APA2175 Stereo Cap-Free Line Driver Features General Description • • The APA2175 is a stereo, fixed gain, single supply, and cap-free line driver, which is available in TQFN4x4-20B • • Operating Voltage: 2.3V-4.5V Supply Current and TSSOP-16 packages. The APA2175 is ground-reference output, and no need - IDD=5mA at VDD=3.3V Low Shutdown Current the output capacitors for DC blocking. The advantages of eliminating the output capacitor are saving the cost, elimi- - IDD=1µA at VDD=3.3V Ground Reference Output nating component height, and improving the low frequency response. - No Output Capacitor Required (for DC Blocking) - Save the PCB Space The internal fixed gain setting (-1.5V/V) can minimize the external component counts and save the PCB space. - Reduce the BOM Costs • • • • • • • - Improve the Low Frequency Response High PSRR provides increased immunity to noise and RF rectification. The independent shutdown control of Output Voltage Swing Can Reach 2Vrms/Ch into 600Ω at VDD=3.3V High PSRR: 78dB at 217Hz APA2175 is for right channel and left channel. The APA2175 is capable of driving 2Vrms at 3.3V into Fast Start-Up Time: 16ms 600Ω load, and provides thermal protection. Integrate the De-pop Circuitry Simplified Application Circuit Separate Shutdown Function for Flexible Application Thermal Protection Surface-Mount Packaging - TQFN4x4-20B (with Enhanced Thermal Pad) • - TSSOP-16 Lead Free and Green Devices Available Stereo Input Signal RIN Shutdown Control RSD LSD ROUT LIN APA2175 Stereo LOUT Line-Out Signal (RoHS Compliant) Applications • • • • Set-Top Boxes CD / DVD Players LCD TVs HTIBs (Home Theater in Box) ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 1 www.anpec.com.tw APA2175 11 ROUT 12 NC 13 LIN 14 RSD 15 RIN Pin Configuration NC 1 NC 16 10 VDD 12 LIN 11 ROUT CPN 6 10 VDD CVSS 7 6 NC NC 20 13 RSD APA2175 PGND 5 7 VSS PVDD 19 14 RIN CPP 4 8 NC APA2175 LSD 18 15 GND NC 3 9 LOUT GND 17 16 LSD PVDD 2 9 LOUT CVSS 5 NC 4 CPN 3 PGND 2 CPP 1 VSS 8 TQFN4x4-20B (Top View) TSSOP-16 (Top View) =ThermalPad (connected the ThermalPad to GND plane for better heat dissipation) Ordering and Marking Information Package Code QB : TQFN4x4-20B O : TSSOP-16 Operating Ambient Temperature Range I : -40 to 85 oC Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device APA2175 Assembly Material Handling Code Temperature Range Package Code APA2175 QB : APA2175 XXXXX XXXXX - Date Code APA2175 O : APA2175 XXXXX XXXXX - Date Code Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). Absolute Maximum Ratings (Note 1) Symbol Parameter Rating VPVDD_VDD PVDD to VDD Voltage -0.3 to 0.3 VPGND_GND PGND to GND Voltage -0.3 to 0.3 Supply Voltage (VDD and PVDD to GND and PGND) -0.3 to 5.5 VDD VRSD, VLSD VSS Input Voltage (RSD and LSD to GND) V GND-0.3 to VDD+0.3 VSS and CVSS to GND and PGND Voltage Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 Unit 2 -5.5 to 0.3 www.anpec.com.tw APA2175 Absolute Maximum Ratings (Cont.) (Note 1) Symbol Parameter Rating Unit VOUT ROUT and LOUT to GND Voltage VCPP CPP to PGND Voltage PGND-0.3 to PVDD+0.3 VCPN CPN to PGND Voltage PVSS-0.3 to PGND+0.3 TJ VSS-0.3 to VDD+0.3 Maximum Junction Temperature 150 TSTG Storage Temperature Range TSDR Maximum Soldering Temperature Range, 10 Seconds PD V ο -65 to +150 C 260 Power Dissipation Internally Limited W Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Thermal Characteristics Symbol θJA θJC Parameter Typical Value Thermal Resistance - Junction to Ambient Unit (Note 2) TQFN4x4-20B TSSOP-16 45 100 TQFN4x4-20B 8 o C/W Thermal Resistance - Junction to Case (Note 3) o C/W Note 2: Please refer to “ Layout Recommendation”, the Thermal Pad on the bottom of the IC should soldered directly to the PCB’s Thermal Pad area that with several thermal vias connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with 2oz copper thickness. Note 3: The case temperature is measured at the center of the Thermal Pad on the underside of the TQFN4x4-20B package. Recommended Operating Conditions Symbol VDD Range Parameter Supply Voltage Min. Max. 2.3 4.5 VIH High Level Threshold Voltage RSD, LSD 1 - VIL Low Level Threshold Voltage RSD, LSD - 0.35 TA Operating Ambient Temperature Range -40 85 TJ Operating Junction Temperature Range -40 125 Unit V ο C Electrical Characteristics VDD=3.3V, VRSD=VLSD=VDD, CCPF=CCPO=2.2µF, Ci=1µF, TA=25oC (unless otherwise noted) Symbol Parameter Test Conditions APA2175 Unit Min. Typ. Max. - 5 10 mA IDD VDD Supply Current ISD VDD Shutdown Current VRSD=VLSD=0V - 1 5 µA Input current RSD, LSD - 0.1 - µA Ii Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 3 www.anpec.com.tw APA2175 Electrical Characteristics (Cont.) VDD=3.3V, VRSD=VLSD=VDD, CCPF=CCPO=2.2µF, Ci=1µF, TA=25oC (unless otherwise noted) Symbol Parameter Test Conditions APA2175 Min. Typ. Max. Unit CHARGE PUMP fOSC Switching Frequency 400 500 600 kHz Req Equivalent Resistance - 21 25 Ω Rdis Discharge Resistor at Output - 4 5 kΩ -1.55 -1.5 -1.45 V/V - 1 2 % DRIVERS AV ∆AV Internal Voltage Gain No Load Gain Matching Ri Input Resistance 15 18 21 Rf Feedback Resistance 23 27 31 - - 100 Ω - 2.5 - V/µs -8 - 8 mV - 15 30 µVrms -80 -60 -80 -60 -55 -45 Ro Output Resistance VSR Slew Rate VOS Output Offset Voltage VN Output Noise IO=10mA VDD=2.3V to 4.5V, RL = 600Ω kΩ VDD=2.3V to 4.5V, Vrr=200mVrms PSRR Power Supply Rejection Ratio fin= 217Hz - fin= 1kHz fin= 20kHz CL Tstart-up VESD dB Maximum Capacitive Load - 400 - pF Start-up Time - 16 - ms - 8 - kV 2 2.1 - Vrms - Vrms - % ESD Protection OUTR, OUTL THD+N=1%, fin=1kHz VO Output Voltage (Stereo, in Phase) RL=600Ω 2.3 RL=100kΩ VDD=4.5V, THD+N=1%, fin=1kHz VO Output Voltage (Stereo, in Phase) - RL=600Ω 2.7 2.8 RL=100kΩ VO=2Vrms, RL=600Ω THD+N Total Harmonic Distortion Pulse Noise fin=20Hz - fin=1kHz fin=20kHz 0.020 0.003 0.020 VO=2Vrms, RL=600Ω Crosstalk Channel Separation fin=20Hz - fin=1kHz fin=20kHz S/N Signal to Noise Ratio Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 105 105 dB 100 VO=2Vrms, RL=600Ω With A-weighting Filter 4 - 102 - www.anpec.com.tw APA2175 Typical Operating Characteristics THD+N vs. Output Voltage THD+N vs. Output Voltage 10 RL=600Ω fin=1kHz AV=-1.5V/V 1 THD+N (%) THD+N (%) 1 10 VDD=4.5V 0.1 VDD=3.3V 0.01 RL=100kΩ fin=1kHz AV=-1.5V/V VDD=4.5V 0.1 VDD=3.3V 0.01 VDD=2.3V VDD=2.3V 0.001 10m 100m 1 0.001 10m 5 100m Output Voltage (V) VDD=3.3V RL=600Ω Ci=1µF AV=-1.5V/V BW<80kHz THD+N (%) THD+N (%) 1 VO=0.1Vrms 0.01 0.1 VDD=3.3V RL=100kΩ Ci=1µF AV=-1.5V/V BW<80kHz VO=0.1Vrms 0.01 VO=1Vrms VO=1Vrms VO=2Vrms 0.001 20 100 1k Frequency (Hz) 0.001 20 10k 20k Crosstalk vs. Frequency 1k 10k 20k Crosstalk vs. Frequency +0 VDD=3.3V RL=600Ω AV=-1.5V/V Ci=1µF VO=2Vrms -20 Crosstalk (dB) Crosstalk (dB) -40 VO=2Vrms 100 Frequency (Hz) +0 -20 5 THD+N vs. Frequency THD+N vs. Frequency 1 0.1 1 Output Voltage (V) -60 -80 -40 VDD=3.3V RL=100kΩ AV=-1.5V/V Ci=1µF VO=2Vrms -60 -80 Left to Right -100 Left to Right -100 Right to Left -120 20 100 1k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 Right to Left -120 20 10k 20k 5 100 1k Frequency (Hz) 10k 20k www.anpec.com.tw APA2175 Typical Operating Characteristics (Cont.) Output Noise Voltage vs. Frequency 50µ 30µ 30µ Left channel 10µ Right channel 7µ 5µ VDD=3.3V RL=600Ω AV=-1.5V/V Ci=1µF A-Weighting 3µ 2µ 20µ 20 100 1k Frequency (Hz) 10k 20k Right channel 10µ 7µ 5µ VDD=3.3V RL=100kΩ AV=-1.5V/V Ci=1µF A-Weighting 3µ 2µ 1µ 1µ Left channel 20 Frequency Response +200 +3 VDD=3.3V Av=-1.5V/V RL=600Ω Ci=1µF 100 1k 10k Frequency (Hz) Gain (dB) +180 Phase (deg) Gain (dB) +4 Phase +2 +0 10 +220 Gain Phase +160 +1 +140 200k +0 +180 VDD=3.3V Av=-1.5V/V RL=100kΩ Ci=1µF 10 -40 -50 VDD=3.3V RL=600Ω AV=-1.5V/V Ci=1µF Vrr=0.1Vrms Right channel -90 -100 -110 -120 20 1k 10k Frequency (Hz) +140 200k PSRR vs. Frequency -60 -70 -80 100 +160 -20 Power Supply Rejection Ratio (dB) Power Supply Rejection Ratio (dB) -30 +200 +2 PSRR vs. Frequency +0 -10 -20 10k 20k Frequency Response +220 Gain +1 1k Frequency (Hz) +4 +3 100 Phase (deg) 20µ Output Noise Voltage (Vrms) Output Noise Voltage (Vrms) Output Noise Voltage vs. Frequency 50µ Left channel 100 1k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 -30 -40 -50 -60 -70 6 Right channel -80 -90 Left channel -100 -110 -120 20 10k 20k VDD=3.3V RL=100kΩ AV=-1.5V/V Ci=1µF Vrr=0.1Vrms 100 1k Frequency (Hz) 10k 20k www.anpec.com.tw APA2175 Typical Operating Characteristics (Cont.) Output Voltage FFT vs. Frequency Supply Current vs. Supply Voltage 6 +0 VDD=3.3V RL=600Ω AV=-1V/V VO=-60dB to 2Vrms -40 5 Supply Current (mA) Output Voltage FFT (dBr) -20 -60 -80 -100 4 3 2 -120 1 -140 0 0 5k 10k 15k Frequency (Hz) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Supply Voltage (V) 20k GSM Power Supply Rejection vs. Frequency -60 -90 -120 -150 Supply Voltage (dBV) +0 Output Voltage (dBV) 3.5 4.0 4.5 GSM Power Supply Rejection vs. Time -30 +0 Av=-1.5V/V No Load 1 -30 2 V DD VLOUT -60 -90 3 -120 -150 0 400 800 1.2k 1.6k 2k CH1: VDD, 500mV/Div, DC, Offset=3.0V CH2: VLOUT, 20mV/Div, DC CH3: VROUT, 20mV/Div, DC TIME:2ms/Div Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 VROUT 7 www.anpec.com.tw APA2175 Operating Waveforms Output Transient at Power On Output Transient at Power Off V DD V DD 1 1 VLOUT 2 VLOUT 2 VROUT VROUT 3 3 CH1: VDD, 1V/Div, DC CH2: VLOUT, 20mV/Div, DC CH3: VROUT, 20mV/Div, DC TIME:10ms/Div CH1: VDD, 1V/Div, DC CH2: VLOUT, 20mV/Div, DC CH3: VROUT, 20mV/Div, DC TIME:2ms/Div Shutdown Release Shutdown VS D VSD 1 1 2 2 VLOUT VLOUT 3 3 VROUT VROUT CH1: VSD, 1V/Div, DC CH2: VLOUT, 1V/Div, DC CH3: VROUT, 1V/Div, DC TIME:10ms/Div Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 CH1: VSD, 1V/Div, DC CH2: VLOUT, 1V/Div, DC CH3: VROUT, 1V/Div, DC TIME:2ms/Div 8 www.anpec.com.tw APA2175 Pin Description PIN NO. NAME I/O/P FUNCTION TQFN4x4-20B TSSOP-16 1 4 CPP I/O 2 5 PGND P 3 6 CPN I/O 4,6,8,12, 16,20 1,3 NC - No Connection. 5 7 CVSS O Charge pump output, connect to the “VSS”. 7 8 VSS P Line Driver negative power supply. Charge pump flying capacitor positive connection. Charge pump’s ground. Charge pump flying capacitor negative connection. 9 9 LOUT O Left channel output for Line Driver. 10 10 VDD P Power supply. 11 11 ROUT O Right channel output for Line Driver. 13 12 LIN I Left channel input terminal. 14 13 RSD I Right channel shutdown mod control input signal, pull low for shutdown the right channel line driver. 15 14 RIN I Right channel input terminal. 17 15 GND P Ground connection for circuitry. 18 16 LSD I Left channel shutdown mod control input signal, pull low for shutdown the right channel line driver. 19 2 PVDD P Charge pump power supply. Block Diagram RIN ROUT GND LIN LOUT PVDD RSD LSD Shutdown Circuit PGND Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 Power and Depop Circuit VDD VSS 9 CPP Charge Pump CPN CVSS www.anpec.com.tw APA2175 Typical Application Circuit 1. Inverting Amplifier Ci1 ROUT 1µF RIN Right Channel Output ROUT AUDIO GND DAC LIN LOUT LOUT Ci2 1µF PVDD Shutdown Control RSD LSD Power and Depop Circuit Shutdown ckt VDD PGND CS 10µF Charge Pump VDD VSS VSS VDD Left Channel Output CCPB 10µF CPP CCPF CPN 2.2µF CVSS CCPO 2.2µF 0.1µF 2. Inverting Amplifier with First-Order Passive Low-Pass Filter ROUT R1 220Ω C1 22nF AUDIO Ci1 1µF RIN R2 7.5kΩ ROUT GND DAC LOUT C2 22nF R4 7.5kΩ R3 220Ω Ci2 1µF Shutdown Control RSD LSD LIN Power and Depop Circuit VDD CS 10µF Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 10 Left Channel V D Output PVDD D CCPB 2.2µF CPP CCPF CPN 2.2µF LOUT Shutdown ckt PGND Right Channel Output Charge Pump VDD VSS VSS 0.1µF CVSS CCPO 2.2µF www.anpec.com.tw APA2175 Function Description Line Driver Operation Shutdown Function In order to reduce power consumption while not in use, the APA2175 contains two shutdown controllers to allow VDD either channel being independent and externally turns off the amplifier bias circuitry. LSD controls the left channel VOUT VDD/2 and RSD controls the right channel. This shutdown feature turns the amplifier off when logic low is placed on the 0 RSD and LSD pins for the APA2175. The trigger point between a logic high is 1.0V and logic low level is 0.35V. It is Conventional Line Driver VDD recommended to switch between ground and the supply voltage VDD to provide maximum device performance. By 0 charge pump is disabled, and IDD for the APA2175 is in shutdown mode. The charge pump is enabled once ei- switching the both RSD and LSD pins to the low level, the amplifier enters a low-consumption current circumstance, VOUT ther RSD or LSD pin is pulled to high. In normal operating, the APA2175’s RSD and LSD pins should be pulled to a high level to keep the IC out of the shutdown mode. The RSD and LSD pins should be tied to a definite voltage to VSS avoid unwanted circumstance changes. Cap-free Line Driver Figure 1. Cap-free Line Driver’s Operation The APA2175’s line drivers use a charge pump to invert the positive power supply (VDD) to negative power supply (VSS), see figure1. The line drivers operate at this bipolar power supply (VDD and VSS) and the outputs reference refers to the ground. This feature eliminates the output capacitor that is using in conventional single-ended line drive amplifier. Compare with the single power supply amplifier, the power supply range has almost doubled. Thermal Protection The thermal protection circuit limits the junction temperature of the APA2175. When the junction temperature exceeds TJ=+150OC, a thermal sensor turns off the driver, allowing the devices to cool. The thermal sensor allows the driver to start-up after the junction temperature down about 125OC. The thermal protection is designed with a 25OC hysteresis to lower the average TJ during continuous thermal overload conditions, increasing lifetime of the ICs. Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 11 www.anpec.com.tw APA2175 Application Information equivalent-series- resistance (ESR) ceramic capacitor, typically 0.1µF, is placed as close as possible to the de- Input Capacitor, Ci In the typical application, an input capacitor, Ci, is required to allow the amplifier to bias the input signal to the proper vice VDD lead for the best performance. For filtering lower frequency noise signals, a large aluminum electrolytic DC level for optimum operation. In this case, Ci and the minimum input impedance Ri from a high-pass filter with capacitor of 10µF or greater placed near the audio power amplifier is recommended. the corner frequency are determined in the following equation: 1 2πRiCi Charge Pump Bypass Capacitor, C CPB (1) The bypass capacitor (CCPB) relates with the charge pump switching transient. The capacitor’s value is same as fly- The value of Ci must be considered carefully because it ing capacitor (2.2µF). Place it close to the PVDD and PGND. fC(highpass ) = directly affects the low frequency performance of the circuit. Charge Pump Flying Capacitor, CCPF Ri is the internal input resistance that typical value is 18kΩ The flying capacitor affects the load transient of the charge pump. If the capacitor’s value is too small, then that will and the specification calls for a flat bass response down to 20Hz. Equation is reconfigured as below: 1 Ci = 2πRifc degrade the charge pump’s current driver capability and the performance of line drive amplifier. (2) Increasing the flying capacitor’s value will improve the load transient of charge pump. It is recommended using When the input resistance variation is considered, the Ci is 0.44µF, so a value in the range of 0.47µF to 1µF would be chosen. A further consideration for this capacitor is the t he l o w ES R c er am i c cap ac it o rs ( X7R t ype i s recommended) above 2.2µF. leakage path from the input source through the input network (Ri + Rf, Ci) to the load. Charge Pump Output Capacitor, CCPO The output capacitor’s value affects the power ripple di- This leakage current creates a DC offset voltage at the input to the amplifier that reduces useful headroom, es- rectly at CVSS (VSS). Increasing the value of output capacitor reduces the power ripple. The ESR of output capacitor af- pecially in high gain applications. For this reason, a low leakage tantalum or ceramic capacitor is the best choice. fects the load transient of CVSS (VSS). Lower ESR and greater than 2.2µF ceramic capacitor is a recommendation. When polarized capacitors are used, the negative side of the capacitor should face the amplifiers’ input in most Layout Consideration applications because the DC level of the amplifiers’ input is held at GND. Please note that it is important to ThermalVia Diameter 0.3mm X 5 confirm the capacitor polarity in the application. 0.8mm Power Supply Decoupling, CS 0.35mm ensure the output total harmonic distortion (THD+N) is as low as possible. Power supply decoupling also pre- 0.5mm vents the oscillations being caused by long lead length between the amplifier and the speaker. 2.2mm Ground Plane for ThermalPAD The optimum decoupling is achieved by using two different types of capacitors that target on different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 4.9mm 2.2mm The APA2175 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to Figure 2. TQFN4x4-20B Layout Recommendation 12 www.anpec.com.tw APA2175 Application Information (Cont.) Layout Consideration (Cont.) 1. All components should be placed close to the APA2175. For example, the input capacitor (Ci) should be close to APA2175’s input pins to avoid causing noise coupling to APA2175’s high impedance inputs; the decoupling capacitor (CS) should be placed by the APA2175’s power pin to decouple the power rail noise. 2. The output traces should be short and wide (>20mil). 3. The input trace should be short and symmetric. 4. The power trace width should be greater than 20mil. 5. The TQFN Thermal PAD should be soldered on PCB, and the ground plane needs soldered mask (to avoid short circuit) except the Thermal PAD area. Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 13 www.anpec.com.tw APA2175 Package Information TQFN4x4-20B D b E A Pin 1 D2 A1 A3 L K E2 Pin 1 Corner e S Y M B O L TQFN4x4-20B INCHES MILLIMETERS MIN. MAX. MIN. MAX. A 0.70 0.80 0.028 0.031 A1 0.00 0.05 0.000 0.002 0.30 0.008 0.012 0.161 A3 b 0.20 REF 0.18 0.008 REF D 3.90 4.10 0.154 D2 2.00 2.70 0.079 0.106 E 3.90 4.10 0.154 0.161 E2 2.00 2.70 0.079 0.106 0.45 0.014 e 0.50 BSC L 0.35 K 0.20 0.020 BSC 0.018 0.008 Note : 1. Followed from JEDEC MO-220 VGGD-5. Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 14 www.anpec.com.tw APA2175 Package Information TSSOP-16 D e E E1 SEE VIEW A C 0.25 A A2 b GAUGE PLANE A1 SEATING PLANE VIEW A S Y M B O L L TSSOP-16 MILLIMETERS MIN. INCHES MIN. MAX. A MAX. 0.047 1.20 A1 0.05 0.15 0.002 0.006 A2 0.80 1.05 0.031 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 4.90 5.10 0.193 0.201 E 6.20 6.60 0.244 0.260 E1 4.30 4.50 0.169 0.177 e L 0 0.65 BSC 0.45 0o 0.026 BSC 0.018 0.75 8o 0o 0.030 8o Note : 1. Follow from JEDEC MO-153 AB. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. Dimension "E1" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side. Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 15 www.anpec.com.tw APA2175 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application A H 330.0±2.00 50 MIN. P0 P1 TQFN4x4-20B 4.0±0.10 8.0±0.10 A H Application 330.0±2.00 50 MIN. P0 P1 TSSOP-16 4.00±0.10 8.00±0.10 T1 C 12.4+2.00 13.0+0.50 -0.00 -0.20 d D W E1 F 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.5±0.05 P2 D0 D1 T A0 B0 K0 2.0±0.05 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 4.30±0.20 4.30±0.20 1.30±0.20 T1 C d D W E1 F 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.50±0.05 D1 T A0 B0 K0 1.5 MIN. 0.6+0.00 -0.40 6.90±0.20 5.40±0.20 1.60±0.20 12.4+2.00 13.0+0.50 -0.00 -0.20 P2 D0 2.00±0.05 1.5+0.10 -0.00 (mm) Devices Per Unit Package Type Unit Quantity TQFN4x4-20B Tape & Reel 3000 TSSOP-16 Tape & Reel 2500 Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 16 www.anpec.com.tw APA2175 Taping Direction Information TQFN4x4-20B USER DIRECTION OF FEED TSSOP-16 USER DIRECTION OF FEED Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 17 www.anpec.com.tw APA2175 Classification Profile Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly 100 °C 150 °C 60-120 seconds 150 °C 200 °C 60-120 seconds 3 °C/second max. 3°C/second max. 183 °C 60-150 seconds 217 °C 60-150 seconds See Classification Temp in table 1 See Classification Temp in table 2 Time (tP)** within 5°C of the specified classification temperature (Tc) 20** seconds 30** seconds Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max. 6 minutes max. 8 minutes max. Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)* Time 25°C to peak temperature * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 18 www.anpec.com.tw APA2175 Classification Reflow Profiles (Cont.) Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3 Package Thickness <2.5 mm Volume mm <350 235 °C Volume mm ≥350 220 °C ≥2.5 mm 220 °C 220 °C 3 Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm Volume mm <350 260 °C 260 °C 250 °C 3 Volume mm 350-2000 260 °C 250 °C 245 °C 3 Volume mm >2000 260 °C 245 °C 245 °C 3 Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78 Description 5 Sec, 245°C 1000 Hrs, Bias @ Tj=125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.3 - Jul., 2010 19 www.anpec.com.tw