TI UA723CDR

µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
D
D
D
D
D
D OR N PACKAGE
(TOP VIEW)
150-mA Load Current Without External
Power Transistor
Adjustable Current-Limiting Capability
Input Voltages up to 40 V
Output Adjustable From 2 V to 37 V
Direct Replacement for Fairchild µA723C
NC
CURR LIM
CURR SENS
IN–
IN+
REF
VCC–
description
1
14
2
13
3
12
4
11
5
10
6
9
7
8
NC
FREQ COMP
VCC+
VC
OUTPUT
VZ
NC
The µA723 is a precision integrated-circuit
voltage regulator, featuring high ripple rejection,
excellent input and load regulation, excellent temperature stability, and low standby current. The circuit consists
of a temperature-compensated reference-voltage amplifier, an error amplifier, a 150-mA output transistor, and
an adjustable-output current limiter.
The µA723 is designed for use in positive or negative power supplies as a series, shunt, switching, or floating
regulator. For output currents exceeding 150 mA, additional pass elements can be connected as shown in
Figures 4 and 5.
The µA723C is characterized for operation from 0°C to 70°C.
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
PLASTIC
DIP
(N)
SMALL
OUTLINE
(D)
0°C to 70°C
µA723CN
µA723CD
CHIP
FORM
(Y)
µA723Y
The D package is available taped and reeled. Add the suffix
R to the device type (e.g., µA723CDR). Chip forms are
tested at 25°C.
functional block diagram
VCC+
FREQ COMP
IN–
Error
Amp
REF
IN+
+
Ref
Amp
VC
Series Pass
Transistor
–
TemperatureCompensated
Reference Diode
Current
Source
Current
Limiter
VCC–
CURR LIM CURR SENS
Regulated
Output
VZ
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
schematic
VCC+
500 Ω
1 kΩ
25 kΩ
VC
1 kΩ
15 kΩ
15 kΩ
OUTPUT
6.2 V
100 Ω
VZ
5 pF
30 kΩ
FREQ COMP
300 Ω
5 kΩ
150 Ω
20 kΩ
CURR LIM
CURR SENS
REF
IN+
VCC–
IN–
Resistor and capacitor values shown are nominal.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Peak voltage from VCC+ to VCC– (tw ≤ 50 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 V
Continuous voltage from VCC+ to VCC– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 V
Input-to-output voltage differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 V
Differential input voltage to error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5 V
Voltage between noninverting input and VCC– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V
Current from VZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA
Current from REF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 mA
Package thermal impedance, θJA (see Notes 1 and 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . 101°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package . . . . . . . . . . . . . . . . 260°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can impact reliability.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace
length of zero.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
recommended operating conditions
MIN
MAX
9.5
40
V
Output voltage, VO
2
37
V
Input-to-output voltage differential, VC – VO
3
38
V
150
mA
70
°C
Input voltage, VI
Output current, IO
µA723C
Operating free-air temperature range, TA
0
UNIT
electrical characteristics at specified free-air temperature (see Notes 3 and 4)
PARAMETER
TEST CONDITIONS
TA
VI = 12 V to VI = 15 V
VI = 12 V to VI = 40 V
Input regulation
Ripple rejection
µA723C
MIN
TYP
MAX
25°C
0.1
1
25°C
1
5
VI = 12 V to VI = 15 V
f = 50 Hz to 10 kHz,
Cref = 0
0°C to 70°C
25°C
74
f = 50 Hz to 10 kHz,
Cref = 5 µF
25°C
86
25°C
–0.3
Output regulation
Standby current
25°C
VI = 30 V,
IO = 0
Short-circuit output current
Output noise voltage
6.8
0°C to 70°C
RSC = 10 Ω,
dB
–2
–6
25°C
Temperature coefficient of output voltage
mV/V
3
0°C to 70°C
Reference voltage, Vref
UNIT
7.15
7.5
2.3
4
0.003
0.015
VO = 0
Cref = 0
25°C
65
BW = 100 Hz to 10 kHz,
25°C
20
BW = 100 Hz to 10 kHz,
Cref = 5 µF
25°C
2.5
mV/V
V
mA
%/°C
mA
µV
NOTES: 3. For all values in this table, the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier
≤ 10 kΩ. Unless otherwise specified, VI = VCC+ = VC = 12 V, VCC– = 0, VO = 5 V, IO = 1 mA, RSC = 0, and Cref = 0.
4. Pulse-testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
electrical characteristics, TA = 25°C (see Notes 3 and 4)
PARAMETER
Input regulation
Ripple rejection
TEST CONDITIONS
VI = 12 V to VI = 15 V
VI = 12 V to VI = 40 V
µA723Y
MIN
TYP
0.1
1
f = 50 Hz to 10 kHz,
Cref = 0
74
f = 50 Hz to 10 kHz,
Cref = 5 µF
86
MAX
UNIT
mV/V
dB
Output regulation
–0.3
mV/V
Reference voltage, Vref
7.15
V
2.3
mA
65
mA
Standby current
Short-circuit output current
Output noise voltage
VI = 30 V,
RSC = 10 Ω,
IO = 0
VO = 0
BW = 100 Hz to 10 kHz,
Cref = 0
20
BW = 100 Hz to 10 kHz,
Cref = 5 µF
2.5
µV
NOTES: 3. For all values in this table, the device is connected as shown in Figure 1 with the divider resistance as seen by the error amplifier
≤ 10 kΩ. Unless otherwise specified, VI = VCC+ = VC = 12 V, VCC– = 0, VO = 5 V, IO = 1 mA, RSC = 0, and Cref = 0.
4. Pulse-testing techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
Table 1. Resistor Values (kΩ) for Standard Output Voltages
OUTPUT
VOLTAGE
(V)
APPLICABLE
FIGURES
(SEE NOTE 5)
3.0
3.6
FIXED OUTPUT
±5%
OUTPUT ADJUSTABLE
±10%
(SEE NOTE 6)
R1
(kΩ)
R2
(kΩ)
R1
(kΩ)
P1
(kΩ )
P2
(kΩ )
1, 5, 6, 9, 11, 12 (4)
4.12
3.01
1.8
0.5
1.2
1, 5, 6, 9, 11, 12 (4)
3.57
3.65
1.5
0.5
1.5
5.0
1, 5, 6, 9, 11, 12 (4)
2.15
4.99
0.75
0.5
2.2
6.0
1, 5, 6, 9, 11, 12 (4)
1.15
6.04
0.5
0.5
2.7
9.0
2, 4, (5, 6, 9, 12)
1.87
7.15
0.75
1.0
2.7
12
2, 4, (5, 6, 9, 12)
4.87
7.15
2.0
1.0
3.0
15
2, 4, (5, 6, 9, 12)
7.87
7.15
3.3
1.0
3.0
28
2, 4, (5, 6, 9, 12)
21.0
7.15
5.6
1.0
2.0
45
7
3.57
48.7
2.2
10
39
75
7
3.57
78.7
2.2
10
68
100
7
3.57
105
2.2
10
91
250
7
3.57
255
2.2
10
240
–6
(see Note 7)
3, 10
3.57
2.43
1.2
0.5
0.75
–9
3, 10
3.48
5.36
1.2
0.5
2.0
–12
3, 10
3.57
8.45
1.2
0.5
3.3
–15
3, 10
3.57
11.5
1.2
0.5
4.3
–28
3, 10
3.57
24.3
1.2
0.5
10
–45
8
3.57
41.2
2.2
10
33
–100
8
3.57
95.3
2.2
10
91
–250
8
3.57
249
2.2
10
240
NOTES: 5. The R1/R2 divider can be across either VO or V(ref). If the divider is across
V(ref), use the figure numbers without parentheses. If the divider is across
VO, use the figure numbers in parentheses.
6. To make the voltage adjustable, the R1/R2 divider shown in the figures must
be replaced by the divider shown below.
R1
P1
R2
Adjustable Output Circuit
7. For Figures 3, 8, and 10, the device requires a minimum of 9 V between VCC+
and VCC– when VO is equal to or more positive than –9 V.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
Table 2. Formulas for Intermediate Output Voltages
OUTPUTS FROM 2 V TO 7 V
SEE FIGURES 1, 5, 6, 9, 11, 12 (4)
AND NOTE 5
VO
+V
OUTPUTS FROM 4 V TO 250 V
SEE FIGURE 7 AND NOTE 5
+ V2
R3 + R4
) R2
R2
(ref)
R1
OUTPUTS FROM 7 V TO 37 V
SEE FIGURES 2, 4, (5, 6, 9, 11, 12)
AND NOTE 5
VO
+V
R1
(ref)
(ref)
VO
R2 – R1
R1
I (limit)
OUTPUTS FROM –6 V TO –250 V
SEE FIGURES 3, 8, 10
AND NOTES 5 AND 7
+ – V2
R3 + R4
) R2
(ref)
VO
R2
CURRENT LIMITING
R1
) R2
V
[ 0.65
R
SC
FOLDBACK CURRENT LIMITING
SEE FIGURE 6
I (knee)
R1
I OS
[V
OR3
) (R3 ) R4) 0.65 V
R SCR4
V
[ 0.65
R
SC
R3
) R4
R4
NOTES: 5. The R1/R2 divider can be across either VO or V(ref). If the divider is across V(ref), use figure numbers without parentheses. If the
divider is across VO, use the figure numbers in parentheses.
7. For Figures 3, 8, and 10, the device requires a minimum of 9 V between VCC+ and VCC– when VO is equal to or more positive than
–9 V.
VI
VCC+
REF
R1
VC
OUTPUT
µA723
VZ
CURR LIM
RSC
Regulated
Output, VO
CURR SENS
IN+
C(ref)
VCC–
IN–
FREQ COMP
R2
NOTES: A. R3
R2
+ R1
R1 ) R2
for a minimum
aV
R3 (see Notes A and B)
100 pF
O
B. R3 can be eliminated for minimum component count. Use direct connection (i.e., R3 = 0).
Figure 1. Basic Low-Voltage Regulator (VO = 2 V to 7 V)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
VI
VCC+
VC
OUTPUT
µA723
REF
VZ
CURR LIM
R3
(see Notes A and B)
RSC
Regulated Output,
VO
CURR SENS
IN+
IN–
FREQ
COMP
VCC–
R1
R2
100 pF
NOTES: A. R3
R2
+ R1
R1 ) R2
for a minimum
aV
O
B. R3 can be eliminated for minimum component count. Use direct connection (i.e., R3 = 0).
Figure 2. Basic High-Voltage Regulator (VO = 7 V to 37 V)
VI
2 kΩ
R2
VC
OUTPUT
µA723
VZ
REF
CURR LIM
VCC+
R4 = 3 kΩ
2N5001
CURR SENS
IN–
IN+
VCC– FREQ COMP
R3 =
3 kΩ
R1
100 pF
Figure 3. Negative-Voltage Regulator
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Regulated Output,
VO
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
VI
VC
VCC+
OUTPUT
µA723
VZ
CURR LIM
REF
2N3997
CURR SENS
RSC
IN+
IN–
VCC– FREQ COMP
Regulated Output,
VO
R1
500 pF
R2
Figure 4. Positive-Voltage Regulator (External npn Pass Transistor)
VI
60 Ω
2N5001
VCC+
OUTPUT
µA723
VZ
CURR LIM
REF
R1
RSC
CURR SENS
IN+
VCC–
R2
VC
Regulated Output,
VO
IN–
FREQ COMP
1000 pF
Figure 5. Positive-Voltage Regulator (External pnp Pass Transistor)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
VI
VCC+
R1
VC
RSC
OUTPUT
µA723
REF
VZ
CURR LIM
R3
CURR SENS
R4
IN+
IN–
VCC– FREQ COMP
Regulated Output,
VO
IOS
VO
lknee
IO
R2
1000 pF
Figure 6. Foldback Current Limiting
VI
2 kΩ
VCC+
1N1826
R4 =
3 kΩ
R3 =
3 kΩ
VC
2N2580
OUTPUT
µA723
REF
VZ
CURR LIM
R1
CURR SENS
IN+
IN–
R2
VCC– FREQ COMP
RSC = 1 Ω
500 pF
Figure 7. Positive Floating Regulator
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
Regulated Output,
VO
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
VI
10 kΩ
VCC+
1N759
R2
R3 =
3 kΩ
VC
10 kΩ
OUTPUT
µA723
REF
VZ
CURR LIM
2N5287
CURR SENS
IN+
IN–
VCC– FREQ COMP
R1
R4 =
3 kΩ
500 pF
Regulated Output,
VO
Figure 8. Negative Floating Regulator
VI
3 kΩ
2N5153
2N5005
VCC+
REF
R1
IN+
R2
OUTPUT
µA723
VZ
CURR LIM
L = 1.2 mH
(see Note A)
51 Ω
CURR SENS
1 kΩ
0.1 µF
VC
1 MΩ
Regulated Output,
VO
IN–
VCC– FREQ COMP
1N4005
NOTE A: L is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 potted core, or equivalent, with a 0.009-inch air gap.
Figure 9. Positive Switching Regulator
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
VI
1 kΩ
(see Note A)
R3 =
3 kΩ
VCC+
R2
0.1 µF
REF
2N3997
220 Ω
VC
OUTPUT
µA723
VZ
CURR LIM
2N5004
CURR SENS
1 kΩ
IN+
R1
IN–
FREQ
COMP
VCC–
1 MΩ
15 pF
R4 =
3 kΩ
L = 1.2 mH
(see Note B)
1N4005
100 µF
Regulated Output,
VO
NOTES: A. The device requires a minimum of 9 V between VCC+ and VCC– when VO is equal to or more positive than –9 V.
B. L is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 potted core, or equivalent, with a 0.009-inch
air gap.
Figure 10. Negative Switching Regulator
VI
VCC+
R1
VC
RSC
OUTPUT
µA723
REF
VZ
CURR LIM
Regulated Output,
VO
CURR SENS
IN+
IN–
VCC– FREQ COMP
R2
2 kΩ
2N4422
2 kΩ
1000 pF
Input From
Series 54/74 Logic
NOTE A: A current-limiting transistor can be used for shutdown if current limiting is not required.
Figure 11. Remote Shutdown Regulator With Current Limiting
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
µA723
PRECISION VOLTAGE REGULATORS
SLVS057D – AUGUST 1972 – REVISED JULY 1999
APPLICATION INFORMATION
VI
VCC+
REF
R1
IN+
100 Ω
VC
OUTPUT
µA723
VZ
CURR LIM
1 kΩ
2N3997
CURR SENS
Regulated Output,
VO
IN–
VCC– FREQ COMP
R2
5000 pF
Figure 12. Shunt Regulator
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
PACKAGE OPTION ADDENDUM
www.ti.com
11-Feb-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
UA723CD
ACTIVE
SOIC
D
14
50
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
UA723CDR
ACTIVE
SOIC
D
14
2500
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
UA723CJ
OBSOLETE
CDIP
J
14
None
Call TI
UA723CN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
UA723CNSR
ACTIVE
SO
NS
14
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional
product content details.
None: Not yet available Lead (Pb-Free).
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated