EXAR XRT8000

XRT8000
Clock Synchronizer/Adapter for
Communications
September 2006
FEATURES
D Cascadable
D Clock Adaptation for Most Popular
Telecommunication Frequencies
D No External Components Needed
D Wide Input Frequency Range
D Lock Detect Indication Pin
D Programmable Output Frequencies
APPLICATIONS
D Less than 0.05UI Wide Band Output Jitter
D DSU’s, CSU’s and Access Equipment
D Low Power Operation (5V and 3.3V)
D ISDN Terminals
D Maximum Lock Time of 45mS
D Concentrators and Multiplexers
GENERAL DESCRIPTION
The XRT8000 is a dual phase-locked loop chip that
generates two simultaneous, very low jitter, output clocks
for synchronization applications in wide area networking
systems. The outputs are phase locked to the input
signal. The chip has four basic modes of operation;
referred to as master (FORWARD, REVERSE) and slave
(FORWARD, REVERSE) modes (See Figure 1). In the
FORWARD mode it accepts up to 16th harmonic of either
1.544MHz or 2.048MHz as input reference and generates
1.2kHz and multiples of 2.4kHz, 56kHz or 64kHz. In the
REVERSE mode an input clock of 56kHz or 64kHz is used
to generate 1.544MHz or 2.048MHz output clocks. The
SLAVE (FORWARD, REVERSE) modes generate the
same output frequencies as the MASTER (FORWARD/
REVERSE MODES) except that the input frequency (FIN)
is 8kHz. An optional divide by eight can be enabled at
each of the outputs.
The input and output frequency selection can be done
through a serial microprocessor interface. The XRT8000
is available in either 18 pin SOIC package or 18 pin plastic
DIP.
ORDERING INFORMATION
Part No.
Package
Operating Temperature
Range
XRT8000IP
18 Lead 300 Mil PDIP
-40°C to +85°C
XRT8000ID
18 Lead 300 Mil JEDEC SOIC
-40°C to +85°C
XRT8000
CLK2
n x 1.544{T1}
n x 2.048{E1}
1 <= n <= 16
FIN
CLK1
XRT8000
K x 56kHz
K x 64kHz
1.2kHz
2.4 x K
to
43.2kHz
CLK2
1 <= K <= 32
A
1 <= K <= 18
56kHz
64kHz
FIN
CLK1
XRT8000
B
T1 (1.544)
or
E1 (2.048)
SYNC
SYNC 8kHz
MASTER FORWARD
MASTER REVERSE
CLK2
8kHz
FIN
CLK1
A/ B
SYNC
SLAVE
FORWARD/REVERSE
Figure 1. System Diagram
Rev.1.11
E1999--2006
EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 z (510) 668-7000 z FAX (510) 668-7017 z www.exar.com
XRT8000
BLOCK DIAGRAM
Analog
PhaseLocked
Loop
Post
Divider
Feedback
Divider M
Q2
Q
Div.
By
8
Driver
DIV/8_EN
PLL 2
Lock
Detector
M2
CLK2
LOCKDET
SYNC
Input
Divider
FIN
P
Analog
PhaseLocked
Loop
Post
Divider
Q
Div.
By
8
Driver
VCC
R
100K
Feedback
Divider M
R
100K
PLL 1
M2 Q2
SCLK
CSB
SDI
SDO
Serial
Interface
DIV/8_EN
Mode and Frequency Select Control
MSB
Figure 2. Block Diagram
Rev. 1.11
2
CLK1
XRT8000
PIN CONFIGURATION
SDO
SYNC
FIN
GND
GND
CLK1
VCC
MSB
GND
1
18
2
17
3
16
4
15
5
14
6
13
7
12
8
11
9
10
SCLK
CSB
SDI
VCC
GND
CLK2
VCC
LOCKDET
VCC
SDO
SYNC
FIN
GND
GND
CLK1
VCC
MSB
GND
18 Lead PDIP (0.300”)
1
18
2
17
3
16
4
15
5
14
6
13
7
12
8
11
9
10
SCLK
CSB
SDI
VCC
GND
CLK2
VCC
LOCKDET
VCC
18 Lead SOIC (Jedec, 0.300”)
PIN DESCRIPTION
Symbol
Pin#
Type
SDO
1
O
Serial Data Output (Microprocessor Serial Interface). Data output from the command registers.
SYNC
2
O
An 8kHz Signal SubDivided From FIN. This output can be threestated via CR5. SYNC can
be used to synchronize other XRT8000 which are configured in slave modes.
FIN
3
I
Reference Frequency Input.
GND
4
Digital Ground.
GND
5
Digital Ground.
CLK1
6
VCC
7
MSB
8
GND
9
Analog Ground.
VCC
10
Analog Positive Supply.
LOCKDET
11
VCC
12
CLK2
13
GND
14
Digital Ground.
VCC
15
Digital Positive Power Supply.
SDI
16
I
Serial Data Input (Microprocessor Serial Interface) Data input to the command registers.
CSB
17
I
Chip Select Not (Microprocessor Serial Interface) . When this input is low the data in and
out will be shifted in the appropriate registers. Internal pull up (100K).
SCLK
18
I
Serial Clock Input (Microprocessor Serial Interface) . This clock will serve as a reference
to the data streams to SDI and SDO (the positive edge of SCLK is used to latch the data).
O
Description
Clock 1. Output of the phase-locked loop 1.
Digital Positive Power Supply.
I
O
Master/Slave Mode Select Input. If this input is high, then the MASTER mode is selected. If
this input is low, then the SLAVE mode is enabled. This pin is internally pulled up via 100KW
resistor.
Lock Detect. This output is high when both phase-locked loops are in lock and will go low if
either one of the phase locked loops loses lock.
Digital Positive Power Supply.
O
Clock 2. Output of the phase-locked loop 2.
Rev. 1.11
3
XRT8000
DC ELECTRICAL CHARACTERISTICS (Except Serial Interface) Operating Temperature: -40_C to 85_C
Test Conditions: TA = 25_C, VCC = 5.0V ± 5% Unless Otherwise Specified
Symbol
VIL
VIH
VOL
VOH
VOL
VOH
IIL
IIH
IIL
IIH
ICC
RIN
Parameter
Input low level
Input high level
Output low level (CLK1,CLK2)
Output high level (CLK1,CLK2)
Output low level (LOCKDET,SYNC)
Output high level (LOCKDET,SYNC)
Input low current (CSB,MSB)
Input high current (CSB,MSB)
Input low current (except CSB,MSB)
Input high current (except CSB,MSB)
Operating current
Input pull-up resistance (CSB,MSB)
Min
Typ
Max
0.8
Unit
V
V
V
V
V
V
mA
mA
mA
mA
mA
KW
2.0
0.4
2.4
0.4
2.4
-150
10
-10
20
100
50
10
35
150
Conditions
IOL = -6.0 mA
IOH = 6.0 mA
IOL = -3.0 mA
IOH = 3.0 mA
VIN = VCC
VIN = VCC
No load. Clock = 2.1 MHz
AC ELECTRICAL CHARACTERISTICS (See Figure 3)
Spec.3
T3
T61
Parameter
Input frequency
Minimum input signal high to
low duration
Output frequency
Duty cycle CLK1, CLK2
T74
T74
T74
T74
T74
T8
T9
Jitter added 8KHz-40KHz
Jitter added 10Hz-40KHz
Broad Band-jitter
Jitter added 20Hz-100KHz
Jitter added 18kHz-100KHz
Capture time
Clock output rise time
0.025
0.025
0.05
1.5
0.2
T10
Clock output fall time
T112
Duty cycle SYNC
Symbol
T1
T2
T14
Delay time between the rising
edge of SYNC and the rising
edge of CLK1 or CLK2
Min
0.008
12
Typ
1.2
47.5
50
0.007
0.022
0.03
0.05
0.01
40
T-20
T
Max
32.7
Unit
MHz
ns
2.1
52.5
KHz
%
0.02
0.05
0.07
0.03
40
10
UI
UI
UI
UI
UI
ms
ns
10
ns
60
%
30pF load. Measured at
20/80 %
30pF load. Measured at
20/80 %
VCC/2 switch point
ns
(in master forward mode).
30pF load.
See table 12 for values of T
T+20
Conditions
VCC/2 switch point. 30pF
load.
Output =1.544MHz
Output =1.544MHz
Output =1.544MHz
Output =2.048MHz
Output =2.048MHz
Notes:
T4
1
3
4
T 12
T6 = ( T4 + T5 )
2
T11 =
( T 12 + T 13 )
Specifications from AT&T Publication 62411 and ITU-T Recommendations G-823 (for 1.544MHz and 2.048MHz, respectively).
T7 is guaranteed by characterization, not tested.
Specifications are subject to change without notice.
Rev. 1.11
4
XRT8000
DC ELECTRICAL CHARACTERISTICS (Except Serial Interface) Operating Temperature: -40_C to 85_C
Test Conditions: TA = 25_C, VCC = 3.3V ± 5% Unless Otherwise Specified
Symbol
Parameter
VIL
Input low level
VIH
Input high level
Min
Typ
Max
Unit
0.8
V
2.0
VOL
Output low level (CLK1,CLK2)
VOH
Output high level (CLK1,CLK2)
VOL
Output low level (LOCKDET,SYNC)
VOH
Output high level (LOCKDET,SYNC)
V
0.4
2.4
0.4
2.4
V
IOL = -3 mA
V
IOH = 3 mA
V
IOL = -2.5 mA
V
IOH = 2.5 mA
IIL
Input low current (CSB,MSB)
-150
mA
IIH
Input high current (CSB,MSB)
10
mA
IIL
Input low current (except CSB,MSB)
-10
IIH
Input high current (except CSB,MSB)
ICC
Operating current
RIN
Input pull-up resistance (CSB,MSB)
Conditions
VIN = VCC
mA
50
10
mA
VIN = VCC
11
30
mA
No load. Clock = 2.1 MHz
100
150
KW
Typ
Max
Unit
32.7
MHz
AC ELECTRICAL CHARACTERISTICS (See Figure 3)
Symbol
Parameter
T1
Input frequency
T2
Minimum input signal high to
low duration
Spec.3
Min
0.008
12
T3
Output frequency
1.2
T61
Duty cycle CLK1, CLK2
47.5
T74
Jitter added 8KHz-40KHz
T74
T74
T74
T74
T8
T9
Conditions
ns
2.1
KHz
50
52.5
%
VCC/2 switch point. 30pF
load.
0.025
0.01
0.02
UI
Output =1.544MHz
Jitter added 10Hz-40KHz
0.025
0.030
UI
Output =1.544MHz
Broad Band
0.05
0.035
0.05
UI
Output =1.544MHz
Jitter added 20Hz-100KHz
1.5
0.045
0.07
UI
Output =2.048MHz
Jitter added 18kHz-100KHz
0.2
0.010
0.03
UI
Output =2.048MHz
Capture time
40
ms
Clock output rise time
14
ns
30pF load. Measured at
20/80 %
T10
Clock output fall time
14
ns
30pF load. Measured at
20/80 %
T112
Duty cycle SYNC
60
%
VCC/2 switch point
40
(in master forward mode).
30pF load.
T14
Delay time between SYNC
and CLK1 or CLK2
T-20
T
T+20
ns
See table 12 for values of T
Notes:
T4
1
3
4
T 12
T6 = ( T 4 + T 5 )
2
T11 = ( T 12 + T 13 )
Specifications from AT&T Publication 62411 and ITUT Rcommendations G-823 (for 1.544MHz and 2.048MHz, respectively)
T7 is guaranteed by characterization, not tested.
Specifications are subject to change without notice.
Rev. 1.11
5
XRT8000
AC ELECTRICAL CHARACTERISTICS (See Figure 5).
Symbol
Parameter
Min.
Typ.
Max.
Unit
Conditions
AC Electrical Characteristics (See Figure 5)
T21
CSB to SCLK Setup Time
50
ns
T22
SCLK to CSB Hold Time
20
ns
T23
SDI to SCLK Setup Time
50
ns
T24
SCLK to SDI Hold Time
50
ns
T25
SCLK Low Time
240
ns
T26
SCLK High Time
240
ns
T27
SCLK Period
500
ns
T28
SCLK to CSB Hold Time
50
ns
T29
CSB Inactive Time
250
ns
T30
SCLK to SDO Valid
200
ns
T31
SCLK to SDOx Delay
100
ns
T32
SCLK Edge or CSB Edge to
SDO HZ
T33
Rise/Fall Time SDO Output
100
ns
40
ns
Specifications are subject to change without notice
ABSOLUTE MAXIMUM RATINGS
Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7V
Operating Temperature . . . . . . . . . . . . 40°C to +85°C
Storage Temperature . . . . . . . . . . . . . 40°C to +150°C
Package Dissipation . . . . . . . . . . . . . . . . . . . . 500mW
Voltage at Any Pin . . . . . . . . . GND0.3V to Vcc +0.3V
T2
T1
T2
FIN
T3
T4
CLK1 or CLK2
T9
T14
T5
T10
T7
T12
SYNC
Figure 3. Clocks Timing
Rev. 1.11
6
T13
XRT8000
SYSTEM DESCRIPTION
On power up the clock outputs of XRT8000 will be
tri-stated. This means that no clocks will be seen at the
outputs and lock detect output will be low. After power up
the XRT8000 needs to be initialized. Therefore a serial
interface is provided to load the internal registers. These
registers will define the modes of operation, the output
frequencies and enabling the clock outputs.
D 2.048 MHz
Master/Forward Mode of Operation
D 1.544 MHz/8 = 193 kHz
at the FIN input. From this input signal, the XRT8000
device will synthesize any of the following clock signal
frequencies.
At the CLK1 and/or CLK2 output pins:
D 1.544 MHz
D 2.048 MHz/8 = 256 kHz
When the XRT8000 device is operating in the
“Master/Forward” Mode, it will receive either an
“n x 2.048 MHz” or “n x 1.544 MHz” clock signal at the
FIN input (pin3); where “n” can range from 1 to 16. From
this input signal, the XRT8000 device will internally divide
and synthesize the following signals.
At the SYNC output pin:
D 8 kHz
The user can configure the XRT8000 device to generate
these clock frequencies by writing the appropriate values
into the Command Registers (CR1, CR2, CR3, CR4 and
CR5), via the Microprocessor Serial Interface.
At the CLK1 and/or CLK2 output pins:
D k x 56 kHz
Note: in the REVERSE mode the contents of CR3 and
CR4 has to be all one’s.
D k x 64 kHz
D (k x 56 kHz)/8
Slave (Forward, Reverse) Mode of Operation
D (k x 64 kHz)/8
where k can range from 1 to 32.
To activate the slave modes of operations the input MSB
must be tied low. In these modes an 8kHz signal must be
applied to the FIN input in order to obtain output
frequencies at T1 or E1 rates. The output frequencies can
be selected via the serial interface in a similar fashion as
described in the master forward and reverse modes.
At the SYNC Output pin:
D 8kHz
The user selects and configures the XRT8000 device to
generate these clock frequencies by writing the
appropriate values into the Command Registers (CR1,
CR2, CR3, CR4 and CR5), via the Microprocessor Serial
Interface.
The Lock Detect Output Pin
If both PLL’s are enabled and in locked state then
LOCKDET will be active. If one PLL loses lock then
LOCKDET will be false. If only one PLL is enabled then
only the active PLL will control the state of LOCKDET.
Reverse Mode of Operation
When the XRT8000 device is operating in the “Reverse”
Mode, it will receive either a 56 kHz or 64 kHz clock signal
Rev. 1.11
7
XRT8000
The Command Registers
via the Microprocessor Serial Interface.
Between the MSB input pin and the Command Registers,
the user can configure the XRT8000 device into any of the
operating modes that have been described in this data
sheet. The user can access these Command Registers
Table 1 presents the Address Location and Format for
each of the Command Registers, within the XRT8000
device.
AD2~0
Register
D4
D3
D2
D1
D0
000
CR1
IOC4
IOC3
IOC2
IOC1
PL1EN
001
CR2
M4
M3
M2
M1
PL2EN
010
CR3
SEL14
SEL13
SEL12
SEL11
SEL10
011
CR4
SEL24
SEL23
SEL22
SEL21
SEL10
100
CR5
SYNCEN
CLK1EN
CLK2EN
PL2/8
PL1/8
101
CR6
Reserved
Reserved
Reserved
Reserved
Reserved
110
CR7
Reserved
Reserved
Reserved
Reserved
Reserved
111
CR8
Reserved
Reserved
Reserved
Reserved
Reserved
Table 1. Control Registers
The next few pages describe the role/functionality of each bit-field within the Command Registers.
Rev. 1.11
8
XRT8000
CR1 Register (Power On State = “00000”)
56kHz or 64kHz clocks, this notation is extended to
1,544kHz and 2,048kHz frequencies in the following
table (Table 2).
D0 (PL1EN):
Enable control for PLL1. If PL1EN = “1”, then PLL1 is
enabled. Otherwise, if PL1EN = “0”, then PLL1 is
disabled.
Note: The value of “K” for PLL1 and PLL2 are independent of
each other.
D1~D4 (IOC1~IOC4):
Table 2
These four bit-fields function as the control bits for PLL1
and PLL2 operation modes. These bits select
FORWARD, REVERSE, DATA, Kx56 or Kx64 clock rates.
Multiplier “K” in Kx56 and Kx64 refers to harmonics of
Table 2 creates the values of D1 through D4 within the
CRI command register to the operating mode of the
XRT8000 device.
IOC4
IOC3
IOC2
IOC1
Input Freq.
[kHz]
PLL1 Output
[kHz]
PLL2 Output
[kHz]
Mode
0
0
0
0
nx1544
Kx56
Kx56
Forward
0
0
0
1
nx1544
Kx56
Kx64
Forward
0
0
1
0
nx1544
Kx64
Kx64
Forward
0
0
1
1
nx1544
Kx56
DATA
Forward
0
1
0
0
nx1544
Kx64
DATA
Forward
0
1
0
1
nx1544
DATA
DATA
Forward
0
1
1
0
56
1544
1544
Reverse
0
1
1
1
8K
1544
2048
Reverse
1
0
0
0
nx2048
Kx56
Kx56
Forward
1
0
0
1
nx2048
Kx56
Kx64
Forward
1
0
1
0
nx2048
Kx64
Kx64
Forward
1
0
1
1
nx2048
Kx56
DATA
Forward
1
1
0
0
nx2048
Kx64
DATA
Forward
1
1
0
1
nx2048
DATA
DATA
Forward
1
1
1
0
8
1544
2048
Reverse
1
1
1
1
64
2048
2048
Reverse
Table 2. Operation Mode/Output Clock Frequency Select Options
Via the D1 Through D4 Bits within the CRI Register
Note:
1
The values of “n” are selected via the M1 through M4 bits, within the CR2 Register (see Table 3).
2
The values of “k” are selected via the Sel14 through SelP bits within the CR3 Register (see Table 4).
Rev. 1.11
9
XRT8000
CR2 Register (Power On State = “00000”)
D0 (PL2EN):
Enable control for PLL2. If PL2EN = “1”, then PLL2 is
enabled. Otherwise, if PL2EN = “0”, PLL2 is disabled.
D1~D4 (M1~M4):
Control bits for prescaler divider. These bits will set the
divide ratio of the prescaler such that in MASTER/
FORWARD or REVERSE modes the output of this block
is always at 8kHz. The settings for M4~M1 bits is based
on the input frequency and the mode of operation (which
is determined by the state of IOC4~IOC1 bits) is provided
in Table 3.
M4
M3
M2
M1
Mode
Input Freq.[kHz]
0
0
0
0
Forward
1x(1544 or 2048)
0
0
0
1
Forward
2x(1544 or 2048)
0
0
1
0
Forward
3x(1544 or 2048)
0
0
1
1
Forward
4x(1544 or 2048)
0
1
0
0
Forward
5x(1544 or 2048)
0
1
0
1
Forward
6x(1544 or 2048)
0
1
1
0
Forward
7x(1544 or 2048)
0
1
1
1
Forward
8x(1544 or 2048)
1
0
0
0
Forward
9x(1544 or 2048)
1
0
0
1
Forward
10x(1544 or 2048)
1
0
1
0
Forward
11x(1544 or 2048)
1
0
1
1
Forward
12x(1544 or 2048)
1
1
0
0
Forward
13x(1544 or 2048)
1
1
0
1
Forward
14x(1544 or 2048)
1
1
1
0
Forward
15x(1544 or 2048)
1
1
1
1
Forward
16x(1544 or 2048)
x
x
x
x
Reverse
56
x
x
x
x
Reverse
64
Note:
This table applies to MASTER (FORWARD, REVERSE) mode only
Table 3. CR2 Register
Rev. 1.11
10
XRT8000
CR3 Register (Power On State = “00000”)
2.)
The delay time between the rising edge of the sync
output signal (Pin 2) and the rising edge of the CLK1 or
CLI 2 output signals (See Table 6).
SEL14~SEL10:
These bits control two parameters:
1.)
The frequency multiplier “K” for the PLL1, after
selecting Kx56, Kx64 or DATA mode through register CR1
(1 < K < 32), and
Table 4 provides the settings for SEL14~10 bits to
generate harmonic of 56kHz, 64kHz or 1.2kHz at the
output of PLL1.
PLL1 Output Frequency (kHz)
SEL14~SEL10
K factor
Kx56 MODE
Kx64 MODE
DATA MODE
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
56
112
168
224
280
336
392
448
504
560
616
672
728
784
840
896
952
1008
1064
1120
1176
1232
1288
1344
1400
1456
1512
1568
1624
1680
1736
1792
64
128
192
256
320
384
448
512
576
640
704
768
832
896
960
1024
1088
1152
1216
1280
1344
1408
1472
1536
1600
1664
1728
1792
1856
1920
1984
2048
1.2
2.4
4.8
7.2
9.6
12
14.4
16.8
19.2
21.6
24
26.4
28.8
31.2
33.6
36
38.4
40.8
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
Note:
This table applies to forward or slave modes only
Table 4. CR3 Register
Rev. 1.11
11
XRT8000
CR4 Register (Power On State = “00000”)
Table 5 provides the settings for SEL24~20 bits to
generate harmonic of 56kHz, 64kHz or 1.2kHz at the
output of PLL2.
SEL24~SEL20:
These bits control the frequency multiplier “K” for the
PLL2, after selecting Kx56, Kx64 or DATA mode through
register CR1 (1 < K < 32).
PLL2 Output Frequency (kHz)
SEL24~SEL20
K factor
Kx56 MODE
Kx64 MODE
DATA MODE
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
56
112
168
224
280
336
392
448
504
560
616
672
728
784
840
896
952
1008
1064
1120
1176
1232
1288
1344
1400
1456
1512
1568
1624
1680
1736
1792
64
128
192
256
320
384
448
512
576
640
704
768
832
896
960
1024
1088
1152
1216
1280
1344
1408
1472
1536
1600
1664
1728
1792
1856
1920
1984
2048
1.2
2.4
4.8
7.2
9.6
12
14.4
16.8
19.2
21.6
24
26.4
28.8
31.2
33.6
36
38.4
40.8
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
43.2
Note:
This table applies to forward or slave forward mode only
Table 5. CR4 Register
Rev. 1.11
12
XRT8000
Table 6 presents information on the delay between the rising edge of SYNC and the CLK1 or CLKL output signals. It is
important to note that this delay behaves as a function of the settings within the CR3 register.
T values (nS)
SEL14~SEL10
K
Kx56 MODE
Kx64 MODE
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
372
372
372
372
446
372
319
279
496
446
406
372
343
319
298
279
525
496
470
446
425
406
388
372
357
343
331
319
308
298
288
279
326
326
326
326
391
326
279
244
434
301
355
326
301
279
260
244
460
434
411
391
372
355
340
326
312
301
289
279
279
260
252
244
Notes:
1 This table does not apply to the data mode or to Kx56 mode
with the divide by eight enabled.
2 This table does not apply when the XRT8000 device is
operating in the REVERSE Mode.
Table 6. Delay Time Between SYNC and CLK1 or CLK2
Rev. 1.11
13
XRT8000
CR5 Register (Power On State = “00000”)
D0 : ( PL1/8) :
D3 : ( CLK1EN) , PLL1:
Select the divider by 8 for PLL1,
PL1/8 = “1” CLK1 output frequency is divided by 8.
PL1/8 = “0” CLK1 output frequency is as per table 4.
Output enable bit,
CLK1EN = “1” CLK1 output is enabled.
CLK1EN = “0” CLK1 output is Tri State D.
D1 : ( PL2/8) :
D4 : ( SYNCEN) , 8kHz SYNC enable bit:
Select the divider by 8 for PLL2,
PL2/8 = “1” CLK2 output frequency is divided by 8.
PL2/8 = “0” CLK2 output frequency is as per table 5.
SYNCEN = “1” SYNC output is enabled.
SYNCEN = “0” SYNC output is Tri State D.
D2 : ( CLK2EN) , PLL2:
CR6 to CR7 Register
Output enable bit,
CLK2EN = “1” CLK2 output is enabled.
CLK2EN = “0” CLK2 output is Tri State D.
Register reserved for future use.
CSB
1
SCLK
2
3
4
5
6
7
8
9
10
11
Address
SDI
R/W
A0
A1
A2
A3
12
13
14
15
16
Data In
A4
A5
A6
D0
D1
D2
D3
D4
D5
D6
D7
D5
D6
D7
Data Out
HiZ
SDO
D0
D1
D2
D3
D4
Figure 4. Serial Processor Interface Data Structure
Note:
A3, A4 and A5 always Low.
A6 Do not care.
R/W bit = 1 for a read operation
2 for a write operation
D5, D6 and D7 always Low
CSB
SCLK
SDI
SDO
SERIAL INTERFACE
The serial interface is a simple four wire interface that is
compatible with many of the microcontrollers available in
the market. This interface consists of the following
signals:
Rev. 1.11
14
Chip Select (Active Low)
Serial Clock Input
Serial Data Input
Serial Data Output
HiZ
XRT8000
Using the Serial Interface
Read Operation
The following instructions, for using the serial interface,
are best understood by referring to the diagram in
Figure 4.
Once the last address bit (A2) has been clocked into the
SDI input, the read operation will proceed through an idle
period, lasting four SCLK periods. On the falling edge of
SCLK Cycle “8” (See Figure 4) the serial output signal
(SDO) becomes active. At this point the user can begin
reading the data contents of the addressed command
register (at Address A2, A1, A0) via the SDO pin. The
SDO pin will output this five bit data word (D0 through D4)
in ascending order, with the LSB first, on the rising edges
of the SCLK pin.
In order to use the serial interface the user must first
provide a clock signal to the SCLK input pin. Afterwards,
the user will initiates a “Read” or “Write” operation by
asserting the active low Chip Select Input pin (CSB). It is
important to note that the user assert CSB low coincident
with the falling edge of SCLK.
Once the CSB input has been asserted the type of
operation and the target register address must be
provided by the user. The user will provide this
information to the serial interface by writing four serial bits
of data to the SDI input. Note: Each of these bits will be
“clocked” into the SDI input, on the rising edge of SCLK.
These four bits are identified and described below.
Write Operation
Once the last address bit (A2) has been clocked into the
SDI input, the write operation will proceed through an idle
period, lasting four SCLK periods. Prior to the rising edge
of SCLK Cycle #9 (See Figure 4) the user must begin to
apply the eight-bit data word, that he/she wishes to write
to the serial input interface onto the SDI input pin. The
microprocessor serial interface will catch the value on the
SDI pin on the rising edge of the SCLK. The user must
apply this word (D0 through D7), serially, in ascending
order with the LSB first.
Bit 1: The R/W (Read/Write) Bit
This bit will be clocked into the SDI input, on the first rising
edge of SCLK (after CSB has been asserted). This bit
indicates whether the current operation is a read or a write
operation. A “1” in this bit will cause a “Read” operation;
whereas a “0” in this bit will cause a “Write” operation.
Simplified Interface Option
The user can simplify the design of the circuitry
connecting to the serial interface by tying both the SDO
and SDI pins together, and reading data from and/or
writing data to this “combined” signal. This simplification
is possible because only one of these signals are active at
any given time. The inactive signal will be tri-stated.
Notes:
Bits 2 through 4: The three (3) bit address value (A0,
A1, A2)
These next three rising edges of the SCLK signal will
clock in the 3-bit address value for this particular read (or
write) operation. This address selects the command
register within XRT8000 device that the user will either be
reading data from, or writing data to. The user must
supply the address bits to the SDI input pin, in ascending
order with the LSB first. (A3 to A5 must be low A6 is a
“don’t care”).
1. Prior to reading data from (or writing data to) the Serial Interface, the user is not required to provide a clock signal at the
SCLK. However, shortly before performing any read or write
operations with the Serial Interface, the user must supply the
clock signal to the SCLK input pin.
2. Each Read or Write operation, with the Serial Interface, will
require 16 SCLK periods, as depicted in Figure 4.
3. Upon completion of a Read or Write cycle, the user must negate CSB for at least 250ns (see timing parameter T29 in the
AC Characteristics), before asserting it again for the next
Read or Write operation.
Once the “Read/Write” and Address bits have been
written, the subsequent action depends upon whether the
current operation is a “Read” or “Write” operation.
Rev. 1.11
15
XRT8000
T29
CSB
SCLK
T22
T25
T21
T23
SDI
T27
T28
T26
T24
W/R
A0
CSB
SCLK
T30
SDO
SDI
Hz
SDI[D7]
T31
SDOD0
T32
T33
SDOD1
SDOD7
Hz
Figure 5. Serial Interface Timing
Rev. 1.11
16
Hz
XRT8000
CONFIGURATION DIAGRAMS
The following six figures depict all of the configuration
possibilities for the XRT8000. The table in the left (FIN)
lists different possibilities for reference clock input, while
the table in the right lists all the possibilities for two output
clocks.
k
n x T1
or
n x E1
(1<=n<=16)
n
Reference Freq. (kHz)
n x T1
n x E1
1
2
1,544
3,088
2,048
4,096
3
4,632
6,144
4
6,176
8,192
5
7,720
10,240
6
9,264
12,288
7
10,808
14,336
8
12,352
16,384
9
13,896
18,432
10
15,440
20,480
11
16,984
22,528
12
18,528
24,576
13
20,072
26,624
14
21,616
28,672
15
23,160
30,720
16
24,704
32,768
XRT8000
FIN
CLK1
k x DS0
(1<=k<=32)
CLK2
SYNC
8 kHz
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Figure 6. Master Forward Mode
Rev. 1.11
17
Output Frequencies (kHz)
(k x 56) (k x 56)/8
56
112
168
224
280
336
392
448
504
560
616
672
728
784
840
896
952
1,008
1,064
1,120
1,176
1,232
1,288
1,344
1,400
1,456
1,512
1,568
1,624
1,680
1,736
1,792
7
14
21
28
35
42
49
56
63
70
77
84
91
98
105
112
119
126
133
140
147
154
161
168
175
182
189
196
203
210
217
224
(k x 64)
(k x 64)/8
64
128
192
256
320
384
448
512
576
640
704
768
832
896
960
1,024
1,088
1,152
1,216
1,280
1,344
1,408
1,472
1,536
1,600
1,664
1,728
1,792
1,856
1,920
1,984
2,048
8
16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192
200
208
216
224
232
240
248
256
XRT8000
Output Frequencies (Hz)
XRT8000
n x T1
n x E1
(1<=n<=16)
k
FIN
(k x 2400) (k x 2400)/8
0.5
1,200
150
1
2,400
300
2
4,800
600
3
7,200
900
4
9,600
1,200
5
12,000
1,500
6
14,400
1,800
7
16,800
2,100
8
19,200
2,400
9
21,600
2,700
10
24,000
3,000
11
26,400
3,300
12
28,800
3,600
13
31,200
3,900
14
33,600
4,200
Reference
Freq.n (kHz)
x T1
n x T1
or
n x E1
1
1,544
2,048
2
3,088
4,096
3
4,632
6,144
4
6,176
8,192
5
7,720
10,240
6
9,264
12,288
7
10,808
14,336
8
12,352
16,384
9
13,896
18,432
10
15,440
20,480
15
36,000
4,500
11
16,984
22,528
16
38,400
4,800
12
18,528
24,576
17
40,800
5,100
13
20,072
26,624
18
43,200
5,400
14
21,616
28,672
15
23,160
30,720
16
24,704
32,768
n
CLK1
k x 2.4 kHz
(1<=k<=18)
CLK2
SYNC
8 kHz
Figure 7. Master Forward Mode (Cont’d)
Rev. 1.11
18
XRT8000
64 kHz
or
56 kHz
XRT8000
FIN
Output
CLK1
T1, T1/8
or
E1, E1/8
CLK2
SYNC
Freq.
kHz
kHz
1544
193
2048
256
8 kHz
Figure 8. Master Reverse Mode
k
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
XRT8000
8 kHz
FIN
CLK1
k x DS0
(1<=k<=32)
CLK2
SYNC
8 kHz
(k x 56)/8
56
112
168
224
280
336
392
448
504
560
616
672
728
784
840
896
952
1,008
1,064
1,120
1,176
1,232
1,288
1,344
1,400
1,456
1,512
1,568
1,624
1,680
1,736
1,792
Figure 9. Slave Forward Mode
Rev. 1.11
19
Output Frequencies (kHz)
(k x 56)/8
(k x 64)
(k x 64)/8
7
64
8
14
128
16
21
192
24
28
256
32
35
320
40
42
384
48
49
448
56
56
512
64
63
576
72
70
640
80
77
704
88
84
768
96
91
832
104
98
896
112
105
960
120
112
1,024
128
119
1,088
136
126
1,152
144
133
1,216
152
140
1,280
160
147
1,344
168
154
1,408
176
161
1,472
184
168
1,536
192
175
1,600
200
182
1,664
208
189
1,728
216
196
1,792
224
203
1,856
232
210
1,920
240
217
1,984
248
224
2,048
256
XRT8000
k
Output Frequencies (Hz)
(k x 2400)
1,200
150
2,400
300
2
4,800
600
0.50
1
8 kHz
(k x 2400)/8
3
7,200
900
XRT8000
4
9,600
1,200
FIN
5
12,000
1,500
6
14,400
1,800
7
16,800
2,100
8
19,200
2,400
9
21,600
2,700
10
24,000
3,000
11
26,400
3,300
12
28,800
3,600
13
31,200
3,900
14
33,600
4,200
15
36,000
4,500
16
38,400
4,800
17
40,800
5,100
18
43,200
5,400
CLK1
k x 2.4 kHz
(1<=k<=18)
CLK2
SYNC
8 kHz
Figure 10. Slave Forward Mode (Cont’d)
Rev. 1.11
20
XRT8000
XRT8000
8 kHz
FIN
Output
CLK1
T1, T1/8
or
E1, E1/8
CLK2
SYNC
Freq.
kHz
kHz
1544
193
2048
256
8 kHz
Figure 11. Slave Reverse Mode (Cont’d)
Board Layout Considerations
The CLK1 and CLK 2 outputs are surrounded with supply
pins (GND(514),Vcc(712). It is recommended to
decouple these supplies with a 0.1uF very close to the
pins. The positive supply (7,12,15) and ground pins
(4,5,14) can all be connected to the Digital Supply and
Ground.
Supply if possible. If there is no Analog Supply, then
connect these pins as close as possible to the supply
source.
If the layout is done with separate layers for the supplies,
cut an island under the XTT8000 such that no current
flows under the circuit. It has been observed that coupling
can occur because heavy digital currents are flowing
under the locations of the XRT8000.
The internal VCO has its proper supply’s pins (GND 9,
Vcc 10) these supply pins have to be decoupled by a
0.1uF capacitor and should be connected to an Analog
Rev. 1.11
21
XRT8000
18 LEAD PLASTIC DUALINLINE
(300 MIL PDIP)
Rev. 1.00
18
10
1
9
E1
E
D
Seating
Plane
A2
A
L
a
A1
B
e
INCHES
SYMBOL
eA
eB
B1
MILLIMETERS
MIN
MAX
MIN
MAX
A
0.145
0.210
3.68
5.33
A1
0.015
0.070
0.38
1.78
A2
0.115
0.195
2.92
4.95
B
0.014
0.024
0.36
0.56
B1
0.030
0.070
0.76
1.78
C
0.008
0.014
0.20
0.38
D
0.845
0.925
21.46
23.50
E
0.300
0.325
7.62
8.26
E1
0.240
0.280
6.10
7.11
e
0.100 BSC
2.54 BSC
eA
0.300 BSC
7.62 BSC
eB
0.310
0.430
7.87
10.92
L
0.115
0.160
2.92
4.06
a
0°
15°
0°
15°
Note: The control dimension is the inch column
Rev. 1.11
22
C
XRT8000
18 LEAD SMALL OUTLINE
(300 MIL JEDEC SOIC)
Rev. 1.00
D
18
10
H
E
1
9
C
A
Seating
Plane
e
B
a
A1
L
INCHES
SYMBOL
A
MILLIMETERS
MIN
MAX
MIN
0.093
0.104
2.35
MAX
2.65
A1
0.004
0.012
0.10
0.30
B
0.013
0.020
0.33
0.51
C
0.009
0.013
0.23
0.32
D
0.447
0.463
11.35
11.75
E
0.291
0.299
7.40
7.60
e
0.050 BSC
1.27 BSC
H
0.394
0.419
10.00
10.65
L
0.016
0.050
0.40
1.27
a
0°
8°
0°
8°
Note: The control dimension is the millimeter column
Rev. 1.11
23
XRT8000
NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are
free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary
depending upon a user’s specific application. While the information in this publication has been carefully checked;
no responsibility, however, is assumed for inaccuracies.
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or
malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly
affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation
receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the
user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.
Copyright 1999--2006 EXAR Corporation
Datasheet September 2006
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.
Rev. 1.11
24