ANPEC APA2600

APA2600
2.8W Stereo Class-D Audio Power Amplifier
Features
•
•
•
•
•
•
•
•
•
•
General Description
Operating Voltage: 2.4V~5.5V
The APA2600 is a stereo, high efficiency, filter-free ClassD audio amplifier available in a TQFN3x3-16 pins package.
Filter-free Class-D Amplifier
The internal gain setting can minimize the external component count and save the PCB space. For the flexible
High Efficiency 87% at PO=1.5W, 8Ω Speaker,
VDD=5V
application, the gain can be set to 6dB or 12dB by GAIN
control pin. High PSRR and differential architecture pro-
Fast Start-up Time (20ms)
High PSRR: 70dB at 217Hz
vide increase immunity to noise and RF rectification. In
addition to these features, short start-up time and small
Thermal and Over-Current Protections
Two Gain-Setting Selectable : 6dB and 12dB
Less External Components Required
package size make the APA2600 an ideal choice for cellular handsets, PDA, and notebook PCs.
Space Saving Package
– TQFN3x3-16
The APA2600 is suitable for battery power appication
because its operating voltage is from 2.4V to 5V and has
very low shutdown current. The filter-free architecture eliminates the output filter compared to the traditional Class-D
Lead Free and Green Devices Available
(RoHS Compliant)
audio amplifier, and reduces the external component
counts. The APA2600 also integrates the de-pop circuitry
Applications
that reduces the pops and click noises during power on/
off or shutdown enable process.
•
•
•
•
Handsets
The APA2600 is capable of driving 2.8 W at 5 V or 570 mW
at 2.4 V into 4Ω speaker. In addition, it provides thermal
PDAs
and over-current protections.
Portable Multimedia Devices
90
Notebooks
LOUTP
LINP
Efficiency (%)
LINN
Left
Channel
Speaker
LOUTN
60
50
40
10
0
Right
Channel
Input
RINP
RINN
RL=8Ω+33µH
fin=1kHz
Ci=0.1µF
AV=6dB
Mono
AUX-0025
AES-17(20kHz)
30
20
APA2600
ROUTN
VDD=5V
VDD=3.6V
70
Simplified Application Circuit
Left
Channel
Input
VDD=2.4V
80
0
0.3
0.6
0.9
1.2
1.5
Output Power (W)
Right
Channel
Speaker
ROUTP
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
1
www.anpec.com.tw
APA2600
Ordering and Marking Information
Package Code
QB : TQFN3x3-16
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APA2600
Assembly Material
Handling Code
Temperature Range
Package Code
APA2600 QB :
APA
2600
XXXXX
XXXXX - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
9 RINP
10 GAIN
11 ROUTN
12 ROUTP
Pin Configuration
8 RINN
GND 13
VDD 14
VDD 15
7 NC
APA2600
TOP VIEW
6 NC
5 LINN
LINP 4
SD 3
LOUTN 2
LOUTP 1
GND 16
TQFN3x3-16
=Thermal-Pad (connected the Thermal-Pad to ground plane for better heat dissipation)
Absolute Maximum Ratings (Note 1)
(Over operating free-air temperature range unless otherwise noted.)
Symbol
Parameter
Rating
VDD
Supply Voltage (VDD)
VIN
Input Voltage (LINP, LINN, RINN, RINP, SD GAIN)
-0.3 to VDD+0.3
VO
Output Voltage (ROUTP, ROUTN, LOUTP, LOUTN)
-1 to VDD 1
TJ
Maximum Junction Temperature
V
150
TSTG
Storage Temperature Range
TSDR
Maximum Lead Soldering Temperature, 10 Seconds
PD
Unit
-0.3 to 6
-65 to +150
Power Dissipation
ο
C
260
Internally Limited
W
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
2
www.anpec.com.tw
APA2600
Thermal Characteristics
Symbol
Parameter
Typical Value
θJA
Thermal Resistance -Junction to Ambient (Note 2)
θJC
Thermal Resistance -Junction to Case (Note 3)
Unit
ο
55
TQFN3x3-16
ο
10
TQFN3x3-16
C/W
C/W
Note 2 : Please refer to “ Layout Recommendation”, the Thermal-Pad on the bottom of the IC should soldered directly to the PCB’s
Thermal-Pad area that with several thermal vias connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with
2oz copper thickness.
Note 3 : The case temperature is measured at the center of theThermal-Pad on the underside of the TQFN3x3-16 package.
Recommended Operating Conditions
Symbol
Parameter
Range
VDD
Supply Voltage
VIH
High Level Threshold Voltage
SD, GAIN
1 ~ VDD
VIL
Low Level Threshold Voltage
SD, GAIN
0 ~ 0.35
VIC
Common Mode Input Voltage
TA
Ambient Temperature Range
TJ
Junction Temperature Range
RL
Speaker Resistance
Unit
2.4 ~ 5.5
V
0.5 ~ VDD-1
-40 ~ 85
ο
C
-40 ~ 125
Ω
4~
Electrical Characteristics
o
VDD=5V, GND=0V, AV=6dB,TA= 25 C (unless otherwise noted)
Symbol
Parameter
APA2600
Test Conditions
Unit
Min.
Typ.
Max.
No Load
-
3
7
IDD
Supply Current
ISD
Shutdown Current
VSD = Gnd
-
1
2
Input Current
SD, GAIN
-
0.1
1
425
475
525
VDD=2.4V,IL=0.4A
-
1200
1500
VDD=3.6V, IL=0.6A
-
1000
1250
VDD=5V, IL=0.8A
-
800
1000
128
150
172
kΩ
-
20
-
ms
VGAIN=Gnd, No Load.
5.5
6
6.5
VGAIN=VDD, No Load.
11.5
12
12.5
-
2.2
2.35
-
0.2
-
-
86
-
Ii
fOSC
RDSON
Ri
TSTART-UP
AV
VPOR
Oscillator Frequency
Static Drain-Source On-State
Resistance
(P-Channel MOSFET+N-Channel
MOSFET)
Input Resistor
Start-Up Time from Shutdown
Closed-Loop Gain
Power-On-Reset Voltage
VDD rising
Power-On-Reset Voltage Hysteresis
mA
µA
kHz
mΩ
dB
V
VDD=5V, TA=25°
C
η
PO
Efficiency
PO=1.4W, RL=8Ω+33µH
THD+N = 1%
fin = 1kHz
RL = 4Ω
2
2.3
RL = 8Ω
1.1
1.34
-
THD+N = 10%
fin = 1kHz
RL = 4Ω
-
2.8
-
RL = 8Ω
-
1.65
-
Output Power
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
3
%
W
www.anpec.com.tw
APA2600
Electrical Characteristics (Cont.)
o
VDD=5V, Gnd=0V, AV=6dB,TA= 25 C (unless otherwise noted)
Symbol
Parameter
Test Conditions
Min.
APA2600
Typ.
Max.
-
0.15
0.5
-
0.1
0.3
-
100
-
Unit
VDD=5V, TA=25°
C
THD+N
Crosstalk
PSRR
Channel Separation
RL = 4Ω
PO= 1.4W
fin = 1kHz
RL = 8Ω
PO= 0.9W
PO=130mW, RL=8Ω, fin = 1kHz
Total Harmonic Distortion Plus
Noise
%
dB
Power Supply Rejection Ratio
RL = 8Ω, fin = 217Hz, Vrr=0.2Vrms
-
74
-
dB
VOS
Output Offset Voltage
RL = 8Ω
-
5
25
mV
S/N
Signal-to-Noise Ratio
With A-weighting Filter
PO = 0.9W, RL = 8Ω
-
85
-
dB
Vn
Noise Output Voltage
With A-weighting Filter
-
100
-
µV (rms)
VDD=3.6V, TA=25°
C
PO
THD+N = 1%
fin = 1kHz
RL = 4Ω
0.85
1.1
-
RL = 8Ω
0.5
0.68
-
THD+N = 10%
fin = 1kHz
RL = 4Ω
-
1.4
-
RL = 8Ω
-
0.84
-
RL = 4Ω
PO = 0.7W
-
0.2
-
RL = 8Ω
PO= 0.5W
-
0.1
-
Output Power
W
Total Harmonic Distortion Plus
Noise
fin = 1kHz
Channel separation
PO=65mW, Rl=8Ω, fin=1kHz
-
98
-
Power Supply Rejection Ratio
RL = 8Ω, fin = 217Hz, Vrr=0.2Vrms
-
72
-
VOS
Output Offset Voltage
RL = 8Ω
-
5
25
mV
S/N
Signal-to-Noise Ratio
With A-weighting Filter
PO= 0.5W, RL = 8Ω,
-
82
-
dB
Vn
Noise Output Voltage
With A-weighting Filter
-
100
-
µV (rms)
RL = 4Ω
0.35
0.46
-
RL = 8Ω
0.2
0.29
-
RL = 4Ω
-
0.57
-
-
0.36
-
-
0.2
-
-
0.18
-
THD+N
Crosstalk
PSRR
%
dB
VDD=2.4V, TA=25°
C
THD+N = 1%
fin = 1kHz
PO
Output Power
THD+N = 10%
fin = 1kHz
W
RL = 8Ω
PO = 0.3W,
RL = 4Ω
fin = 1kHz
PO = 0.2W,
RL = 8Ω
PO=27mW, Rl=8Ω, fin=1kHz
-
60
-
Power Supply Rejection Ratio
RL = 8Ω, fin = 217Hz, Vrr=0.2Vrms
-
70
-
Vos
Output Offset Voltage
-
5
25
mV
S/N
Signal-to-Noise Ratio
-
78
-
dB
Vn
Noise Output Voltage
RL = 8Ω
With A-weighting Filter
PO = 0.2W, RL = 8Ω
With A-weighting Filter
-
102
-
µV (rms)
THD+N
Crosstalk
PSRR
Total Harmonic Distortion Plus
Noise
Channel Separation
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
4
%
dB
www.anpec.com.tw
APA2600
Typical Operating Characteristics
Efficiency vs. Output Power
Efficiency vs. Output Power
90
VDD=2.4V
Efficiency (%)
70
VDD=3.6V
50
RL=4Ω+33µH
fin=1kHz
Ci=0.1µF
AV=6dB
THD+N≦10%
Mono
AUX-0025
AES-17(20kHz)
40
30
20
10
0
0.5
1.0
1.5
2.0
60
50
RL=8Ω+33µH
fin=1kHz
Ci=0.1µF
AV=6dB
THD+N≦10%
Mono
AUX-0025
AES-17(20kHz)
40
30
20
10
0
2.5
0
0.3
0.6
Output Power (W)
3
Output Power (W)
2.5
1.2
1.5
THD+N vs. Output Power
20
RL=4Ω
THD+N=10%
10
THD+N (%)
fin=1kHz
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
0.9
Output Power (W)
Output power vs. Supply Voltage
3.5
VDD=5V
VDD=3.6V
70
VDD=5V
60
0
VDD=2.4V
80
Efficiency (%)
80
90
2
RL=4Ω
THD+N=1%
1.5
VDD=3.6V
VDD=2.4V
RL=4Ω
fin=1kHz
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
1
1
VDD=5V
RL=8Ω
THD+N=10%
0.5
0.1
RL=8Ω
THD+N=1%
0
2
3
0.06
4
5
0
6
500m
1.5
2
2.5
3
10k
20k
THD+N vs. Frequency
THD+N vs. Frequency
10
10
VDD=3.6V
RL=4Ω
Ci=0.1µF
AUX-0025
AES-17(20kHz)
VDD=2.4V
RL=4Ω
Ci=0.1µF
AUX-0025
AES-17(20kHz)
1
THD+N (%)
THD+N (%)
1
1
Output Power (W)
Supply Voltage (V)
PO=0.3W
AV=6dB
PO=0.3W
AV=12dB
0.1
0.1
PO=0.7W
AV=6dB
PO=0.7W
AV=12dB
PO=0.1W
AV=12dB
0.01 20
PO=0.3W
AV=12dB
PO=0.3W
AV=6dB
PO=0.1W
AV=6dB
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
10k
0.01 20
20k
100
1k
Frequency (Hz)
5
www.anpec.com.tw
APA2600
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
10
Crosstalk vs. Frequency
+0
R
VDD=5V
RL=4Ω
Ci=0.1µF
AUX-0025
AES-17(20kHz)
-20
-30
-40
Crosstalk (dB)
THD+N (%)
VDD=2.4V
RL=4Ω
PO=41mW
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
-10
1
PO=1.4W
AV=12dB
PO=1.4W
AV=6dB
TTTTT TTTTTTTTTT T TT
0.1
-50
-60
-70
Left channel to Right channel
-80
-90
PO=0.7W
AV=12dB
PO=0.7W
AV=6dB
0.0120
100
-100
Right channel to Left channel
-110
1k
-120
20
20k
Frequency (Hz)
100
+0
T
VDD=3.6V
RL=4Ω
PO=100mW
Ci=0.1µF
Av=6dB
AUX-0025
AES-17(20kHz)
-20
-30
-40
-50
TTT T T T TTT T
VDD=5V
RL=4Ω
PO=200mW
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
-10
-20
-30
Crosstalk (dB)
-10
Crosstalk (dB)
TTTTT TT
-60
Left channel to Right channel
-70
20k
-40
-50
T
-60
Left channel to Right channel
-70
-80
-80
-90
-90
-100
-100
Right channel to Left channel
Right channel to Left channel
-110
-110
-120
-12020
20
100
1k
10k 20k
100
THD+N vs. Output Power
10k
20k
THD+N vs. Frequency
10
10
VDD=2.4V
1k
Frequency (Hz)
Frequency (Hz)
R
R
VDD=2.4V
RL=8Ω
Ci=0.1µF
AUX-0025
AES-17(20kHz)
VDD=3.6V
VDD=5V
PO=0.1W
AV=12dB
1
THD+N (%)
THD+N (%)
1
PO=0.2W
AV=6dB
PO=0.2W
AV=12dB
0.1
0.1
0.010
10k
Crosstalk vs. Frequency
Crosstalk vs. Frequency
+0 TTTTT TT
1k
Frequency (Hz)
200m 400m 600m 800m 1
RL=8Ω
fin=1kHz
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
1.2 1.4 1.6 1.8
PO=0.1W
AV=6dB
0.01 20
Output Power (W)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
6
100
1k
Frequency (Hz)
10k
20k
www.anpec.com.tw
APA2600
Typical Operating Characteristics (Cont.)
THD+N vs. Frequency
THD+N vs. Frequency
10
10
THD+N (%)
THD+N (%)
PO=0.5W
AV=12dB
PO=0.5W
AV=6dB
0.1
R
R
VDD=5V
RL=8Ω
Ci=0.1µF
AUX-0025
1
AES-17(20kHz)
VDD=3.6V
RL=8Ω
Ci=0.1µF
AUX-0025
AES-17(20kHz)
1
RRR
PO=0.9W
AV=6dB
0.1
PO=0.5W
AV=6dB
0.01
PO=0.3W
AV=12dB
0.01
0.006
20
PO=0.5W
AV=12dB
PO=0.3W
AV=6dB
100
1k
10k
0.001 20
20k
100
-30
Crosstalk (dB)
-40
-50
VDD=2.4V
RL=8Ω
PO=27mW
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
-20
-30
-70
-80
Left channel to Right channel
Right channel to Left channel
-110
20
100
1k
Frequency (Hz)
10k
20k
-40
-50
TTT TT
TT T
-70
-80
Left channel to Right channel
VDD=5V
RL=8Ω
PO=130mW
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
-80
Left channel to Right channel
-100
-120 20
Right channel to Left channel
100
-120 20
100
1k
10k
20k
Right Channel, AV=12dB
Left Channel, AV=12dB
100u
-70
-110
Right channel to Left channel
Output Noise Voltage vs. Frequency
-60
-90
-110
200u
T
Output Noise Voltage (Vrms)
Crosstalk (dB)
-30
-60
Frequency (Hz)
Crosstalk vs. Frequency
-20
-50
-100
-100
-10
-40
-90
-90
+0
VDD=3.6V
RL=8Ω
PO=65mW
Ci=0.1µF
AV=6dB
AUX-0025
AES-17(20kHz)
-10
-60
-120
20k
+0
Crosstalk (dB)
-20
10k
Crosstalk vs. Frequency
Crosstalk vs. Frequency
-10
1k
Frequency (Hz)
Hz
Frequency (Hz)
+0
PO=0.9W
AV=12dB
1k
10k
Right Channel, AV=6dB
VDD=5V
RL=4Ω
Ci=0.1µF
AUX-0025
AES-17(20kHz)
A-Weighting
20u 20
20k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
Left Channel, AV=6dB
100
1k
10k
20k
Frequency (Hz)
7
www.anpec.com.tw
APA2600
Typical Operating Characteristics (Cont.)
Output Noise Voltage vs. Frequency
Input Voltage vs. Output Voltage
4.5
200u
AV=12dB,
RL=8Ω
Left Channel, AV=12dB
Right Channel, AV=12dB
100u
90u
80u
70u
3.5
Output Voltage (Vrms)
Output Noise Voltage (Vrms)
4
2.5
Left Channel, AV=6dB
Right Channel, AV=6dB
60u
50u
VDD=5V
RL=8Ω
Ci=0.1µF
30u AUX-0025
AES-17(20kHz)
A-Weighting
100
AV=6dB
, RL8Ω
2
1.5
40u
20u 20
VDD=5V
Ci=0.1µF
AUX-0025
AES-17(20kHz)
1
500m
1k
10k
Frequency (Hz)
00
20k
500m
Frequency Response
+0
+30
-10
+10
-20
-10
-30
+9
-30
-40
+8
-50
Gain,
AV=12dB
Phase,
AV=6dB
+11
Gain (dB)
Phase (Degree)
Phase,
AV=12dB
+10
Gain,
AV=6dB
+7
-70
+6
VDD=5V
RL=8Ω
Ci=0.1µF
AUX-0025
+5
+4
+3
10
100
PSRR (dB)
+12
1k
Frequency (Hz)
-20
PSRR (dB)
-30
-40
-50
TTT
T
Right Channel
-110
-80
-130
-90
Left Channel
-100
20
-150
50k
10k
-60
-70
T
-10
-20
-30
Left Channel
2k
5k
10k
20k
-40
-50
10k
20k
T
VDD=5V
RL=8Ω
Ci=0.1µF
AV=6dB
Vrr=0.2Vrms
Input AC short
AUX-0025
AES-17(20kHz)
Left Channel
-60
Right Channel
-80
Right Channel
-90
-90
100
1k
-70
-80
20
500
PSRR vs. Frequency
+0
-60
-100
50 100 200
Frequency (Hz)
VDD=3.6V
RL=8Ω
Ci=0.1µF
AV=6dB
Vrr=0.2Vrms
Input AC short
AUX-0025
AES-17(20kHz)
-70
2.5
VDD=2.4V
RL=8Ω
Ci=0.1µF
AV=6dB
Vrr=0.2Vrms
Input AC short
AUX-0025
AES-17(20kHz)
-50
-90
PSRR (dB)
-10
TT
2
TT
PSRR vs. Frequency
+0
1.5
1
Input Voltage (Vrms)
PSRR vs. Frequency
+50
+13
AV=6dB
, RL=4Ω
AV=12dB,
RL=4Ω
3
1k
10k
-100
20k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
20
100
1k
Frequency (Hz)
8
www.anpec.com.tw
APA2600
Typical Operating Characteristics (Cont.)
Inter-Modulation Performance
VDD=5V
RL=4Ω
Ci=0.1µF
-20 AUX-0025
-30 AES-17(20kHz)
VDD=5V
RL=8Ω
PO=1W
Ci=0.01µF
AV=6dB
fin=19kHz&20kHz, 1:1
BW=22~22kHz
AUX-0025
-20
-30
-40
-50
-60
-10
CMRR (dB)
-10
FFT (dBr)
CMRR vs. Frequency
+0
+0
-70
-80
-90
-40
-50
Left Channel, AV=12dB
Right Channel, AV=12dB
-60
-70
-100
-110
-80
Right Channel, AV=6dB
Left Channel, AV=6dB
-120
-90
-130
-140
60 100
1k
10k
-100
20
20k
100
1k
10k
Supply Current vs. Output Power
CMRR vs. Frequency
+0
1.2
VDD=5V
RL=8Ω
Ci=0.1µF
-20
AUX-0025
-30 AES-17(20kHz)
1.0
-10
Supply Current (A)
CMRR (dB)
VDD=5V
-40
-50 Right Channel, A =12dB
V
Left Channel, AV=12dB
-60
-70
-80
Left Channel, AV=6dB
0.8
VDD=3.6V
0.6
RL=4Ω+33µH
fin=1kHz
Ci=0.1µF
AV=6dB
THD+N≦1%
Stereo
AUX-0025
AES-17(20kHz)
VDD=2.4V
0.4
0.2
Right Channel, AV=6dB
-90
-100
20
100
1k
10k
0
20k
0
0.5
Frequency (Hz)
1.5
2
2.5
Supply Current vs. Supply Voltage
Supply Current vs. Output Power
3.5
No Load
VDD=5V
3
Supply Current (mA)
0.5
Supply Current (A)
1
Each Channel Output Power (W)
0.6
VDD=3.6V
0.4
0.3
VDD=2.4V
RL=8Ω+33µH
fin=1kHz
Ci=0.1µF
AV=6dB
THD+N≦1%
Stereo
AUX-0025
AES-17(20kHz)
0.2
0.1
0
20k
Frequency (Hz)
Frequency (Hz)
0
0.2
0.4
0.6
0.8
1.0
1.2
2
1.5
1
0.5
00
1.4
1
2
3
4
5
6
Supply Voltage (V)
Each Channel Output Power (W)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
2.5
9
www.anpec.com.tw
APA2600
Typical Operating Characteristics (Cont.)
Shutdown Current vs. Supply Voltage
GSM Power Supply Rejection vs. Time
0.8
No Load
VDD
500mV/div
Supply Current (µA)
0.7
High 3.6V
Low 3.0V
0.6
0.5
0.4
0.3
Output
Voltage
20mV/div
0.2
0.1
0
0
1
2
3
4
5
6
2ms/div
GSM Power Supply Rejection
vs. Frequency
0
-50
Output voltage (dB)
-100
-150
0
Supply voltage (dB)
Supply Voltage (V)
-50
-100
-150
0
500
1k
1.5k
2k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
10
www.anpec.com.tw
APA2600
Pin Description
PIN
NO.
NAME
FUNCTION
I/O
1
LOUTP
O
The left channel positive output terminal of Class-D amplifier.
2
LOUTN
O
The left channel negative output terminal of Class-D amplifier.
3
SD
I
Shutdown mode control signal input, place entire IC in shutdown mode when held low.
4
LINP
I
5
LINN
I
6,7
NC
-
8
RINN
I
9
RINP
I
10
GAIN
I
11
ROUTN
O
The non-inverting input of left channel amplifier. LINP is connected to Gnd via a
capacitor for single-end (SE) input signal.
The inverting input of left channel amplifier. LINN is used as audio input terminal,
typically.
No connection.
The inverting input of right channel amplifier. RINN is used as audio input terminal,
typically.
The non-inverting input of right channel amplifier. RINP is connected to Gnd via a
capacitor for single-end (SE) input signal.
Gain selection. Av=12dB, when GAIN pin is pull high. Av=6dB, when GAIN pin is pull
low.
The right channel negative output terminal of Class-D amplifier.
12
ROUTP
O
The right channel positive output terminal of Class-D amplifier.
13,16
GND
-
Ground connection for circuitry.
14,15
VDD
-
Supply voltage input terminal.
Block Diagram
LOUTP
LINN
Output Stage
LINP
LOUTN
GAIN
Gain
Control
Ramp
Generator
Biases &
Reference
Startup
Logic
Over Current
Protection
Thermal
protection
TTL Input
Buffer
SD
ROUTN
RINP
Output Stage
RINN
ROUTP
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
11
www.anpec.com.tw
APA2600
Typical Application Circuit
Single-ended input mode
VDD
CS2
CS1
0.1µF
10µF
VDD 14
15VDD
1 LOUTP
0.01µF
LINN 5
Left-Channel Input
Ci1
Output
Stage
0.01µF
LINP 4
Ci2
2 LOUTN
GAIN Control
GAIN 10
Gain
Control
Ramp
Generator
Biases &
Reference
Startup
Logic
Over Current
Protection
Thermal
Protection
TTL
Input
Buffer
3 SD
Shutdown
11 ROUTN
0.01µF
RINP 9
Ci3
Output
Stage
0.01µF
Right-Channel Input
RINN 8
Ci4
12 ROUTP
16 GND
GND 13
GND
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
12
www.anpec.com.tw
APA2600
Typical Application Circuit (Cont.)
Differential input mode
VDD
CS2
CS1
0.1µF
10µF
VDD 14
15VDD
1 LOUTP
0.01µF
LINN 5
Ci1
Left-Channel
0.01µF
Input
Output Stage
LINP 4
Ci2
GAIN
Control
GAIN 10
2 LOUTN
Gain
Control
Ramp
Generator
Biases &
Reference
Startup
Logic
Over Current
Protection
Thermal
Protection
TTL Input
Buffer
3 SD
Shutdown
11 ROUTN
0.01µF
RINP 9
Ci3
Right-Channel
0.01µF
Input
RINN 8
Output Stage
Ci4
12 ROUTP
16 GND
GND 13
Gnd
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
13
www.anpec.com.tw
APA2600
Function Description
The APA2600 modulation scheme is shown in Figure 1.
The outputs OUTP and OUTN are in phase with each other
Fully Differential Amplifier
The APA2600 is a fully differential amplifier with differential inputs and outputs. The fully differential amplifier has
when no input signals. When output > 0V, the duty cycle
of OUTP is greater than 50% and OUTN is less than 50%;
some advantages versus traditional amplifier. First, don’t
need the input coupling capacitors because the common-
when output <0V, the duty cycle of OUTP is less than 50%
and OUTN is greater than 50%. This method reduces the
mode feedback compensates the input bias. The inputs
can be biased from 0.5V~VDD-1V, and the outputs are still
switching current across the load and the I2R loss in the
load and improves the amplifiers’ efficiency.
biased at mid-supply of APA2600. If the inputs are biased
at out of the input range, the coupling capacitors are
This modulation scheme has very short pulses across
the load, this makes the small ripple current and very little
required. Second, no need the mid-supply capacitor (CB)
because any shift of the mid-supply of APA2600 will have
loss on the load, and the LC filter can be eliminate in
most applications. Added the LC filter can increase the
same effect on both positive and negative input channels,
and will cancel at the differential outputs. Third, the fully
efficiency by filter the ripple current.
differential amplifier has outstanding immunity against
supply voltage ripple (217Hz) caused by GSM RF
Shutdown Function
transmitters’.
In order to reduce power consumption while not in use,
Class-D Operation
the APA2600 contains a shutdown function to externally
turn off the amplifier bias circuitry. This shutdown feature
Output = 0V
turns the amplifier off when logic low is placed on the SD
pin of the APA2600. The trigger point between a logic high
VOUTP
VOUTN
and a logic low level is typically 0.8V(VDD=5V). It is best to
switch between ground and the supply voltage VDD to pro-
VOUT
(VOUTP-VOUTN)
vide maximum device performance. By switching the SD
pin to a low level, the amplifier enters a low-consump-
IOUT
tion- current state, IDD. The Supply Current for APA2600 is
in shutdown mode. On normal operating, APA2600’s SD
Output > 0V
pin should pull to a high level to keep the IC out of the
shutdown mode. The SD pin should be tied to a definite
VOUTP
voltage to avoid unwanted state changes.
VOUTN
Gain Selection Function
VOUT
(VOUTP-VOUTN )
For the convenient uses, the APA2600 provides two gain
setting options. Pulling the GAIN pin high, the amplifier
IOUT
Output < 0V
sets the AV=12dB; puling the GAIN pin low, the amplifier
VOUTP
sets the AV=6dB.
Thermal Protection
VOUTN
The thermal protection circuit limits the junction
VOUT
(VOUTP-VOUTN)
temperature of the APA2600. When the junction temperature exceeds TJ = +150oC, a thermal sensor turns off the
IOUT
amplifiers, allowing the device to cool. The thermal
sensor allows the amplifiers to start-up after the junction
Figure1: APA2600 Output Waveform (Voltage& Current)
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
temperature cools down to 125 oC. The thermal protec14
www.anpec.com.tw
APA2600
Function Description (Cont.)
Thermal Protection (Cont.)
tion is designed with a 25 oC hysteresis to lower the average TJ during continuous thermal overload conditions,
increasing lifetime of the IC.
Over-Current Protection
The APA2600 monitors the power amplifiers’ output
current. When the current exceeds the current-limit
threshold, the APA2600 turn-off the output buffers to prevent the IC from damages in over-current or short-circuit
condition. The IC will turn-on the output buffer after 20ms;
however, if the over-current or short-circuit condition is
still remain, it enters the over-current protection again.
The situation occurs repeatedly until the over-current or
short-circuit has been removed.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
15
www.anpec.com.tw
APA2600
Application Information
Square Wave Into the Speaker
Power Supply Decoupling Capacitor, (Cs)
To apply the square wave into the speaker may cause the
voice coil of speaker jumping out the air gap and defacing
The APA2600 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to
ensure the output total harmonic distortion (THD+N) to
the voice coil. However, this depends on the amplitude of
square wave is high enough and the bandwidth of speaker
be as low as possible. Power supply decoupling also
prevents the oscillations being caused by long lead length
is higher than the square wave’s frequency. For 475kHz
switching frequency, this is not an issue for the speaker
between the amplifier and the speaker.
The optimum decoupling is achieved by using two dif-
because the frequency is beyond the audio band and
can’t significantly move the voice coil, as cone movement
ferent types of capacitors that target on different types
of noises on the power supply leads. For higher fre-
2
is proportional to 1/f for frequency out of audio band.
quency transients, spikes or digital hash on the line, a
good low equivalent-series- resistance (ESR) ceramic
Input Capacitor, (Ci)
In the typical application, an input capacitor, Ci, is required
to allow the amplifier to bias the input signal to the proper
capacitor, typical 0.1µF, placed as close as possible
to the device VDD pin works best. For filtering lower fre-
DC level for optimum operation. In this case, Ci and the
minimum input impedance Ri form a high-pass filter with
quency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near the audio power
the corner frequency determined in the following equation:
fC(highpass )
1
=
2 πR iCi
amplifier is recommended.
(1)
Output Capacitor, (CO)
If the user wants to add capacitors at outputs without fer-
The value of Ci must be considered carefully because it
directly affects the low frequency performance of the circuit.
rite beads or inductor, please note the output capacitors
should not be greater than 1nf (VDD<4.2V). The high value
Consider the example where Ri is 150kΩ and the speci-
of output capacitor may trigger the OCP (Over-Current
Protection) of APA2600.
fication that calls for a flat bass response down to 100Hz.
The equation is reconfigured as below:
Ci =
1
2 π R i fc
External Gain Settings
(2)
Using external resistors at the input can lower down the
APA2600 gain.
When the variation of input resistance (Ri) is considered,
When AV=12dB, use the following equation :
the value of Ci should be 0.01µF. Therefore, a value in the
range from 0.01µF to 0.022µF would be chosen. A further
4
REXT
(1+
)
150kΩ
AV = 20 log
consideration for this capacitor is the leakage path from
the input source through the input network (Ri + Rf, Ci) to
Or, when A V=6dB, use the following equation :
the load.
AV = 20 log
This leakage current creates a DC offset voltage at the
input of the amplifier. The offset reduces useful
2
REXT
(1 +
)
150k Ω
headroom, especially in high gain applications. For this
reason, a low-leakage tantalum or ceramic capacitor is
0.01µF REXT
the best choice. When polarized capacitors are used, the
positive side of the capacitors should face the amplifiers’
inputs in most applications because the DC level of the
amplifiers’ inputs are held at VDD/2. Please note that it is
Input
REXT
(4)
INP
INN
0.01µF
Figure 2. External Resistor
important to confirm the capacitor polarity in the application.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
(3)
16
www.anpec.com.tw
APA2600
Application Information (Cont.)
Layout Recommendation
Output LC Filter
3mm
If the traces from the APA2600’s outputs to speaker are
short, it don’t require output filter for FCC & CE
standard.
A ferrite bead may be needed if it’s failing the test for FCC
Via diameter
= 0.3mm X 5
0.5mm *
or CE tested without the LC filter. The figure 2 is the sample
for adding ferrite beads. The ferrite beads have high im-
0.24mm
1.66 mm
pedance in high frequency and low impedance in low
frequency.
3mm
0.5mm
0.508mm
1.66mm
0.162mm
Ferrite
OUTN Bead
1nF
OUTP
Ferrite
Bead
Figure 5. TQFN3x3-16 Land Pattern Recommendation
1. All components should be placed close to the
1nF
APA2600. For example, the input capacitor (Ci) should
be close to APA2600’s input pins to avoid causing
noise coupling to APA2600’s high impedance inputs;
the decoupling capacitor (Cs) should be placed by
the APA2600’s power pin to decouple the power rail
Figure 3. Ferrite bead output filter
Figure 3 is an example for adding the LC filter, and it’s
noise.
2. The output traces should be short, wide ( >50mil),
recommended for the situation that the trace from amplifier to speaker is too long, and the LC filter needs to elimi-
and symmetric.
3. The input trace should be short and symmetric.
nate the radiated emission or EMI.
4. The power trace width should be greater than 50mil.
5. The TQFN3X3-16 Thermal-Pad should be soldered
on PCB, and the ground plane needs soldered mask
(to avoid short circuit) except the Thermal-Pad area.
OUTN 33µH
1µF
OUTP
33µH
1µF
Figure 4. LC output filter
Figure 3’s low pass filter cut-off frequency is 27kHz (fC)
fC(lowpass) =
1
2 π LC
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
(5)
17
www.anpec.com.tw
APA2600
Package Information
TQFN3X3-16
D
b
E
A
Pin 1
D2
A1
A3
k
E2
Pin 1
Corner
e
S
Y
M
B
O
L
TQFN3x3-16
INCHES
MILLIMETERS
MIN.
MAX.
MIN.
MAX.
A
0.70
0.80
0.028
0.031
A1
0.00
0.05
0.000
0.002
A3
0.20 REF
0.008 REF
b
0.18
0.30
0.007
0.012
D
2.90
3.10
0.114
0.122
D2
1.50
1.80
0.059
0.071
E
2.90
3.10
0.114
0.122
E2
1.50
1.80
0.059
0.071
e
0.50 BSC
L
0.30
K
0.20
0.020 BSC
0.012
0.50
0.020
0.008
Note : Follow JEDEC MO-220 WEED-4.
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
18
www.anpec.com.tw
APA2600
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
TQFN3X3-16
A
H
T1
C
d
D
330±2.00
50 MIN.
12.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
3.30±0.20
3.30±0.20
1.30±0.20
4.0±0.10
8.0±0.10
W
E1
12.0±0.30 1.75±0.10
F
5.5±0.05
(mm)
Devices Per Unit
Package Type
TQFN3X3-16
Unit
Tape & Reel
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
Quantity
3000
19
www.anpec.com.tw
APA2600
Taping Direction Information
TQFN3X3-16
USER DIRECTION OF FEED
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
20
www.anpec.com.tw
APA2600
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Thickness
<2.5 mm
Volume mm
<350
235 °C
Volume mm
≥350
220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
21
Description
5 Sec, 245°C
1000 Hrs, Bias @ 125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APA2600
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.5 - Jul., 2013
22
www.anpec.com.tw