APA2623 15W Stereo Class-D Audio Power Amplifier Features General Description • • The APA2623 is a stereo, high efficiency, Class-D audio Supply Voltage is 4.5V ~ 16V Class D operation eliminates heat sink & reduce power supply requirement • • 20,26, 32, 36, 4 steps gain setting 15W/ch into an 8Ω Stereo Loads at 1% THD+N from • a 16-V supply 10W/ch into an 8Ω Stereo Loads at 10% THD+N • from a 12-V supply 30W into a 4Ω Mono Load at 10% THD+N from a 16- • V supply 90% Efficient Class-D Operation Eliminates Need • • • • amplifier and is available in TSSOP-28P and QFN4x428B pins packages. The Class-D power amplifier has higher efficiency compared to the traditional Class-AB power amplifier. The filter free Class-D architecture eliminates the external low pass filters. The internal gain setting can minimize the external component counts, and for the flexible application the gain can be set to 4-step 20, 26, 32, 36dB by gain control pins (GAIN0 and GAIN1). The AGC function pro- for Heat Sinks External AGC function tects speaker from being out of its power rating but keeps acceptable performance. Thermal and Over-Current Protections with AutoRecovery option The integration of Class-D power amplifier is a best so- TSSOP-28P with thermal pad packages QFN4x4-28B with thermal pad packages lution for high efficiency and low BOM costs. The operating voltage is from 4.5V to 16V. The APA2623 power amplifiers are capable of driving 15 W at VDD=16V into 8Ω speaker, and provides thermal and over-current Applications • • protections. It also can detect the DC and then prevent the speaker voice coil from being detroyed. LCD Monitor Consumer Audio Equipment Simplified Application Circuit APA2623 LOUTP Left Channel Input Right Channel Input LINP LINN RINN FERRITE BEAD FILTER Left Channel Speaker FERRITE BEAD FILTER Right Channel Speaker LOUTN ROUTN RINP ROUTP ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 1 www.anpec.com.tw APA2623 26 LBSP LINN 4 25 LOUTP GAIN0 5 24 PGND GAIN1 6 23 LOUTN AVDD 7 AGND 8 APA2623 TSSOP-28P 22 PGND 23 ROUTN 24 RBSN 25 NC 27 LPVDD LINP 3 26 LBSN 28 LPVDD 28 PGND SD 1 FLAG 2 27 LOUTN Pin Configuration LOUTP 1 21 ROUTP LBSP 2 20 RBSP LPVDD 3 22 LBSN SD 4 19 RPVDD APA2623 QFN4*4-28B 18 MONO 15 RINN RINN 11 18 ROUTP 17 RBSP 16 RPVDD MONO 14 15 RPVDD 17 FREQ AGC 14 RINP 12 FREQ 13 VCLAMP 13 LINN 7 AGND 12 19 PGND AVDD 11 16 RINP AGC 10 GAIN1 10 LINP 6 NC 8 FLAG 5 GAIN0 9 21 RBSP 20 ROUTN VCLAMP 9 Ordering and Marking Information Package Code R: TSSOP-28P QA: QFN4x4-28B Operating Ambient Temperature Range I : -40 to 85 o C Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device APA2623 Assembly Material Handling Code Temperature Range Package Code APA2623 R: APA2623 QA: APA2623 XXXXX XXXXX - Date Code APA2623 XXXXX XXXXX - Date Code Note : ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 2 www.anpec.com.tw APA2623 Absolute Maximum Ratings (Over operating free-air temperature range unless otherwise noted.) Symbol VDD Parameter Rating Supply Voltage -0.3 to 19 Input Voltage (/SD, GAIN0 and GAIN1, MONO and /FLAG) VI TJ -0.3 to VDD+0.3 AGC,FREQ -0.3 to 6.3 LINP, LINN, RINP, RINN -0.3 to 6.3 Maximum Junction Temperature Storage Temperature Range TSDR Maximum Soldering Temperature Range, 10 seconds 260 PVDD > 15V 4.8 PVDD < 15V 3.2 PD V 150 TSTG RL Unit -65 to +150 Power Dissipation ο C Ω Internally Limited W Notes 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Thermal Characteristics Symbol θJA θJC Parameter Thermal Resistance -Junction to Ambient Typical Value Unit (Not e 2) TSSOP-28P QFN4x4-28 45 40 TSSOP-28P QFN4x4-28 8 7 Thermal Resistance -Junction to Case(Note 3) ο C /W Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad of TSSOP-28P is soldered directly on the PCB Note 3: The case temperature is measured at the center of the exposed pad on the underside of the TSSOP-28P package Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 3 www.anpec.com.tw APA2623 Recommended Operating Conditions Symbol VDD VIH VIL Parameter Min. Max. 4.5 16 /SD ,GAIN0, GAIN1, MONO 2.0 - /SD, GAIN0, GAIN1, MONO - 0.8 Supply Voltage High Level Threshold Voltage Low Level Threshold Voltage Unit V TA Ambient Temperature Range -40 85 ο TJ Junction Temperature Range -40 125 ο RL Speaker Resistance,PVDD<9V 3.5 - C C Ω Electrical Characteristics VDD=12V, GND=0V, AV=20dB, TA= 25oC(unless otherwise noted) Symbol VCLAMP VO Parameter Test Condition Min. Typ. Max. Unit 4.5 5 5.5 V Regulated voltage I O=2mA,VDD=6~16V,TJ=-40οC ~125ο C Maximum Output Voltage Under AGC Control VAGC=1V, AV=20dB - 5.6 - Vp tDCDET DCP detect time VRINP=5V,V RINN=0V - 500 - ms TSD(O N) Shutdown Turn-On Time /SD=2.2V - 16 - ms TSD(OFF) Shutdown Turn-Off Time /SD=0.8V - 2 - μs IDD Quiescent Supply Current Quiescent Supply Current in shutdown mode No Load - 17 35 mA /SD = 0V - 180 300 μA /SD, GAIN0, GAIN1, MONO=12V - 23 50 μA FREQ=High, fixed frequency - 300 - kHz I L=0.5A - 180 - mΩ Gain0=0, Gain1=0 - 20 - Gain0=1, Gain1=0 - 26 - Gain0=0, Gain1=1 - 32 - Gain0=1, Gain1=1 - 36 - I SD II FOSC RDSON AV Input Current Internal Oscillator Frequency Static Drain-Source On-State Resistance Gain Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 dB 4 www.anpec.com.tw APA2623 STEREO MODE VDD=12V, GND=0V, AV=20dB, TA= 25oC(unless otherwise noted). ο VDD=16V, T A=25 C, A V=20dB Symbol Po THD+N Crosstalk PSRR Parameter Output Power Test Condition VDD=16V THD+N = 1%, FIN = 1KHz, RL = 8Ω VDD=16V THD+N = 10%, FIN = 1kHz RL = 8Ω Min. Typ. Max. - 15 - Unit W - 18 - Total Harmonic Distortion Pulse Noise VDD=16V FIN = 1kHz, PO= 7.5W , RL = 8Ω - 0.06 Channel separation VO =1Vrms, FI N = 1kHz, AV=20dB - -90 - Power Supply Rejection Ratio RL=4Ω,input AC-Ground,FIN=1kHz - -70 - Signal-to-noise ratio Maximum output at THD+N<1%, FIN=1kHz, AV=20dB, A-weighted - 95 - Shutdown Attenuation FIN = 1kHz, R L = 8Ω, Vin = 1VPP - -110 - Offset Voltage AV=20dB - 5 - mV Noise Output Voltage With A-weighted Filter (AV=20dB) - 100 - µV (rms) Min. Typ. Max. Unit RL = 8Ω - 8 - RL = 8Ω - 10 - - % dB SNR Attshutdown |VOS| Vn ο VDD=12V, T A=25 C, A V=20dB Symbol Po THD+N Crosstalk PSRR SNR Attshutdown |VOS| Vn Parameter Output Power Test Condition VDD=12V THD+N = 1%, FIN = 1KHz VDD=12V THD+N = 10%, FIN = 1kHz, W Total Harmonic Distortion Pulse Noise VDD=12V FIN = 1kHz, PO= 5W, RL = 4Ω - 0.05 Channel separation VO =1Vrms, FI N = 1kHz, AV=20dB - -90 - Power Supply Rejection Ratio RL=4Ω,input AC-Ground,FIN=1kHz - -70 - Signal-to-noise ratio Maximum output at THD+N<1%, FIN=1kHz, AV=20dB, A-weighted - 95 - Shutdown Attenuation FIN = 1kHz, R L = 8Ω, Vin = 1VPP - -110 - Offset Voltage AV=20dB - 5 - mV Noise Output Voltage Input AC ground, With A-weighted Filter (AV=20dB) - 100 - µV (rms) - % dB Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 5 www.anpec.com.tw APA2623 MONO MODE ο VDD=12 V,TA=25 C S ymbol Po THD+N P SRR SNR Att shutdown |VOS| Vn Pa ra met er Total Harmonic Disto rtio n Pulse Noise Te st Condition V DD=16V R L = 4Ω THD+N = 1% , F IN = 1 KHz V DD=16V R L = 4Ω THD+N = 10% , F IN = 1KHz V DD=16V F IN = 1kHz, PO = 6W, R L = 4Ω Po we r S uppl y Rejection Ratio R L=4Ω ,in put AC-Ground , F IN =1kHz Ou tp ut Po we r Min. Typ. Ma x. - 28 - - 35 - - 0.05 - -5 0 - - 95 - Unit W - % Sh utdown Atte nuation Ma ximum ou tpu t at THD+N<1%, FREQ=High FIN=1kHz, AV=20dB , A- we ighted F IN = 1kHz, R L = 8Ω, Vi n= 1Vrms - -100 - Offse t Vo ltag e A V=2 0dB - 10 - mV Noise Outpu t Voltag e Inp ut AC gro und, FREQ=High W ith A-weig hted Filter (AV=20dB) - 1 20 - µV (rms) Si gnal-to- noise ratio Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 6 dB www.anpec.com.tw APA2623 Pin Function Description Pin NO. TSSOPQFN4x4 28P -28 Name I/O/P FUNCTION 1 4 /SD I 2 5 /FLAG O 3 6 LINP I Shutdown logic input for audio amp (Low=outputs disabled, High=output enabled). TTL logic levels with compliance to AVDD. Open drain output used to display short circuit or dc detect fault status. Voltage compliant to AVDD. Short circuit faults can be set to auto-recovery by connecting /FLAG pin to /SD pin. Otherwise, both short circuit faults and dc detect faults must be reset by cycling PVDD. Positive audio input for left channel. 4 7 LINN I Negative audio input for left channel. 5 9 GAIN0 I Gain select least significant bit. TTL logic levels with compliance to AVDD. 6 10 GAIN1 I Gain select least significant bit. TTL logic levels with compliance to AVDD. 7 11 AVDD P Analog supply. 8 12 P Analog signal ground. Connect to the thermal pad. 9 13 AGND VCLAM P I Regulated voltage, Nominal voltage is 5V. 10 14 AGC I AGC level adjust. Connect a resistor divider from VCLAMP to GND to set AGC. Connect directly to VCLAMP for no AGC. 11 15 RINN I Negative audio input for right channel. 12 16 RINP I Positive audio input for right channel. - 8,25 NC 13 17 FREQ I 14 18 MONO I 15,16 19 RPVDD P 17 20 RBSP I Bootstrap I/O for right channel, positive high-side FET. 18 21 ROUTP O Class-D H-bridge positive output for right channel. 19, 24 22,28 PGND 20 23 ROUTN O Class-D H-bridge negative output for right channel. 21 24 RBSN I Bootstrap I/O for right channel, negative high-side FET. 22 26 LBSN I Bootstrap I/O for left channel, negative high-side FET. 23 27 LOUTN O Class-D H-bridge negative output for left channel. 25 1 LOUTP O Class-D H-bridge positive output for left channel. 26 2 LBSP I 27,28 3 LPVDD P Bootstrap I/O for left channel, positive high-side FET. Power supply for left channel H-bridge. Right channel and left channel power supply inputs are connected internally. Not connected. FOSC selection control, pulling and holding this pin to logic high selects fixed frequency mode while logic selects spread spectrum mode. Parallel BTL mode switch Power supply for right channel H-bridge. Right channel and left channel power supply inputs are connected internally. Power ground for the H-bridges. Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 7 www.anpec.com.tw APA2623 Typical Operating Characteristics THD+N vs. Output Power THD+N vs. Output Power 10 10 VDD=8V VDD=8V VDD=12V VDD=12V 1 THD+N (%) THD+N (%) 1 VDD=16V 0.1 VDD=16V 0.1 FIN=1kHz RL=8Ω Av=20dB AES-17(20kHz) FIN=1kHz RL=4Ω Av=20dB AES-17(20kHz) 0.01 0 5 10 20 15 25 30 0.01 35 4 0 Output Power (W) THD+N vs. Frequency 10 20 VDD=16V RL=8Ω Av=20dB AES-17(20kHz) 1 THD+N (%) 1 THD+N (%) 16 12 THD+N vs. Frequency 10 VDD=12V RL=8Ω Av=20dB AES-17(20kHz) Po=4W 0.1 Po=1W 0.01 20 100 1k Po=7.5W 0.1 Po=1W 0.01 20 10k 20k Output Noise Voltage vs. Time 1k 10k 20k Output Noise Voltage vs. Time 500µ 500µ Output Noise Voltage(Vrms) VDD=12V RL=8Ω Cin=1µF AES-17(20kHz) A-Weighting 400µ 100 Frequency (Hz) Frequency (Hz) Output Noise Voltage(Vrms) 8 Output Power (W) 300µ VDD=16V RL=8Ω Cin =1µF AES-17(20kHz) A-Weighting 400µ 300µ A V=32dB AV=36dB 200µ 100µ AV=26dB AV=20dB 10 20 100µ AV=20dB 0µ 30 0 Time (Sec) Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 AV=36dB 200µ AV=26dB 0µ 0 AV=32dB 10 20 30 Time (Sec) 8 www.anpec.com.tw APA2623 Typical Operating Characteristics Shutdown Attenuation vs. Frequency -50 VDD=12V RL=8Ω Av=20dB Vrr=0.2Vpp AES-17(20kHz) -10 -30 VDD=12V RL=8Ω Av=20dB AES-17(20kHz) -60 Shutdown Attenuation(dB) Power Supply Rejection Ratio(dB) PSRR vs. Frequency -50 Left channel -70 -70 -80 -90 -100 -110 -120 Left channel Right channel -90 20 100 1k -130 20 10k 20k 100 +200 +38 +26 +150 +36 Av=26dB -50 +16 +14 +12 +10 100 1k 20k +0 +28 Phase +24 -150 +22 -200 +20 200k 20 Crosstalk vs. Frequency 100 -150 1k 20k -200 200k Crosstalk vs. Frequency -40 VDD=12V RL=8Ω VO=1Vrms AV=20dB AES-17(20kHz) -60 Crosstalk(dB) Crosstalk(dB) -100 Frequency (Hz) -40 -80 L-Channel to R-Channel -100 VDD=16V RL=8Ω VO=1Vrms AV=20dB AES-17(20kHz) -80 L-Channel to R-Channel -100 R-Channel to L-Channel -120 20 -50 VDD=12V RL=8Ω AES-17(20kHz) Frequency (Hz) -60 +50 Av=32dB +30 +26 -100 VDD=12V RL=8Ω AES-17(20kHz) 20 Gain(dB) Gain(dB) +0 Phase +100 Phase(Deg) +50 +150 Av=36dB +32 Phase(Deg) Av=20dB +200 +34 +100 +20 +18 10k 20k Frequency Response Frequency Response +28 +22 1k Frequency (Hz) Frequency (Hz) +24 Right channel 100 1k R-Channel to L-Channel -120 20 10k 20k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 100 1k 10k 20k Frequency (Hz) 9 www.anpec.com.tw APA2623 Typical Operating Characteristics (Cont.) AGC Function Output Power vs. Input AC 2 AGC Function Output Power vs. Input AC 8 1.6 Output Power (W) Output Power (W) 6 1.2 0.8 VDD=12V RL=8Ω Av=20dB VAGC=1V AES-17(20kHz) 0.4 0 0 0.4 0.8 1.2 1.6 4 VDD=16V RL=8Ω Av=20dB VAGC=2V AES-17(20kHz) 2 0 2 0 0.4 Input Voltage (Vrms) 0.8 1.2 2 1.6 Input Voltage (Vrms) Output Power vs. AGC Voltage Supply Current vs. Supply Voltage 12 20 NO Load 10 Supply Current(mA) Output Power(W) 16 8 6 4 VDD=12V RL=8Ω Av=20dB AES-17(20kHz) 2 0 0 1.0 2.0 3.0 8 4 0 5.0 4.0 12 0 VAGC (V) 8 4 16 12 Supply Voltage(V) Shutdown Current vs. Supply Voltage Efficiency vs. Output Power 100 300 NO Load 90 80 V DD=12V 70 200 Efficiency(%) Shutdown Current(µA) 250 150 100 VDD =8 V 60 50 40 R L=8 Ω+33 µH fin=1kHz Av=20 dB AES- 17(20kHz) Stereo mode 30 20 50 10 0 0 0 4 8 12 16 Supply Voltage(V) Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 10 V DD=16V 0 4 8 12 Output Power(W) 16 www.anpec.com.tw APA2623 Typical Operating Characteristics (Cont.) THD+N vs. Output Power VDD=16V 0.1 MONO Mode FIN=1kHz RL=4Ω Av=20dB AES-17(20kHz) VDD=12V VDD=8V 10 20 30 MONO Mode VDD=12V RL=4Ω Av=20dB AES-17(20kHz) 1 THD+N (%) THD+N (%) 1 0.01 0 THD+N vs. Frequency 10 10 Po=10W Po=5W 0.1 0.01 20 40 Output Power (W) THD+N vs. Frequency Output Noise Voltage vs. Time Output Noise Voltage(Vrms) THD+N (%) MONO Mode VDD=16V RL=4Ω Av=20dB AES-17(20kHz) Po=15W 0.1 100 10k 20k 〉 ∀µ Po=8W 0.01 20 1k Frequency (Hz) 10 1 100 1k 10k 20k MONO Mode VDD=16V RL=8Ω Cin=1µF AES-17(20kHz) A-Weighting 〉 ∀µ 〉 ∀µ AV=36dB 〉 ∀µ AV=20dB 0 Frequency (Hz) 10 20 30 Time (Sec) Power Supply Rejection Ratio(dB) PSRR vs. Frequency -10 -30 MONO Mode VDD=12V RL=8Ω Av=20dB Vrr=0.2Vpp AES-17(20kHz) -50 -70 -90 20 100 1k 10k 20k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 11 www.anpec.com.tw APA2623 Typical Operating Characteristics EN55013 Radiated Emissions Results Radiated Emission - Horizontal VDD =12 V(Battery supply) R L=8 Ω+33 µH PO =1.25W 30cm Speaker cable EN55013 Radiated Emissions Results Radiated Emission - Vertical VDD =12 V(Battery supply) R L=8 Ω+33 µH PO =1.25W 30cm Speaker cable Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 12 www.anpec.com.tw APA2623 Block Diagram LBSP VCLAMP LPVDD LPVDD LOUTP FB AGC Control MONO Select LOUTP FB Gate Drive LOUTP LINP PWM Logic Gain Control LINN PGND VCLAMP LPVDD LBSN LPVDD LOUTN FB AGC Control Gate Drive LOUTN FB LOUTN FLAG Biases and References SD TTL Buffer GAIN0 GAIN Control GAIN1 AGC Reference AGC FREQ RAMP GEN. Startup Protection Logic PGND SD Detect DC Detect LPVDD Thermal Detect RPVDD UVLO/OCL O RBSP VCLAMP AVDD LDO Regulator VCLAMP RPVDD RPVDD VCLAMP AGC Control ROUTP FB Gate Drive ROUTN ROUTN FB RINN PWM Logic Gain Control PGND VCLAMP RPVDD RBSN RPVDD RINP AGC Control ROUTN FB MONO Select Gate Drive ROUTP ROUTP FB TTL Buffer MONO MONO Select PGND AGND 200k FREQ Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 13 www.anpec.com.tw APA2623 Typical Application Circuit VDD 1kΩ (Recommmanded) Shutdown Control 1µF 1µF Left Channel Input Signal SD 1 28 LPVDD FLAG 2 LINP 3 27 LPVDD 26 LBSP 25 LOUTP LINN 4 Gain Setting 1µF GAIN0 5 24 PGND GAIN1 6 23 LOUTN AVDD 7 22 LBSN AGND 8 1µF 1µF 1µF Right Channel Input Signal APA2623 VCLAMP 9 70kΩ 30kΩ 100µF 0.1µF 100kΩ (Recommmanded) 10Ω 1µF FOSC H=Fix Freq L or Floating=Spread Spectrum 1000pF 0.22µF BEAD 1000pF BEAD 1000pF 0.22µF 0.22µF BEAD 21 RBSN 20 ROUTN AGC 10 19 PGND RINN 11 18 ROUTP RINP 12 17 RBSP 1000pF BEAD FREQ 13 16 RPVDD 0.22µF MONO 14 15 RPVDD 100µF 0.1µF 1000pF 1000pF 29 GND Stereo VDD VDD 100µF 0.1µF 10Ω 1kΩ (Recommmanded) Shutdown Control SD 1 28 LPVDD FLAG 2 LINP 3 27 LPVDD 26 LBSP 25 LOUTP LINN 4 Gain Setting 1µF GAIN0 5 24 PGND GAIN1 6 23 LOUTN AVDD 7 22 LBSN AGND 8 1µF APA2623 VCLAMP 9 1µF 1µF FOSC H=Fix Freq L or Floating=Spread Spectrum 0.47µF BEAD 1000pF 21 RBSN BEAD 20 ROUTN AGC 10 Right Channel Input Signal 1000pF 100kΩ (Recommmanded) 1000pF 19 PGND RINN 11 18 ROUTP RINP 12 17 RBSP FREQ 13 16 RPVDD MONO 14 15 RPVDD 0.47µF 100µF 0.1µF 1000pF 29 GND MONO Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 14 VDD www.anpec.com.tw APA2623 AGC Gain Table VDD=12V, VGND=0V, TA=25OC, No Load Gain=20dB Gain=26dB Gain=32dB Gain=36dB dB dB dB dB 1 20.15 26.15 32.15 36.15 2 19.65 25.65 31.65 35.65 3 19.15 25.15 31.15 35.15 4 18.65 24.65 30.65 34.65 5 18.15 24.15 30.15 34.15 6 17.65 23.65 29.65 33.65 7 17.15 23.15 29.15 33.15 8 16.65 22.65 28.65 32.65 9 16.15 22.15 28.15 32.15 10 15.65 21.65 27.65 31.65 11 15.15 21.15 27.15 31.15 12 14.65 20.65 26.65 30.65 13 14.15 20.15 26.15 30.15 14 13.65 19.65 25.65 29.65 15 13.15 19.15 25.15 29.15 16 12.65 18.65 24.65 28.65 17 12.15 18.15 24.15 28.15 18 11.65 17.65 23.65 27.65 19 11.15 17.15 23.15 27.15 20 10.65 16.65 22.65 26.65 21 10.15 16.15 22.15 26.15 22 9.65 15.65 21.65 25.65 23 9.15 15.15 21.15 25.15 24 8.65 14.65 20.65 24.65 Step Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 15 www.anpec.com.tw APA2623 AGC Gain Table VDD=12V, VGND=0V, TA=25OC, No Load Gain=20dB Gain=26dB Gain=32dB Gain=36dB dB dB dB dB 25 8.15 14.15 20.15 24.15 26 7.65 13.65 19.65 23.65 27 7.15 13.15 19.15 23.15 28 6.65 12.65 18.65 22.65 29 6.15 12.15 18.15 22.15 30 5.65 11.65 17.65 21.65 31 5.15 11.15 17.15 21.15 32 4.65 * 10.65 * 16.65 * 20.65 * Step *Powerlimit Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 16 www.anpec.com.tw APA2623 Function Description Class-D Operation Gain Setting Operation Output = 0 Gain1 0 0 1 1 VOUTP Gain0 0 1 0 1 Gain 20 26 32 36 Input Impedance 60kΩ 30kΩ 15kΩ 9kΩ Table 1 : The gain setting VOUTN The APA2623’s gain can be set by GAIN0, GAIN1. The detail gain setting value is listed at table 1. VOUT (VOUTP-VOUTN) Shutdown Operation In order to reduce power consumption while not in use, the APA2623 contains a shutdown function to externally IOUT Output > 0 turn off the amplifier bias circuitry. This shutdown feature turns the amplifier off when logic low is placed on the SD VOUTP pin for APA2623. The trigger point between a logic high and logic low level is typically 1.5V. It is best to switch VOUTN between ground and the supply voltage VDD to provide maximum device performance. By switching the SD pin VOUT (VOUTP-VOUTN) to low level, the amplifier enters a low-consumption- current state, IDD for APA2623 is in shutdown mode. On normal operating, APA2623’s SD pin should pull to high level to keep the IC out of the shutdown mode. The SD pin IOUT Output < 0 VOUTP should be tied to a definite voltage to avoid unwanted state changes. VOUTN AGC Function Operation The APA2623 provides the non-clipping control. When the output reaches the maximum power setting value, the internal Programmable Gain Amplifier (PGA) will de- VOUT (VOUTP-VOUTN) crease the gain to prevent the output waveform from clipping. Using the AGC pin to set the non-clipping funcIOUT tion and limit the output power. Figure1. The APA2623 Output Waveform Attack Time=2.8ms Release Time=1.2S The APA2623 uses a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is driving an inductive load. Each output is switching from 0 volts to the supply voltage. The VOUTP and VOUTN VP=5.6 x AGC voltage if AGC<2.5V are in phase with each other with no input so that there is little or no current in the speaker. The duty cycle of VOUTP is VCLAMP Supply The VCLAMP is used to power the gates of the output full greater than 50% and VOUTN is less than 50% for positive output voltages. The duty cycle of VOUTP is less than 50% bridge transistors. It can also be used to supply the AGC voltage divider circuit. Add a 1µF capacitor to ground at and VOUTN is greater than 50% for negative output voltages. The voltage across the load sits at 0V throughout most of this pin. the switching period, reducing the switching current, which reduces any I2R losses in the load. Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 17 www.anpec.com.tw APA2623 Stereo/Mono switching Operation APA2623 offers the feature of stereo operation with two Thermal Protection Thermal protection on the APA2623 prevents damage to outputs of each channel connected directly. If the MONO pin (pin 14) is tied high, the positive and negative outputs the device when the internal die temperature exceeds 150°C. There is a ±15°C tolerance on this trip point from of each channel (left and right) are synchronized and in phase. To operate in this mono mode, apply the input device to device. Once the die temperature exceeds the thermal set point, the device enters into the shutdown signal to the RIGHT input and place the speaker between the LEFT and RIGHT outputs. Connect the positive and state and the outputs are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of negative output together for best efficiency. Mono mode can increase more output power compared the die is reduced by 15°C. The device begins normal operation at this point with no external system interaction. to the stereo mode single channel’s output power. Thermal protection faults are NOT reported on the /FLAG terminal. DC Detect When a DC signal applies to the input of APA2623 and the time excesses 500ms, the APA2623’s DC Detect fault will be reported on the /FLAG pin as a low state. The DC Detect fault will also cause the amplifier to shutdown by changing the state of the outputs to Hi-Z. To clear the DC Detect it is necessary to cycle the PVDD supply. Cycling SD will NOT clear a DC Detect fault. A DC Detect fault is issued when the output differential duty-cycle of either channel exceeds 16% for more than 500 msec at the same polarity. This feature protects the speaker from large DC currents or AC currents less than 2Hz. To avoid nuisance faults due to the DC detect circuit, hold the SD pin low at power-up until the signals at the inputs are stable. Also, take care to match the impedance seen at the positive and negative inputs to avoid nuisance DC Detect faults. Over-Circuit Protection APA2623 has protection from over-current conditions caused by a short circuit on the output stage. The short circuit protection fault is reported on the /FLAG pin as a low state. The amplifier outputs are switched to a Hi-Z state when the short circuit protection latch is engaged. The latch can be cleared by cycling the /SD pin through the low state. Connect /FLAG to /SD pin, the over current protection will be auto recovery. Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 18 www.anpec.com.tw APA2623 Application Information Input Resistance,Ri Power-Supply Decoupling Capacitor, CS Changing the gain setting can vary the input resistance of the amplifier from its smallest value, 9 kΩ ±20%, to the The APA2623 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to largest value, 60kΩ ±20%. As a result, if a single capacitor is used in the input high-pass filter, the -3 dB or cutoff ensure the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also prevents frequency may change when changing gain steps. the oscillations being caused by long lead length between the amplifier and the speaker. The optimum Input Capacitor, Ci decoupling is achieved by using two different types of capacitors that target on different types of noise on the In the typical application, an input capacitor Ci is required to allow the amplifier to bias the input signal to the proper power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent- dc level for optimum operation. In this case, Ci and the input impedance of the amplifier (RI) form a high-pass series-resistance (ESR) ceramic capacitor, typically 0. 1µF placed as close as possible to the device AVDD pin filter with the corner frequency determined in Equation 1. f C ( hipass ) = 1 2π Ri C i and 1µF placed to the LPVDD and RPVDD leads for works best. For filtering lower frequency noise signals, a large (1) aluminum electrolytic capacitor of 220µF or greater placed The value of Ci is important, as it directly affects the bass (low-frequency) performance of the circuit. Consider the near the audio power amplifier is recommended. example where RI is 60kΩ and the specification calls for a flat bass response down to 20Hz. Equation 1 is Output Low-Pass Filter If the traces from APA2623 to speaker are short, it doesn’t reconfigured as Equation 2. Ci = 1 2π Ri C i require output filter for FCC & CE standard. (2) A ferrite bead may be needed if it’s failing the test for FCC or CE tested without the LC filter. The figure 2 is In this example, Ci is 0.13µF; so, one would likely choose a value of 0.15µF as this value is commonly used. If the the sample for adding ferrite bead; it shows choosing high impedance in high frequency. gain is known and is constant, use R i from Table 1 to calculate Ci. A further consideration for this capacitor is the leakage path from the input source through the input network Ci and the feedback network to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially OUTP Ferrite Bead 1nF in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applica- OUTN Ferrite Bead 4Ω 1nF tions as the dc level there is held at VCLAMP/2, which is likely higher than the source dc level. Note that it is important to confirm the capacitor polarity in the application. Additionally, lead-free solder can create dc offset volt- Figure 2. Ferrite Bead Output Filter ages and it is important to ensure that boards are cleaned properly. Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 19 www.anpec.com.tw APA2623 Application Information (Cont.) During each high-side switching cycle, the bootstrap capacitors hold the VGS high enough to keep the high- Output Low-Pass Filter (cont.) Figure 3 and Figure 4 are examples for adding the LC side MOSFETs turned on. filter (Butterworth), it’s recommended for the situation that the trace form amplifier to speaker is too long, and needs Layout Recommendation to eliminate the radiated emission or EMI. OUTP The APA2623 can be used with a small, inexpensive ferrite bead output filter for most applications. However, since the Class-D switching edges are fast, it is necessary to take care when planning the layout of the printed 33µH circuit board. The following suggestions will help to meet EMC requirements. 1µF OUTN 33µH 1. The high frequency decoupling capacitors should be placed as close to the PVDD and AVDD terminals as 8Ω possible. Large (100µF or greater) bulk power supply decoupling capacitors should be placed near the 1µF APA2623 on the LPVDD and RPVDD supplies. Local, high-frequency bypass capacitors should be placed as Figure 3. Typical LC Output Filter, Cutoff Frequency of close to the PVDD pins as possible. These caps can be connected to the thermal pad directly for an excellent 27 kHz, Speaker Impedance = 8Ω ground connection. Consider adding a small, good quality low ESR ceramic capacitor between 1000pF and OUTP 15µH 10nF and a larger mid-frequency cap of value between 0.1µF and 1µF also of good quality to the PVDD con- 2.2µF OUTN 15µH nections at each end of the chip. 2. Keep the current loop from each of the outputs through 4Ω the ferrite bead and the small filter cap and back to PGND as small and tight as possible. The size of this 2.2µF current loop determines its effectiveness as an antenna. 3. Grounding— The AVDD (pin 7) decoupling capacitor should be grounded to analog ground (AGND). The Figure 4. Typical LC Output Filter, Cutoff Frequency of 27 kHz, Speaker Impedance = 4Ω PVDD decoupling capacitors should connect to PGND. Analog ground and power ground should be connected BSN and BSP CAPACITORS The full H-bridge output stages which use only NMOS transistors require bootstrap capacitors for the high at the thermal pad, which should be used as a central ground connection or star ground for the APA2623. 4.Output filter—The ferrite EMI filter (Figure 3) should be side of each output to turn on correctly. A 0.22µF capacitor, rated for at least 25V, must be connected placed as close to the output terminals as possible for from each output to its corresponding bootstrap input. Specifically, one 0.22µF capacitor must be connected the best EMI performance. The LC filter (Figure 4 and Figure 5) should be placed close to the outputs. The ca- from OUTPx to BSPx, and one 0.22µF capacitor must be connected from OUTNx to BSNx. (See the applica- pacitors used in both the ferrite and LC filters should be grounded to power ground. tion circuit) The bootstrap capacitors connected between the BSxx pins and corresponding output function as a floating power supply for the high-side Nchannel power MOSFET gate drive circuitry. Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 20 www.anpec.com.tw APA2623 Application Information (Cont.) Layout Recommendation (cont.) 5. Thermal Pad— The thermal pad must be soldered to the PCB for proper thermal performance and optimal reliability. The vias should connect to a solid copper plane, either on an internal layer or on the bottom layer of the PCB. The vias must be solid vias, not thermal relief or webbed vias. 2.0mm 0.3mm 3.0mm 0.65mm 6mm Via diameter = 0.3mm x 8 6.4mm TSSOP-28P Land Pattern Recommendation 1.5mm 2.7mm 0.25mm 0.4mm Via diameter = 0.3mm x 9 0.3mm QFN4x4-28 Land Pattern Recommendation Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 21 www.anpec.com.tw APA2623 Application Information (Cont.) Layout Recommendation Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 22 www.anpec.com.tw APA2623 Package Information TSSOP-28P D SEE VIEW A E2 EXPOS ED PAD E1 E D1 c 0.25 b S Y M B O L VIEW A L GAUGE PLANE SEATING PLANE 0 A1 A2 A e TSSOP-28P INCHES MILLIMETERS MIN. MAX. A MIN. MAX. 1.20 0.047 A1 0.05 0.15 0.002 0.006 A2 0.80 1.05 0.031 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 9.60 9.80 0.378 0.386 D1 4.50 6.00 0.177 0.236 E 6.20 6.60 0.244 0.260 0.177 0.138 E1 4.30 4.50 0.169 E2 2.50 3.50 0.098 0.75 0.018 8o 0o e 0.65 BSC L 0.45 0 0o 0.026 BSC 0.030 8o Note : 1. Followed from JEDEC MO-153 AET. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. Dimension "E1" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side. Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 23 www.anpec.com.tw APA2623 Package Information QFN4x4-28B D b E A Pin 1 A1 D2 A3 NX aaa c L K E2 Pin 1 Corner e S Y M B O L QFN4x4-28B MILLIMETERS INCHES MIN. MAX. MIN. MAX. A 0.80 1.00 0.031 0.039 A1 0.00 0.05 0.000 0.002 A3 0.20 REF 0.008 REF 0.006 0.010 b 0.15 0.25 D 3.90 4.10 0.154 0.161 0.110 D2 2.50 2.80 0.098 E 3.90 4.10 0.154 0.161 E2 2.50 2.80 0.098 0.110 e 0.4 BSC L 0.30 K 0.20 aaa Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 0.016 BSC 0.012 0.50 0.020 0.008 0.08 0.003 24 www.anpec.com.tw APA2623 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application TSSOP-28P Application QFN4x4-28B A H T1 C d D W E1 F 330.0±2.00 50 MIN. 16.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. 16.0±0.30 1.75±0.10 7.50±0.10 P0 P1 P2 D0 D1 T A0 B0 K0 4.00±0.10 12.00±0.10 2.00±0.10 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 A H T1 C d D W E1 F 330.0±2.00 50 MIN. 12.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 5.5±0.05 P0 P1 P2 D0 D1 T A0 B0 K0 2.0±0.05 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 4.30±0.20 4.30±0.20 1.30±0.20 4.0±0.10 8.0±0.10 6.9±0.20 10.20.±0.20 1.50±0.20 (mm) Devices Per Unit Package Type TSSOP-28P QFN4x4-28B Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 Unit Tape & Reel Tape & Reel Quantity 2000 3000 25 www.anpec.com.tw APA2623 Classification Profile Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 26 www.anpec.com.tw APA2623 Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly 100 °C 150 °C 60-120 seconds 150 °C 200 °C 60-120 seconds 3 °C/second max. 3 °C/second max. 183 °C 60-150 seconds 217 °C 60-150 seconds See Classification Temp in table 1 See Classification Temp in table 2 Time (tP)** within 5°C of the specified classification temperature (Tc) 20** seconds 30** seconds Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max. 6 minutes max. 8 minutes max. Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)* Time 25°C to peak temperature * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (t p) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3 Package Thickness <2.5 mm Volume mm <350 235 °C Volume mm ≥350 220 °C ≥2.5 mm 220 °C 220 °C 3 Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm Volume mm <350 260 °C 260 °C 250 °C 3 Volume mm 350-2000 260 °C 250 °C 245 °C 3 Volume mm >2000 260 °C 245 °C 245 °C 3 Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78 27 Description 5 Sec, 245°C 1000 Hrs, Bias @ Tj=125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA www.anpec.com.tw APA2623 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.2 - Jan., 2016 28 www.anpec.com.tw