STMICROELECTRONICS TSC103IDT

TSC103
High-voltage, high-side current sense amplifier
Features
■
Independent supply and input common-mode
voltages
■
Wide common-mode operating range:
2.9 to 70 V in single-supply configuration
-2.1 to 65 V in dual-supply configuration
■
Wide common-mode surviving range:
-16 to 75 V (reversed battery and load-dump
conditions)
■
Supply voltage range:
2.7 to 5.5 V in single-supply configuration
■
Low current consumption: ICC max = 360 µA
■
Pin selectable gain: 20 V/V, 25 V/V, 50 V/V or
100 V/V
■
Buffered output
TSSOP8
(Plastic package)
SO-8
(Plastic package)
Applications
8 Vp
Vm 1
■
Automotive current monitoring
■
DC motor control
SEL1 2
7 Vcc-
■
Photovoltaic systems
SEL2 3
6 Gnd
■
Battery chargers
■
Precision current sources
■
Current monitoring of notebook computers
■
Uninterruptible power supplies
■
High-end power supplies
Description
The TSC103 measures a small differential voltage
on a high-side shunt resistor and translates it into
a ground-referenced output voltage. The gain is
adjustable to four different values from 20 V/V up
to 100 V/V by two selection pins.
Wide input common-mode voltage range, low
quiescent current, and tiny TSSOP8 packaging
enable use in a wide variety of applications.
January 2010
5 Vcc+
Out 4
Pin connections
(top view)
The input common-mode and power-supply
voltages are independent. The common-mode
voltage can range from 2.9 to 70 V in the singlesupply configuration or be offset by an adjustable
voltage supplied on the Vcc- pin in the dualsupply configuration.
With a current consumption lower than 360 µA
and a virtually null input leakage current in
standby mode, the power consumption in the
applications is minimized.
Doc ID 16873 Rev 1
1/23
www.st.com
23
Contents
TSC103
Contents
1
Application schematic and pin description . . . . . . . . . . . . . . . . . . . . . . 3
2
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4
Parameter definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1
Common mode rejection ratio (CMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2
Supply voltage rejection ratio (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3
Gain (Av) and input offset voltage (Vos) . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4
Output voltage drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5
Input offset drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6
Output voltage accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
Maximum permissible voltages on pins . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.1
SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2
TSSOP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/23
Doc ID 16873 Rev 1
TSC103
Application schematic and pin description
The TSC103 high-side current sense amplifier can be used in either single- or dual-supply
mode. In the single-supply configuration, the TSC103 features a wide 2.9 V to 70 V input
common-mode range totally independent of the supply voltage. In the dual-supply range,
the common-mode range is shifted by the value of the negative voltage applied on the Vccpin. For instance, with Vcc+ = 5 V and Vcc- = -5 V, then the input common-mode range is
-2 V to 65 V.
Figure 1.
Single-supply configuration schematic
Vsense
Iload
Rsense
Vp
Common-mode voltage: 2.9 V to 70 V
load
1
Application schematic and pin description
5V
Vcc+
Vm
Out
SEL1
TSC103
Vcc-
SEL2
Gnd
Vcc
Vout
µ Controller
ADC
GPIO1
GPIO2
Gnd
AM04517
Doc ID 16873 Rev 1
3/23
Application schematic and pin description
Figure 2.
TSC103
Dual-supply configuration schematic
Vsense
Iload
Vp
Common-mode voltage: -2 V to 65 V
load
Rsense
Vm
5V
Out
SEL1
TSC103
Vcc-
Vcc
Vcc+
SEL2
Gnd
Vout
µ Controller
ADC
GPIO1
GPIO2
Gnd
-5 V
AM04518
4/23
Doc ID 16873 Rev 1
TSC103
Application schematic and pin description
Figure 3.
Common-mode versus supply voltage in dual-supply configuration
Vicm
common-mode voltage
operating range
Max = 70 V
Max = 65 V
Max = 60 V
min = 2.9 V
min = -2.1 V
Vcc- = 0 V
Vcc- = -5 V
Single-supply
min = -7.1 V
Vcc- = -10 V
Dual-supply
AM04519
Table 1 describes the function of each pin. Their position is shown in the illustration on the
cover page and in Figure 1 on page 3.
Table 1.
Pin description
Symbol
Type
Function
Out
Analog output
The Out voltage is proportional to the magnitude of the sense
voltage Vp-Vm.
Gnd
Power supply
Ground line.
Vcc+
Power supply
Positive power supply line.
Vcc-
Power supply
Negative power supply line.
Vp
Analog input
Connection for the external sense resistor. The measured current
enters the shunt on the Vp side.
Vm
Analog input
Connection for the external sense resistor. The measured current
exits the shunt on the Vm side.
SEL1
Digital input
Gain-select pin.
SEL2
Digital input
Gain-select pin.
Doc ID 16873 Rev 1
5/23
Absolute maximum ratings and operating conditions
2
TSC103
Absolute maximum ratings and operating conditions
Table 2.
Absolute maximum ratings
Symbol
Vid
Vin_sense
Vin_sel
Vcc+
Vcc+-Vcc-
Parameter
Value
Unit
±20
V
-16 to 75
V
-0.3 to Vcc++0.3
V
Positive supply voltage(2)
-0.3 to 7
V
DC supply voltage
0 to 15
V
-0.3 to Vcc++0.3
V
-55 to 150
°C
Maximum junction temperature
150
°C
TSSOP8 thermal resistance junction to ambient
120
°C/W
SO-8 thermal resistance junction to ambient
125
°C/W
2.5
kV
150
V
1.5
kV
Input pins differential voltage (Vp-Vm)
(1)
Sensing pins input voltages (Vp, Vm)
(2)
Gain selection pins input voltages (SEL1, SEL2)
voltage(2)
Vout
DC output pin
Tstg
Storage temperature
Tj
Rthja
HBM: human body
ESD
model(3)
MM: machine model(4)
CDM: charged device
model(5)
1. These voltage values are measured with respect to the Vcc- pin.
2. These voltage values are measured with respect to the Gnd pin.
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
5. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to ground.
Table 3.
Operating conditions
Symbol
Parameter
Value
Unit
Vcc+
Supply voltage in single-supply configuration from
Tmin to Tmax
(Vcc- connected to Gnd = 0 V)
2.7 to 5.5
V
Vcc+ = 5.5 V max
-8 to 0
V
Vcc+ = 3 V max
-11 to 0
V
Vicm
Common-mode voltage range referred to pin Vcc (Tmin to Tmax)
2.9 to 70
V
Toper
Operational temperature range (Tmin to Tmax)
-40 to 125
°C
Negative supply voltage in dual-supply
configuration from Tmin to Tmax
Vcc-
6/23
Doc ID 16873 Rev 1
TSC103
3
Electrical characteristics
Electrical characteristics
The electrical characteristics given in the following tables are measured under the following
test conditions unless otherwise specified.
Table 4.
●
Tamb = 25° C, Vcc+ = 5 V, Vcc- connected to Gnd (single-supply configuration).
●
Vsense = Vp-Vm = 50 mV, Vm = 12 V, no load on Out, all gain configurations.
Supply
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
ICC
Total supply current
Vsense = 0 V, Tmin < Tamb < Tmax
200
360
µA
ICC1
Total supply current
Vsense = 50 mV Av = 50 V/V
Tmin < Tamb < Tmax
300
480
µA
Min.
Typ.
Max.
Unit
90
105
dB
95
dB
100
dB
Table 5.
Symbol
Input
Parameter
Test conditions
DC common-mode rejection
DC CMR Variation of Vout versus Vicm
referred to input(1)
2.9 V< Vm < 70 V
Tmin < Tamb < Tmax
AC common-mode rejection
Variation of Vout versus Vicm
AC CMR
referred to input (peak-to-peak
voltage variation)
Av = 50 V/V or 100 V/V
2.9 V< Vm < 30 V
1 kHz sine wave
Supply voltage rejection
Variation of Vout versus VCC(2)
SEL1 = Gnd, SEL2 = Gnd
2.7 V< VCC < 5.5 V
Vsense = 30 mV
Tmin < Tamb < Tmax
Vos
Input offset voltage(3)
Tamb = 25° C
Tmin < Tamb < Tmax
dVos/dT
Input offset drift vs. T
Av = 50 V/V
Tmin < Tamb < Tmax
Ilk
Input leakage current
VCC = 0 V
Tmin < Tamb < Tmax
Iib
Input bias current
Vsense = 0 V
Tmin < Tamb < Tmax
VIL
Logic low voltage threshold (SEL1
and SEL2)
VIH
Logic high voltage threshold (SEL1 VCCmin < VCC < VCCmax
and SEL2)
Tmin < Tamb < Tmax
Isel
Gain-select pins (SEL1 and SEL2) SEL pin connected to GND or
input bias current
VCC Tmin < Tamb < Tmax
SVR
VCCmin < VCC < VCCmax
Tmin < Tamb < Tmax
85
±500
±1100
µV
+5
µV/°C
1
µA
15
µA
-0.3
0.5
V
1.2
VCC
V
-20
10
400
nA
1. See Chapter 4: Parameter definitions on page 10 for the definition of CMR.
2. See Chapter 4 for the definition of SVR.
3. See Chapter 4 for the definition of Vos.
Doc ID 16873 Rev 1
7/23
Electrical characteristics
Table 6.
Output
Symbol
Av
ΔVout/ΔT
TSC103
Parameter
Gain
SEL1 = Gnd, SEL2 = Gnd
SEL1 = Gnd, SEL2 = Vcc+
SEL1 = Vcc+, SEL2 = Gnd
SEL1 = Vcc+, SEL2 = Vcc+
Output voltage drift vs. T(1)
Av = 50 V/V
Tmin < Tamb < Tmax
ΔVout/ΔIout Output stage load regulation
ΔVout
Test conditions
Total output voltage
accuracy(2)
Min.
Typ.
Max.
20
25
50
100
Unit
V/V
±240
ppm/°C
±1.5
mV/mA
Vsense = 50 mV(3)
Tamb = 25° C
Tmin < Tamb < Tmax
±2.5
±4
%
±3.5
±5
%
-10 mA < Iout <10 mA
Iout sink or source current
Av = 50 V/V
0.3
ΔVout
Total output voltage accuracy
Vsense = 90 mV(3)
Tamb = 25° C
Tmin < Tamb < Tmax
ΔVout
Total output voltage accuracy
Vsense = 20 mV Tamb = 25° C
Tmin < Tamb < Tmax
±3.5
±5
%
ΔVout
Total output voltage accuracy
Vsense = 10 mV Tamb = 25° C
Tmin < Tamb < Tmax
±5.5
±8
%
ΔVout
Total output voltage accuracy
Vsense = 5 mV Tamb = 25° C
Tmin < Tamb < Tmax
±10
±22
%
Short-circuit current
OUT connected to VCC or
GND
VOH
Output stage high-state saturation
voltage
VOH = VCC-Vout
Vsense = 1 V
Iout = 1 mA
85
135
mV
VOL
Output stage low-state saturation
voltage
Vsense =-1 V
Iout = 1 mA
80
125
mV
Isc
15
26
mA
1. See Chapter 4: Parameter definitions on page 10 for the definition of output voltage drift versus temperature.
2. Output voltage accuracy is the difference with the expected theoretical output voltage Vout-th=Av*Vsense. See Chapter 4 for a
more detailed definition.
3. Except for Av = 100 V/V.
8/23
Doc ID 16873 Rev 1
TSC103
Table 7.
Electrical characteristics
Frequency response
Symbol
ts
Parameter
Response to input differential
voltage change.
Output settling to 1% of final value
Test conditions
Min.
Typ.
Max.
Unit
Vsense square pulse applied to
generate a variation of Vout
from 500 mV to 3 V
Cload = 47 pF
Av = 20 V/V,
3
µs
Av = 25 V/V
4
µs
Av = 50 V/V
6
Av = 100 V/V
10
µs
tSEL
Response to a gain change.
Output settling to 1% of final value
Any change of state of SEL1
or SEL2 pin
1
µs
trec
Response to common-mode
voltage change.
Output settling to 1% of final value
Vcc+= 5 V, Vcc-= -5 V
Vm step change from -2 V to
30 V or 30 V to -2 V
20
µs
SR
Slew rate
Vsense = 10 mV to 100 mV
0.6
V/µs
BW
3 dB bandwidth
Cload = 47 pF Vm = 12 V
Vsense = 50 mV
Av = 50 V/V
700
kHz
Table 8.
Symbol
eN
0.4
Noise
Parameter
Equivalent input noise voltage
Test conditions
f = 1 kHz
Doc ID 16873 Rev 1
Min.
Typ.
40
Max.
Unit
nV/√ Hz
9/23
Parameter definitions
TSC103
4
Parameter definitions
4.1
Common mode rejection ratio (CMR)
The common-mode rejection ratio (CMR) measures the ability of the current-sensing
amplifier to reject any DC voltage applied on both inputs Vp and Vm. The CMR is referred
back to the input so that its effect can be compared with the applied differential signal. The
CMR is defined by the formula:
ΔV out
CMR = – 20 ⋅ log -----------------------------ΔV icm ⋅ Av
4.2
Supply voltage rejection ratio (SVR)
The supply-voltage rejection ratio (SVR) measures the ability of the current-sensing
amplifier to reject any variation of the supply voltage VCC. The SVR is referred back to the
input so that its effect can be compared with the applied differential signal. The SVR is
defined by the formula:
ΔV out
SVR = – 20 ⋅ log ----------------------------ΔV CC ⋅ Av
4.3
Gain (Av) and input offset voltage (Vos)
The input offset voltage is defined as the intersection between the linear regression of the
Vout vs. Vsense curve with the X-axis (see Figure 4). If Vout1 is the output voltage with
Vsense = Vsense1 and Vout2 is the output voltage with Vsense = Vsense2, then Vos can be
calculated with the following formula.
V sense1 – V sense2
V os = V sense1 – ⎛ ------------------------------------------------ ⋅ V out1⎞
⎝ V out1 – V out2
⎠
10/23
Doc ID 16873 Rev 1
TSC103
Parameter definitions
Figure 4.
Vout versus Vsense characteristics: detail for low Vsense values
Vout
Vout_1
Vout_2
Vsense
Vos
Vsense2
Vsense1
AM04520
The values of Vsense1 and Vsense2 used for the input offset calculations are detailed in
Table 9.
Table 9.
Test conditions for Vos voltage calculation
Av (V/V)
Vsense1 (mV)
Vsense2 (mV)
20
50
5
25
50
5
50
50
5
100
40
5
Doc ID 16873 Rev 1
11/23
Parameter definitions
4.4
TSC103
Output voltage drift versus temperature
The output voltage drift versus temperature is defined as the maximum variation of Vout with
respect to its value at 25° C over the temperature range. It is calculated as follows:
ΔV out
V out ( T amb ) – V out ( 25° C )
----------------- = max -------------------------------------------------------------------------ΔT
T amb – 25° C
with Tmin < Tamb < Tmax.
Figure 5 provides a graphical definition of the output voltage drift versus temperature. On
this chart Vout is always comprised in the area defined by the maximum and minimum
variation of Vout versus T, and T = 25° C is considered to be the reference.
Figure 5.
Output voltage drift versus temperature (Av = 50 V/V Vsense = 50 mV)
60
Vout-Vout@25°C (mV)
40
20
0
-20
-40
-60
-60 -40
12/23
-20
0
20
40 60
T (°C)
Doc ID 16873 Rev 1
80
100 120 140
TSC103
4.5
Parameter definitions
Input offset drift versus temperature
The input voltage drift versus temperature is defined as the maximum variation of Vos with
respect to its value at 25° C over the temperature range. It is calculated as follows:
ΔV os
V os ( T amb ) – V os ( 25° C )
--------------- = max --------------------------------------------------------------------ΔT
T amb – 25° C
with Tmin < Tamb < Tmax.
Figure 6. provides a graphical definition of the input offset drift versus temperature. On this
chart Vos is always comprised in the area defined by the maximum and minimum variation of
Vos versus T, and T = 25° C is considered to be the reference.
Figure 6.
Input offset drift versus temperature (Av = 50 V/V)
1.5
Vos-Vos@25°C (mV)
1
0.5
0
-0.5
-1
-1.5
-2
-2.5
-60 -40 -20
0
20
40
60
80 100 120 140
T (°C)
4.6
Output voltage accuracy
The output voltage accuracy is the difference between the actual output voltage and the
theoretical output voltage. Ideally, the current sensing output voltage should be equal to the
input differential voltage multiplied by the theoretical gain, as in the following formula.
Vout-th = Av . Vsense
The actual value is very slightly different, mainly due to the effects of:
●
the input offset voltage Vos,
●
the non-linearity.
Doc ID 16873 Rev 1
13/23
Parameter definitions
Figure 7.
TSC103
Vout vs. Vsense theoretical and actual characteristics
Vout
Actual
Ideal
Vout accuracy for Vsense = 5 mV
Vsense
5 mV
AM04521
The output voltage accuracy, expressed as a percentage, can be calculated with the
following formula,
abs ( V out – ( Av ⋅ V sense ) )
ΔV out = -------------------------------------------------------------------------Av ⋅ V sense
with 20 V/V, 25 V/V, 50 V/V or 100 V/V depending on the configuration of the SEL1 and
SEL2 pins.
14/23
Doc ID 16873 Rev 1
TSC103
5
Maximum permissible voltages on pins
Maximum permissible voltages on pins
The TSC103 can be used in either single- or dual-supply configuration. The dual-supply
configuration is achieved by disconnecting Vcc- and Gnd, and connecting Vcc- to a negative
supply. Figure 8 illustrates how the absolute maximum voltages on input pins Vp and Vm are
referred to the Vcc- potential, while the maximum voltages on the positive supply pin, gain
selection pins and output pins are referred to the Gnd pin. It should also be noted that the
maximum voltage between Vcc- and Vcc+ is limited to 15 V.
Figure 8.
Maximum voltages on pins
Vp and Vm
+75 V
SEL1, SEL2 and Out
Vcc-
Vcc+
Vcc+
+15 V
+7 V
Vcc+
+ 0.3 V
Gnd
Gnd
-0.3V
-0.3 V
Vcc+
SEL1, SEL2 and Out
Vcc-
-16 V
Vp and Vm
AM04522
Doc ID 16873 Rev 1
15/23
Application information
6
TSC103
Application information
The TSC103 can be used to measure current and to feed back the information to a
microcontroller.
Figure 9.
Single-supply configuration schematic
Vsense
Iload
Vp
Common-mode voltage: 2.9 V to 70 V
load
Rsense
5V
Vcc+
Vm
Out
SEL1
TSC103
SEL2
Vcc-
Gnd
Vcc
Vout
µ Controller
ADC
GPIO1
GPIO2
Gnd
AM04517
The current from the supply flows to the load through the Rsense resistor causing a voltage
drop equal to Vsense across Rsense. The amplifier’s input currents are negligible, therefore its
inverting input voltage is equal to Vm. The amplifier's open-loop gain forces its non-inverting
input to the same voltage as the inverting input. As a consequence, the amplifier adjusts
current flowing through Rg1 so that the voltage drop across Rg1 matches Vsense exactly.
Therefore, the drop across Rg1 is:
VRg1 = Vsense = Rsense.Iload
If IRg1 is the current flowing through Rg1, then IRg1 is given by the formula:
IRg1 = Vsense/Rg1
The IRg1 current flows entirely into resistor Rg3 (the input bias current of the buffer is
negligible). Therefore, the voltage drop on the Rg3 resistor can be calculated as follows.
VRg3 = Rg3.IRg1 = (Rg3/Rg1).Vsense
Since the voltage across the Rg3 resistor is buffered to the Out pin, Vout can be expressed
as:
Vout = (Rg3/Rg1).Vsense
or:
Vout = (Rg3/Rg1).Rsense.Iload
16/23
Doc ID 16873 Rev 1
TSC103
Application information
The resistor ratio Rg3/Rg1 is internally set to 20 V/V for TSC103A, to 50 V/V for TSC103B
and to 100 V/V for TSC103C.
Since they define the full-scale output range of the application, the Rsense resistor and the
Rg3/Rg1 resistor ratio (equal to Av) are important parameters and must therefore be selected
carefully.
Doc ID 16873 Rev 1
17/23
Package information
7
TSC103
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
18/23
Doc ID 16873 Rev 1
TSC103
7.1
Package information
SO-8 package information
Figure 10. SO-8 package mechanical drawing
Table 10.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
1.75
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.25
Max.
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
L1
k
ccc
1.04
0
0.040
8°
0.10
Doc ID 16873 Rev 1
1°
8°
0.004
19/23
Package information
7.2
TSC103
TSSOP-8 package information
Figure 11. TSSOP8 package mechanical drawing
Table 11.
TSSOP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.20
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
0°
L
0.45
aaa
1.00
0.65
k
L1
20/23
Inches
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
1
8°
0.024
0.030
0.039
0.10
Doc ID 16873 Rev 1
0.004
TSC103
Ordering information
8
Ordering information
Table 12.
Order codes
Part number
Temperature range
TSC103IPT
Package
Packaging
Marking
TSSOP8
Tape & reel
103I
SO-8
Tape & reel
TSC103I
TSSOP8
Tape & reel
103Y
SO-8
Tape & reel
TSC103Y
-40° C, +125° C
TSC103IDT
TSC103IYPT(1)
TSC103IYDT
-40° C, +125° C
Automotive grade
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q002 or equivalent are on-going.
Doc ID 16873 Rev 1
21/23
Revision history
9
TSC103
Revision history
Table 13.
22/23
Document revision history
Date
Revision
04-Jan-2010
1
Changes
Initial release.
Doc ID 16873 Rev 1
TSC103
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 16873 Rev 1
23/23