APA2622 15W Stereo Class-D Audio Power Amplifier Features General Description • • The APA2622 is a stereo, high efficiency, Class-D audio • • Supply Voltage is 4.5V ~ 26V Class D operation eliminates heat sink & reduce power supply requirement 20,26, 32, 36, 4 steps gain setting 15W/ch into an 8Ω Stereo Loads at 10% THD+N • from a 16-V supply 10W/ch into an 8Ω Stereo Loads at 10% THD+N • from a 12-V supply 30W into a 4Ω Mono Load at 10% THD+N from a 16- • V supply 90% Efficient Class-D Operation Eliminates Need • • • • amplifier and is available in TSSOP-28P and QFN4x428B pins packages. The Class-D power amplifier has higher efficiency compared to the traditional Class-AB power amplifier. The filter free Class-D architecture eliminates the external low pass filters. The internal gain setting can minimize the external component counts, and for the flexible application the gain can be set to 4-step 20, 26, 32, 36dB by gain control pins (GAIN0 and GAIN1). The AGC function pro- for Heat Sinks External AGC function tects speaker from being out of its power rating but keeps acceptable performance. Thermal and Over-Current Protections with AutoRecovery option The integration of Class-D power amplifier is a best so- TSSOP-28P with thermal pad packages QFN4x4-28B with thermal pad packages lution for high efficiency and low BOM costs. The operating voltage is from 4.5V to 26V. The APA2622 power amplifiers are capable of driving 15 W at VDD=16V into 8Ω speaker, and provides thermal and over-current Applications • • • protections. It also can detect the DC and then prevent the speaker voice coil from being detroyed. LCD Monitor LCD TV Consumer Audio Equipment Simplified Application Circuit APA2622 LOUTP Left Channel Input Right Channel Input LINP LINN RINN FERRITE BEAD FILTER Left Channel Speaker FERRITE BEAD FILTER Right Channel Speaker LOUTN ROUTN RINP ROUTP ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 1 www.anpec.com.tw APA2622 26 LBSP LINN 4 25 LOUTP LOUTP 1 GAIN0 5 24 PGND LBSP 2 GAIN1 6 23 LOUTN AVDD 7 AGND 8 APA2622 TSSOP-28P 22 PGND 23 ROUTN 24 RBSN 25 NC 27 LPVDD LINP 3 26 LBSN 28 LPVDD 28 PGND SD 1 FLAG 2 27 LOUTN Pin Configuration 21 ROUTP 20 RBSP LPVDD 3 22 LBSN SD 4 19 RPVDD APA2622 QFN4*4-28B 18 MONO 15 RINN RINN 11 18 ROUTP 17 RBSP 16 RPVDD MONO 14 15 RPVDD 17 FREQ AGC 14 RINP 12 FREQ 13 VCLAMP 13 LINN 7 AGND 12 19 PGND AVDD 11 16 RINP AGC 10 GAIN1 10 LINP 6 NC 8 FLAG 5 GAIN0 9 21 RBSP 20 ROUTN VCLAMP 9 Ordering and Marking Information Package Code R: TSSOP-28P QA: QFN4x4-28B Operating Ambient Temperature Range I : -40 to 85 o C Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device APA2622 Assembly Material Handling Code Temperature Range Package Code APA2622 R: APA2622 QA: APA2622 XXXXX XXXXX - Date Code APA2622 XXXXX XXXXX - Date Code Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 2 www.anpec.com.tw APA2622 Absolute Maximum Ratings (Over operating free-air temperature range unless otherwise noted.) Symbol VD D Para mete r Rat ing Supp ly Voltage -0 .3 to 30 Inp ut Voltage (/SD, GA IN0 and GAIN1, MONO and /FLA G, FREQ) VI TJ -0.3 to V DD+0 .3 AGC -0.3 to 6 .3 LINP, LINN, RINP, RINN -0.3 to 6 .3 Ma ximum Junction Temp erature Stor age Tem perature Range T SDR Ma ximum So lderin g Temper atu re Ra nge, 10 se co nds 2 60 PVDD > 15V 4.8 PVDD < 1 5V 3.2 MONO mo de 3.2 PD V 1 50 T STG RL Unit -65 to +1 50 Power Dissipa tio n ο C Ω Intern ally Limite d W Notes 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Thermal Characteristics Symbol θJA θJC Parameter Thermal Resistance -Junction to Ambient Typical Value Unit (Not e 2) TSSOP-28P QFN4x4-28 45 40 TSSOP-28P QFN4x4-28 8 7 Thermal Resistance -Junction to Case(Note 3) ο C /W Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of TSSOP-28P is soldered directly on the PCB Note 3: The case temperature is measured at the center of the exposed pad on the underside of the TSSOP-28P package Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 3 www.anpec.com.tw APA2622 Recommended Operating Conditions Symbol V DD VIH VIL Parameter Min. Max. 4.5 26 2.0 - - 0 .8 Supply Volta ge High Le ve l Thre sh old Voltage Lo w Level Thresho ld Voltage /SD ,GAIN0, GA IN1, MONO, FREQ /SD, GAIN0, GA IN1, MONO , FREQ Unit V ο TA Am bient Tempe rature Range -40 85 C TJ Junction Temperature Rang e -40 12 5 RL Spe aker Re sistance,P VDD<9V 3.5 - ο C Ω Electrical Characteristics VDD=12V, GND=0V, AV=20dB, TA= 25oC(unless otherwise noted) Sym bol Param eter Tes t Condition Min. Typ. Max. Unit 4.5 5 5.5 V Regula te d vol tag e I O=2mA,VD D=6 ~24 V,TJ=-40 οC ~125ο C Maxi mum Output Voltage Under AGC Control VAGC=1V, A V=20d B - 5.6 - Vp t DCD ET DCP de te ct time VR IN P=5V,V RINN=0V - 500 - ms T SD(ON) Shu tdo wn Turn-O n Time /SD=2 .2V - 16 - ms T SD(OFF) Shu tdo wn Turn-O ff Time /SD=0 .8V - 2 - μs I DD Quie scen t Su pply Cu rrent No Loa d - 17 35 mA I SD Quie scen t Su pply Cu rrent in shutd own mode /SD = 0V - 180 300 μA In put Cu rrent /SD, G AIN0, GAIN1, FREQ MONO=12V - 34 50 μA FREQ=High, fixed frequ ency - 300 - kHz I L=0.5 A - 200 - mΩ Ga in0=0, G ain1 =0 - 20 - Ga in0=1, G ain1 =0 - 26 - Ga in0=0, G ain1 =1 - 32 - Ga in0=1, G ain1 =1 - 36 - V CLAMP VO II FOSC R DSON AV In te rnal Oscillator Freque ncy Static Dra in-S ource On-State Re sistance Ga in Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 4 dB www.anpec.com.tw APA2622 STEREO MODE VDD=12V, GND=0V, AV=20dB, TA= 25oC(unless otherwise noted). ο VD D=1 6V, TA=25 C, AV=20dB Sym bol Po Parameter Output Power Test Condition VDD =16 V THD+N = 1%, F IN = 1KHz, VDD =16 V THD+N = 1 0%, F IN = 1kHz THD+N Crossta lk PSRR SNR A tt shu tdo wn |V OS| Vn Min. Typ. Max . R L = 8Ω - 14 - R L = 8Ω - 17 - Unit W Total Harmon ic Distortion Pul se Noise VDD =16 V FIN = 1kHz, PO = 7.5W , R L = 8Ω - 0 .0 6 - Cha nnel sepa ration VO =1V rms, FIN = 1kHz, AV=20dB - -90 - Power Supp ly Reje ctio n Ratio RL =4Ω ,input AC-Gro und, FIN=1kHz - -70 - Signal -to -noise ratio Ma xim um o utp ut at THD+N<1%, FREQ= High FIN=1 kHz, A V=20d B, A-weighted - 95 - Shutdown Attenuatio n FIN = 1kHz, R L = 8Ω, V in= 1 VPP - -1 10 - Offset Volta ge AV=20dB - 5 - mV Noise Outp ut Vo lta ge In put A C gr ound with A-weigh te d Filter (AV=20dB), FREQ=High - 120 - µV (rms) Test Condition Min. Typ. Max . Unit R L = 8Ω - 8 - R L = 8Ω - 10 - % dB ο VD D=1 2V, TA=25 C, AV=20dB Sym bol Po THD+N Crossta lk PSRR Parameter Output Power VDD =12 V THD+N = 1%, F IN = 1KHz VDD =12 V THD+N = 1 0%, F IN = 1kHz, W Total Harmon ic Distortion Pul se Noise VDD =12 V FIN = 1kHz, PO = 5W, RL = 4Ω - 0 .0 5 Cha nnel sepa ration VO =1V rms, FIN = 1kHz, AV=20dB - -90 - Power Supp ly Reje ctio n Ratio RL =4Ω ,input AC-Gro und, FIN=1kHz - -70 - Signal -to -noise ratio Ma xim um o utp ut at THD+N<1%, FREQ= High FIN=1 kHz, A V=20d B, A-weighted - 95 - Shutdown Attenuatio n FIN = 1kHz, R L = 8Ω, V in= 1 VPP - -1 10 - Offset Volta ge AV=20dB - 5 - mV Noise Outp ut Vo lta ge In put A C gr ound , FRE Q= High With A -we ighted Filter (AV=20dB) - 120 - µV (rms) - % dB SNR A tt shu tdo wn |V OS| Vn Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 5 www.anpec.com.tw APA2622 MONO MODE ο VDD=12 V,TA=25 C S ymbol Po THD+N P SRR SNR Att shutdown |VOS| Vn Pa ra met er Total Harmonic Disto rtio n Pulse Noise Te st Condition V DD=16V R L = 4Ω THD+N = 1% , F IN = 1 KHz V DD=16V R L = 4Ω THD+N = 10%, F IN = 1KHz V DD=16V F IN = 1kHz, PO = 6W, R L = 4Ω Po we r Suppl y Rejection Ratio R L=4Ω ,in put AC-G round , F IN =1kHz Ou tp ut Po we r Min. Typ. Ma x. - 28 - - 35 - - 0.05 - -5 0 - Unit W - % - 95 - Sh utdown Atte nuation Ma ximum ou tpu t at THD+N<1%, FREQ =High FIN=1kHz, AV=20dB, A- we ighted F IN = 1kHz, R L = 8Ω, Vi n= 1V rms - -100 - Offse t Vo ltag e A V=2 0dB - 10 - mV Noise Outpu t Voltag e Inp ut AC gro und, FREQ=High W ith A-weig hted Filter (AV=20dB ) - 1 20 - µV (rms) Si gnal-to- noise ratio Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 6 dB www.anpec.com.tw APA2622 Typical Operating Characteristics THD+N vs. Output Power THD+N vs. Output Power 10 10 1 1 THD+N (%) THD+N (%) VDD=12V 0.1 0.01 0 5 10 15 VDD=24V 0.1 FIN=1kHz RL=4Ω Av=20dB AES-17(20kHz) VDD=12V VDD=8V VDD=19V 25 20 30 FIN=1kHz RL=8Ω Av=20dB AES-17(20kHz) VDD=8V 0.01 35 0 10 Output Power (W) 20 30 40 Output Power (W) THD+N vs. Output Power 10 10 THD+N vs. Frequency VDD=12V RL=8Ω Av=20dB AES-17(20kHz) 0.1 MONO Mode FIN=1kHz RL=4Ω Av=20dB AES-17(20kHz) VDD=12V VDD=8V 0.01 0 1 VDD=16V THD+N (%) THD+N (%) 1 10 20 30 Po=5W 0.1 0.01 20 40 Po=2.5W 100 Output Power (W) 10 THD+N vs. Frequency 10 VDD=24V RL=8Ω Av=20dB AES-17(20kHz) 1 THD+N (%) THD+N (%) 1 Po=18W 0.1 1k 10k 20k Frequency (Hz) Po=9W THD+N vs. Frequency MONO Mode VDD=12V RL=4Ω Av=20dB AES-17(20kHz) Po=10W 0.1 Po=5W PO=2W 0.01 20 100 1k 0.01 20 10k 20k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 100 1k 10k 20k Frequency (Hz) 7 www.anpec.com.tw APA2622 Typical Operating Characteristics (Cont.) 10 -40 MONO Mode VDD=16V RL=4Ω Av=20dB AES-17(20kHz) VDD=12V RL=8Ω VO=1Vrms AV=20dB AES-17(20kHz) -60 Crosstalk(dB) 1 THD+N (%) Crosstalk vs. Frequency THD+N vs. Frequency Po=15W Po=8W 0.1 -80 L-Channel to R-Channel -100 R-Channel to L-Channel 0.01 20 100 1k 10k 20k 20 100 Frequency (Hz) 1k 10k 20k Frequency (Hz) Crosstalk vs. Frequency Output Noise Voltage vs. Time -40 VDD=24V RL=8Ω VO=1Vrms AV=20dB AES-17(20kHz) Output Noise Voltage(Vrms) Crosstalk(dB) -60 VDD=24V RL=8Ω Cin=1µF AES-17(20kHz) A-Weighting 400µ 300µ -80 AV=36dB 200µ L-Channel to R-Channel -100 AV=20dB 100µ R-Channel to L-Channel 20 100 1k 0 10k 20k 10 Output Noise Voltage(Vrms) Power Supply Rejection Ratio(dB) MONO Mode VDD=16V RL=8Ω Cin=1µF AES-17(20kHz) A-Weighting 300µ AV=36dB 200µ AV=20dB 100µ 0 10 30 PSRR vs. Frequency Output Noise Voltage vs. Time 400µ 20 Time (Sec) Frequency (Hz) 20 -30 VDD=12V RL=8Ω Av=20dB Vrr=0.2Vpp AES-17(20kHz) -50 Left channel -70 Right channel -90 20 30 Time (Sec) Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 -10 100 1k 10k 20k Frequency (Hz) 8 www.anpec.com.tw APA2622 Typical Operating Characteristics (Cont.) Frequency Response +28 MONO Mode VDD=12V RL=8Ω Av=20dB Vrr=0.2Vpp AES-17(20kHz) -10 +150 Av=26dB +24 +100 Av=20dB +22 Gain(dB) -30 +200 +26 -50 +50 +20 +0 +18 Phase +14 -70 +10 100 1k 20 10k 20k 100 Frequency (Hz) +200 +36 +150 Gain(dB) Phase -50 +26 +22 +20 -100 VDD=12V RL=8Ω AES-17(20kHz) 20 100 Phase(Deg) +50 Av=32dB +0 +24 Shutdown Attenuation(dB) +100 +32 +28 Right channel Left channel -150 1k Frequency (Hz) 20k -120 -200 200k 20 10 8 8 Output Power(W) 10 6 4 VDD=12V RL=8Ω Av=20dB AES-17(20kHz) 2 2.0 3.0 4.0 1k 10k 20k Frequency (Hz) 6 4 VDD=24V RL=8Ω Av=20dB AES-17(20kHz) 2 0 5.0 VAGC (V) Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 100 Output Power vs. AGC Voltage 12 1.0 200k -100 Output Power vs. AGC Voltage 0 -200 20k -80 12 0 1k Frequency (Hz) VDD=12V RL=8Ω Av=20dB AES-17(20kHz) -60 Av=36dB +30 -150 Shutdown Attenuation vs. Frequency Frequency Response +38 +34 -100 VDD=12V RL=8Ω AES-17(20kHz) +12 -90 20 Output Power(W) -50 +16 Phase(Deg) Power Supply Rejection Ratio(dB) PSRR vs. Frequency 0 1.0 2.0 3.0 4.0 5.0 VAGC (V) 9 www.anpec.com.tw APA2622 Typical Operating Characteristics (Cont.) Shutdown Current vs. Supply Voltage Supply Current vs. Supply Voltage 250 30 NO Load 200 Shutdown Current(µA) Supply Current(mA) 25 20 15 10 150 100 50 5 NO Load 0 0 0 0 5 10 15 25 20 30 10 5 AGC Function Output Power vs. Input AC 2 15 25 20 30 Supply Voltage(V) Supply Voltage(V) AGC Function Output Power vs. Input AC 8 1.6 Output Power (W) Output Power (W) 6 1.2 0.8 VDD=12V RL=8Ω Av=20dB VAGC=1V AES-17(20kHz) 0.4 0 0 0.4 0.8 1.2 1.6 4 VDD=24V RL=8Ω Av=20dB VAGC=2V AES-17(20kHz) 2 0 2 0.4 0 Input Voltage (Vrms) Efficiency vs. Output Power 2 1.6 100 90 90 80 VDD =12 V VDD =24V 80 VDD =16 V 70 VDD =12V 70 Efficiency(%) Efficiency(%) 1.2 Efficiency vs. Output Power 100 60 50 40 R L=4 Ω+33µH fin=1kHz Av=20 dB AES- 17(20kHz) Stereo mode 30 20 10 0 0.8 Input Voltage (Vrms) 0 10 20 Output Power(W) Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 60 50 40 R L=4 Ω+33µH fin=1kHz Av=20 dB AES- 17(20kHz) Stereo mode 30 20 10 0 30 10 0 10 20 Output Power(W) 30 www.anpec.com.tw APA2622 Typical Operating Characteristics (Cont.) EN55013 Radiated Emissions Results Radiated Emission - Horizontal VDD =12 V(Battery supply) R L=8 Ω+33µΗ PO =1.25W 30cm Speaker cable EN55013 Radiated Emissions Results Radiated Emission - Vertical VDD =12 V(Battery supply) R L=8 Ω+33µΗ PO =1.25W 30cm Speaker cable Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 11 www.anpec.com.tw APA2622 Typical Operating Characteristics (Cont.) EN55013 Radiated Emissions Results Radiated Emission - Horizontal VDD =12 V(Battery supply) R L=8 Ω+33µΗ PO =8W 30cm Speaker cable EN55013 Radiated Emissions Results Radiated Emission - Vertical VDD =12 V(Battery supply) R L=8 Ω+33µΗ PO =8W 30cm Speaker cable Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 12 www.anpec.com.tw APA2622 Pin Function Description Pin NO. TSSOPQFN4x4 28P -28B Name I/O/P FUNCTION 1 4 /SD I 2 5 /FLAG O 3 6 LINP I Shutdown logic input for audio amp (Low=outputs disabled, High=output enabled). TTL logic levels with compliance to AVDD. Open drain output used to display short circuit or dc detect fault status. Voltage compliant to AVDD. Short circuit faults can be set to auto-recovery by connecting /FLAG pin to /SD pin. Otherwise, both short circuit faults and dc detect faults must be reset by cycling PVDD. Positive audio input for left channel. 4 7 LINN I Negative audio input for left channel. 5 9 GAIN0 I Gain select least significant bit. TTL logic levels with compliance to AVDD. 6 10 GAIN1 I Gain select least significant bit. TTL logic levels with compliance to AVDD. 7 11 AVDD P Analog supply. 8 12 P Analog signal ground. Connect to the thermal pad. 9 13 AGND VCLAM P I Regulated voltage, Nominal voltage is 5V. 10 14 AGC I AGC level adjust. Connect a resistor divider from VCLAMP to GND to set AGC. Connect directly to VCLAMP for no AGC. 11 15 RINN I Negative audio input for right channel. 12 16 RINP I Positive audio input for right channel. - 8,25 NC 13 17 FREQ I FOSC selection control, pulling and holding this pin to logic high selects fixed frequency mode while logic low selects spread spectrum mode. 14 18 MONO I Parallel BTL mode switch 15,16 19 RPVDD P Power supply for right channel H-bridge. Right channel and left channel power supply inputs are connected internally. 17 20 RBSP I Bootstrap I/O for right channel, positive high-side FET. 18 21 ROUTP O 19, 24 22,28 PGND 20 23 ROUTN O 21 24 RBSN I Bootstrap I/O for right channel, negative high-side FET. 22 26 LBSN I Bootstrap I/O for left channel, negative high-side FET. 23 27 LOUTN O Class-D H-bridge negative output for left channel. 25 1 LOUTP O Class-D H-bridge positive output for left channel. 26 2 LBSP I Bootstrap I/O for left channel, positive high-side FET. 27,28 3 LPVDD P Power supply for left channel H-bridge. Right channel and left channel power supply inputs are connected internally. Not connected. Class-D H-bridge positive output for right channel. Power ground for the H-bridges. Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 Class-D H-bridge negative output for right channel. 13 www.anpec.com.tw APA2622 Block Diagram LBSP VCLAMP LPVDD LPVDD LOUTP FB AGC Control MONO Select LOUTP FB Gate Drive LOUTP LINP PWM Logic Gain Control PGND VCLAMP LPVDD LBSN LPVDD LINN LOUTN FB AGC Control Gate Drive LOUTN FB LOUTN FLAG Biases and References SD TTL Buffer GAIN0 GAIN Control GAIN1 AGC Reference AGC FREQ RAMP GEN. PGND SD Detect DC Detect LPVDD Thermal Detect RPVDD Startup Protection Logic UVLO/OCL O RBSP VCLAMP AVDD LDO Regulator RPVDD VCLAMP RPVDD VCLAMP AGC Control ROUTP FB Gate Drive ROUTN ROUTN FB RINN PWM Logic Gain Control PGND VCLAMP RPVDD RBSN RPVDD RINP AGC Control ROUTN FB MONO Select Gate Drive ROUTP ROUTP FB TTL Buffer MONO MONO Select PGND AGND 200k FREQ Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 14 www.anpec.com.tw APA2622 Typical Application Circuit VDD 100µF Shutdown Control 1µF SD 1 28 LPVDD FLAG 2 LINP 3 27 LPVDD 26 LBSP 25 LOUTP LINN 4 GAIN0 5 1µF Gain Setting 1µF 23 LOUTN AVDD 7 22 LBSN VCLAMP 9 1µF 70kΩ 30kΩ 1µF Right Channel Input Signal 1µF FOSC H=Fix Freq L or Floating =Spread Spectrum 0.22µF BEAD 1000pF 24 PGND GAIN1 6 AGND 8 1µF 1000 pF (Recommmanded) 1kΩ (Recommmanded) Left Channel Input Signal 0.1µF 100kΩ 10Ω APA2622 BEAD 0.22µF 0.22µF 21 RBSN BEAD 20 ROUTN AGC 10 1000pF 1000pF 19 PGND RINN 11 18 ROUTP RINP 12 17 RBSP FREQ 13 16 RPVDD MONO 14 15 RPVDD BEAD 1000 pF 0.22µF 100 µF 0.1µF 1000 pF 29 GND Stereo VDD VDD 100µF (Recommmanded) 1kΩ (Recommmanded) Shutdown Control SD 1 28 LPVDD FLAG 2 LINP 3 27 LPVDD 26 LBSP 25 LOUTP LINN 4 Gain Setting 1µF GAIN0 5 24 PGND GAIN1 6 23 LOUTN AVDD 7 22 LBSN AGND 8 VCLAMP 9 1µF APA2622 1µF 1µF 21 RBSN BEAD 1000pF 19 PGND 18 ROUTP RINP 12 17 RBSP FOSC MONO 14 H=Fix Freq L or Floating=Spread Spectrum BEAD 1000pF RINN 11 FREQ 13 0.47µF 16 RPVDD 15 RPVDD 100µF 0.1µF 1000pF 29 GND MONO Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 0.47µF 20 ROUTN AGC 10 Right Channel Input Signal 1000pF 0.1µF 100kΩ 10Ω 15 VDD www.anpec.com.tw APA2622 AGC Gain Table VDD=12V, VGND=0V, TA=25OC, No Load Gain=20dB Gain=26dB Gain=32dB Gain=36dB dB dB dB dB 1 20.15 26.15 32.15 36.15 2 19.65 25.65 31.65 35.65 3 19.15 25.15 31.15 35.15 4 18.65 24.65 30.65 34.65 5 18.15 24.15 30.15 34.15 6 17.65 23.65 29.65 33.65 7 17.15 23.15 29.15 33.15 8 16.65 22.65 28.65 32.65 9 16.15 22.15 28.15 32.15 10 15.65 21.65 27.65 31.65 11 15.15 21.15 27.15 31.15 12 14.65 20.65 26.65 30.65 13 14.15 20.15 26.15 30.15 14 13.65 19.65 25.65 29.65 15 13.15 19.15 25.15 29.15 16 12.65 18.65 24.65 28.65 17 12.15 18.15 24.15 28.15 18 11.65 17.65 23.65 27.65 19 11.15 17.15 23.15 27.15 20 10.65 16.65 22.65 26.65 Step Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 16 www.anpec.com.tw APA2622 AGC Gain Table VDD=12V, VGND=0V, TA=25OC, No Load Gain=20dB Gain=26dB Gain=32dB Gain=36dB dB dB dB dB 21 10.15 16.15 22.15 26.15 22 9.65 15.65 21.65 25.65 23 9.15 15.15 21.15 25.15 24 8.65 14.65 20.65 24.65 25 8.15 14.15 20.15 24.15 26 7.65 13.65 19.65 23.65 27 7.15 13.15 19.15 23.15 28 6.65 12.65 18.65 22.65 29 6.15 12.15 18.15 22.15 30 5.65 11.65 17.65 21.65 31 5.15 11.15 17.15 21.15 32 4.65* 10.65 16.65* 20.65* Step *Powerlimit Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 17 www.anpec.com.tw APA2622 Function Description Class-D Operation Gain Setting Operation Output = 0 Gain1 0 0 1 1 VOUTP Gain0 0 1 0 1 Gain 20 26 32 36 Input Impedance 60kΩ 30kΩ 15kΩ 9kΩ Table 1 : The gain setting VOUTN The APA2622’s gain can be set by GAIN0, GAIN1. The detail gain setting value is listed at table 1. VOUT (VOUTP-VOUTN) Shutdown Operation In order to reduce power consumption while not in use, the APA2622 contains a shutdown function to externally IOUT Output > 0 turn off the amplifier bias circuitry. This shutdown feature turns the amplifier off when logic low is placed on the SD VOUTP pin for APA2622. The trigger point between a logic high and logic low level is typically 1.5V. It is best to switch VOUTN between ground and the supply voltage VDD to provide maximum device performance. By switching the SD pin VOUT (VOUTP-VOUTN) to low level, the amplifier enters a low-consumption- current state, IDD for APA2622 is in shutdown mode. On normal operating, APA2622’s SD pin should pull to high level to keep the IC out of the shutdown mode. The SD pin IOUT Output < 0 VOUTP should be tied to a definite voltage to avoid unwanted state changes. VOUTN AGC Function Operation The APA2622 provides the non-clipping control. When the output reaches the maximum power setting value, the internal Programmable Gain Amplifier (PGA) will de- VOUT (VOUTP-VOUTN) crease the gain to prevent the output waveform from clipping. Using the AGC pin to set the non-clipping funcIOUT tion and limit the output power. Figure1. The APA2622 Output Waveform Attack Time=2.8ms Release Time=1.2S The APA2622 uses a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is driving an inductive load. Each output is switching from 0 volts to the supply voltage. The VOUTP and VOUTN VP=5.6 x AGC voltage if AGC<2.5V are in phase with each other with no input so that there is little or no current in the speaker. The duty cycle of VOUTP VCLAMP Supply The VCLAMP is used to power the gates of the output full is greater than 50% and VOUTN is less than 50% for positive output voltages. The duty cycle of VOUTP is less than 50% bridge transistors. It can also be used to supply the AGC voltage divider circuit. Add a 1µF capacitor to ground at and VOUTN is greater than 50% for negative output voltages. The voltage across the load sits at 0V throughout most of this pin. the switching period, reducing the switching current, which reduces any I2R losses in the load. Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 18 www.anpec.com.tw APA2622 Stereo/Mono switching Operation APA2622 offers the feature of stereo operation with two Thermal Protection Thermal protection on the APA2622 prevents damage to outputs of each channel connected directly. If the MONO pin (pin 14) is tied high, the positive and negative outputs the device when the internal die temperature exceeds 150°C. There is a ±15°C tolerance on this trip point from of each channel (left and right) are synchronized and in phase. To operate in this mono mode, apply the input device to device. Once the die temperature exceeds the thermal set point, the device enters into the shutdown signal to the RIGHT input and place the speaker between the LEFT and RIGHT outputs. Connect the positive and state and the outputs are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of negative output together for best efficiency. Mono mode can increase more output power compared the die is reduced by 15°C. The device begins normal operation at this point with no external system interaction. to the stereo mode single channel’s output power. Thermal protection faults are NOT reported on the /FLAG terminal. DC Detect When a DC signal applies to the input of APA2622 and the time excesses 500ms, the APA2622’s DC Detect fault will be reported on the /FLAG pin as a low state. The DC Detect fault will also cause the amplifier to shutdown by changing the state of the outputs to Hi-Z. To clear the DC Detect it is necessary to cycle the PVDD supply. Cycling SD will NOT clear a DC Detect fault. A DC Detect fault is issued when the output differential duty-cycle of either channel exceeds 16% for more than 500 msec at the same polarity. This feature protects the speaker from large DC currents or AC currents less than 2Hz. To avoid nuisance faults due to the DC detect circuit, hold the SD pin low at power-up until the signals at the inputs are stable. Also, take care to match the impedance seen at the positive and negative inputs to avoid nuisance DC Detect faults. Over-Circuit Protection APA2622 has protection from over-current conditions caused by a short circuit on the output stage. The short circuit protection fault is reported on the /FLAG pin as a low state. The amplifier outputs are switched to a Hi-Z state when the short circuit protection latch is engaged. The latch can be cleared by cycling the /SD pin through the low state. Connect /FLAG to /SD pin, the over current protection will be auto recovery. Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 19 www.anpec.com.tw APA2622 Application Information Input Resistance,Ri Power-Supply Decoupling Capacitor, CS Changing the gain setting can vary the input resistance of the amplifier from its smallest value, 9 kΩ ±20%, to the The APA2622 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to largest value, 60kΩ ±20%. As a result, if a single capacitor is used in the input high-pass filter, the -3 dB or cutoff ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents frequency may change when changing gain steps. the oscillations being caused by long lead length between the amplifier and the speaker. The optimum Input Capacitor, Ci decoupling is achieved by using two different types of capacitors that target on different types of noise on the In the typical application, an input capacitor Ci is required to allow the amplifier to bias the input signal to the proper power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent- dc level for optimum operation. In this case, Ci and the input impedance of the amplifier (RI) form a high-pass series-resistance (ESR) ceramic capacitor, typically 0. 1µF placed as close as possible to the device AVDD pin filter with the corner frequency determined in Equation 1. f C ( hipass ) = 1 2π Ri C i and 1µF placed to the LPVDD and RPVDD leads for works best. For filtering lower frequency noise signals, a large (1) aluminum electrolytic capacitor of 220µF or greater placed The value of Ci is important, as it directly affects the bass (low-frequency) performance of the circuit. Consider the near the audio power amplifier is recommended. example where RI is 60kΩ and the specification calls for a flat bass response down to 20Hz. Equation 1 is Output Low-Pass Filter If the traces from APA2622 to speaker are short, it doesn’t reconfigured as Equation 2. Ci = 1 2π Ri C i require output filter for FCC & CE standard. (2) A ferrite bead may be needed if it’s failing the test for FCC or CE tested without the LC filter. The figure 2 is In this example, Ci is 0.13µF; so, one would likely choose a value of 0.15µF as this value is commonly used. If the the sample for adding ferrite bead; it shows choosing high impedance in high frequency. gain is known and is constant, use R i from Table 1 to calculate Ci. A further consideration for this capacitor is the leakage path from the input source through the input network Ci and the feedback network to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially OUTP Ferrite Bead 1nF in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applica- OUTN Ferrite Bead 4Ω 1nF tions as the dc level there is held at VCLAMP/2, which is likely higher than the source dc level. Note that it is important to confirm the capacitor polarity in the application. Additionally, lead-free solder can create dc offset volt- Figure 2. Ferrite Bead Output Filter ages and it is important to ensure that boards are cleaned properly. Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 20 www.anpec.com.tw APA2622 Application Information (Cont.) During each high-side switching cycle, the bootstrap capacitors hold the VGS high enough to keep the high- Output Low-Pass Filter (cont.) Figure 3 and Figure 4 are examples for adding the LC side MOSFETs turned on. filter (Butterworth), it’s recommended for the situation that the trace form amplifier to speaker is too long, and needs Layout Recommendation to eliminate the radiated emission or EMI. OUTP The APA2622 can be used with a small, inexpensive ferrite bead output filter for most applications. However, since the Class-D switching edges are fast, it is necessary to take care when planning the layout of the printed 33µH circuit board. The following suggestions will help to meet EMC requirements. 1µF OUTN 33µH 1. The high frequency decoupling capacitors should be placed as close to the PVDD and AVDD terminals as 8Ω possible. Large (100µF or greater) bulk power supply decoupling capacitors should be placed near the 1µF APA2622 on the LPVDD and RPVDD supplies. Local, high-frequency bypass capacitors should be placed as Figure 3. Typical LC Output Filter, Cutoff Frequency of close to the PVDD pins as possible. These caps can be connected to the thermal pad directly for an excellent 27 kHz, Speaker Impedance = 8Ω ground connection. Consider adding a small, good quality low ESR ceramic capacitor between 1000pF and OUTP 15µH 10nF and a larger mid-frequency cap of value between 0.1µF and 1µF also of good quality to the PVDD con- 2.2µF OUTN 15µH nections at each end of the chip. 2. Keep the current loop from each of the outputs through 4Ω the ferrite bead and the small filter cap and back to PGND as small and tight as possible. The size of this 2.2µF current loop determines its effectiveness as an antenna. 3. Grounding— The AVDD (pin 7) decoupling capacitor should be grounded to analog ground (AGND). The Figure 4. Typical LC Output Filter, Cutoff Frequency of 27 kHz, Speaker Impedance = 4Ω PVDD decoupling capacitors should connect to PGND. Analog ground and power ground should be connected BSN and BSP CAPACITORS The full H-bridge output stages which use only NMOS transistors require bootstrap capacitors for the high at the thermal pad, which should be used as a central ground connection or star ground for the APA2622. 4. Output filter— The ferrite EMI filter (Figure 3) should be placed as close to the output terminals as possible for side of each output to turn on correctly. A 0.22µF capacitor, rated for at least 25V, must be connected the best EMI performance. The LC filter (Figure 4 and Figure 5) should be placed close to the outputs. The from each output to its corresponding bootstrap input. Specifically, one 0.22µF capacitor must be connected capacitors used in both the ferrite and LC filters should be grounded to power ground. from OUTPx to BSPx, and one 0.22µF capacitor must be connected from OUTNx to BSNx. (See the application circuit) The bootstrap capacitors connected between the BSxx pins and corresponding output function as a floating power supply for the high-side Nchannel power MOSFET gate drive circuitry. Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 21 www.anpec.com.tw APA2622 Application Information (Cont.) Layout Recommendation (cont.) 5. Thermal Pad— The thermal pad must be soldered to the PCB for proper thermal performance and optimal reliability. The vias should connect to a solid copper plane, either on an internal layer or on the bottom layer of the PCB. The vias must be solid vias, not thermal relief or webbed vias. 2.0mm 0.7mm 3.0mm 0.65mm 6.5mm Via diameter = 0.3mm x 8 6.4mm TSSOP-28P Land Pattern Recommendation 1.5mm 2.7mm 0.25mm 0.4mm Via diameter = 0.3mm x 9 0.3mm QFN4x4-28 Land Pattern Recommendation Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 22 www.anpec.com.tw APA2622 Application Information (Cont.) Layout Recommendation Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 23 www.anpec.com.tw APA2622 Package Information TSSOP-28P D SEE VIEW A E2 EXPOS ED PAD E1 E D1 c 0.25 b S Y M B O L VIEW A L GAUGE PLANE SEATING PLANE 0 A1 A2 A e TSSOP-28P INCHES MILLIMETERS MIN. MAX. A MIN. MAX. 1.20 0.047 A1 0.05 0.15 0.002 0.006 A2 0.80 1.05 0.031 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 9.60 9.80 0.378 0.386 D1 4.50 6.00 0.177 0.236 E 6.20 6.60 0.244 0.260 0.177 0.138 E1 4.30 4.50 0.169 E2 2.50 3.50 0.098 0.75 0.018 8o 0o e 0.65 BSC L 0.45 0 0o 0.026 BSC 0.030 8o Note : 1. Followed from JEDEC MO-153 AET. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. Dimension "E1" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side. Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 24 www.anpec.com.tw APA2622 Package Information QFN4x4-28B D b E A Pin 1 A1 D2 A3 NX aaa c L K E2 Pin 1 Corner e S Y M B O L QFN4x4-28B MILLIMETERS INCHES MIN. MAX. MIN. MAX. A 0.80 1.00 0.031 0.039 A1 0.00 0.05 0.000 0.002 A3 0.20 REF 0.008 REF 0.006 0.010 b 0.15 0.25 D 3.90 4.10 0.154 0.161 0.110 D2 2.50 2.80 0.098 E 3.90 4.10 0.154 0.161 E2 2.50 2.80 0.098 0.110 e 0.4 BSC L 0.30 K 0.20 aaa Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 0.016 BSC 0.012 0.50 0.020 0.008 0.08 0.003 25 www.anpec.com.tw APA2622 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application TSSOP-28P Application QFN4x4-28B A H T1 C d D W E1 F 330.0±2.00 50 MIN. 16.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. 16.0±0.30 1.75±0.10 7.50±0.10 P0 P1 P2 D0 D1 T A0 B0 K0 4.00±0.10 12.00±0.10 2.00±0.10 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 A H T1 C d D W E1 F 330.0±2.00 50 MIN. 12.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.5±0.05 P0 P1 P2 D0 D1 T A0 B0 K0 2.0±0.05 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 4.30±0.20 4.30±0.20 1.30±0.20 4.0±0.10 8.0±0.10 6.9±0.20 10.20.±0.20 1.50±0.20 (mm) Devices Per Unit Package Type TSSOP-28P QFN4x4-28B Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 Unit Tape & Reel Tape & Reel Quantity 2000 3000 26 www.anpec.com.tw APA2622 Classification Profile Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 27 www.anpec.com.tw APA2622 Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly 100 °C 150 °C 60-120 seconds 150 °C 200 °C 60-120 seconds 3 °C/second max. 3 °C/second max. 183 °C 60-150 seconds 217 °C 60-150 seconds See Classification Temp in table 1 See Classification Temp in table 2 Time (tP)** within 5°C of the specified classification temperature (Tc) 20** seconds 30** seconds Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max. 6 minutes max. 8 minutes max. Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)* Time 25°C to peak temperature * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (t p) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3 Package Thickness <2.5 mm Volume mm <350 235 °C Volume mm ≥350 220 °C ≥2.5 mm 220 °C 220 °C 3 Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm Volume mm <350 260 °C 260 °C 250 °C 3 Volume mm 350-2000 260 °C 250 °C 245 °C 3 Volume mm >2000 260 °C 245 °C 245 °C 3 Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78 28 Description 5 Sec, 245°C 1000 Hrs, Bias @ Tj=125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA www.anpec.com.tw APA2622 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.1 - Dec., 2015 29 www.anpec.com.tw