TS489IQT
30/32
Temperature range
-40°C to +85°C
MiniSO-8
DFN8
Packing
Marking
K488
Tape & reel
K88
K489
K89
TS488-TS489
7
Revision history
Revision history
Table 9.
Document revision history
Date
Revision
Changes
2-Jan-2006
1
First release corresponding to the product preview version.
1-Feb-2006
2
Removal of typical application schematic on first page (it appears in
Figure 1 on page 3).
Minor grammatical and formatting corrections throughout.
4-Aug-2006
3
Update of marking.
Update of DFN8 package height.
Editorial update.
15-Sep-2006
4
Revision corresponding to the release to production of the TS488 TS489.
31/32
TS488-TS489
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
32/32