APA2600 2.8W Stereo Class-D Audio Power Amplifier Features • • • • • • • • • • General Description Operating Voltage: 2.4V~5.5V The APA2600 is a stereo, high efficiency, filter-free ClassD audio amplifier available in a TQFN3x3-16 pins package. Filter-free Class-D Amplifier The internal gain setting can minimize the external component count and save the PCB space. For the flexible High Efficiency 87% at PO=1.5W, 8Ω Speaker, VDD=5V application, the gain can be set to 6dB or 12dB by GAIN control pin. High PSRR and differential architecture pro- Fast Start-up Time (20ms) High PSRR: 70dB at 217Hz vide increase immunity to noise and RF rectification. In addition to these features, short start-up time and small Thermal and Over-Current Protections Two Gain-Setting Selectable : 6dB and 12dB Less External Components Required package size make the APA2600 an ideal choice for cellular handsets, PDA, and notebook PCs. Space Saving Package – TQFN3x3-16 The APA2600 is suitable for battery power appication because its operating voltage is from 2.4V to 5V and has very low shutdown current. The filter-free architecture eliminates the output filter compared to the traditional Class-D Lead Free and Green Devices Available (RoHS Compliant) audio amplifier, and reduces the external component counts. The APA2600 also integrates the de-pop circuitry Applications that reduces the pops and click noises during power on/ off or shutdown enable process. • • • • Handsets The APA2600 is capable of driving 2.8 W at 5 V or 570 mW at 2.4 V into 4Ω speaker. In addition, it provides thermal PDAs and over-current protections. Portable Multimedia Devices 90 Notebooks LOUTP LINP Efficiency (%) LINN Left Channel Speaker LOUTN 60 50 40 10 0 Right Channel Input RINP RINN RL=8Ω+33µH fin=1kHz Ci=0.1µF AV=6dB Mono AUX-0025 AES-17(20kHz) 30 20 APA2600 ROUTN VDD=5V VDD=3.6V 70 Simplified Application Circuit Left Channel Input VDD=2.4V 80 0 0.3 0.6 0.9 1.2 1.5 Output Power (W) Right Channel Speaker ROUTP ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 1 www.anpec.com.tw APA2600 Ordering and Marking Information Package Code QB : TQFN3x3-16 Operating Ambient Temperature Range I : -40 to 85 oC Handling Code TR : Tape & Reel Assembly Material G : Halogen and Lead Free Device APA2600 Assembly Material Handling Code Temperature Range Package Code APA2600 QB : APA 2600 XXXXX XXXXX - Date Code Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight). 9 RINP 10 GAIN 11 ROUTN 12 ROUTP Pin Configuration 8 RINN GND 13 VDD 14 VDD 15 7 NC APA2600 TOP VIEW 6 NC 5 LINN LINP 4 SD 3 LOUTN 2 LOUTP 1 GND 16 TQFN3x3-16 =Thermal-Pad (connected the Thermal-Pad to ground plane for better heat dissipation) Absolute Maximum Ratings (Note 1) (Over operating free-air temperature range unless otherwise noted.) Symbol Parameter Rating VDD Supply Voltage (VDD) VIN Input Voltage (LINP, LINN, RINN, RINP, SD GAIN) -0.3 to VDD+0.3 VO Output Voltage (ROUTP, ROUTN, LOUTP, LOUTN) -1 to VDD 1 TJ Maximum Junction Temperature V 150 TSTG Storage Temperature Range TSDR Maximum Lead Soldering Temperature, 10 Seconds PD Unit -0.3 to 6 -65 to +150 Power Dissipation ο C 260 Internally Limited W Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 2 www.anpec.com.tw APA2600 Thermal Characteristics Symbol Parameter Typical Value θJA Thermal Resistance -Junction to Ambient (Note 2) θJC Thermal Resistance -Junction to Case (Note 3) Unit ο 55 TQFN3x3-16 ο 10 TQFN3x3-16 C/W C/W Note 2 : Please refer to “ Layout Recommendation”, the Thermal-Pad on the bottom of the IC should soldered directly to the PCB’s Thermal-Pad area that with several thermal vias connect to the ground plan, and the PCB is a 2-layer, 5-inch square area with 2oz copper thickness. Note 3 : The case temperature is measured at the center of theThermal-Pad on the underside of the TQFN3x3-16 package. Recommended Operating Conditions Symbol Parameter Range VDD Supply Voltage VIH High Level Threshold Voltage SD, GAIN 1 ~ VDD VIL Low Level Threshold Voltage SD, GAIN 0 ~ 0.35 VIC Common Mode Input Voltage TA Ambient Temperature Range TJ Junction Temperature Range RL Speaker Resistance Unit 2.4 ~ 5.5 V 0.5 ~ VDD-1 -40 ~ 85 ο C -40 ~ 125 Ω 4~ Electrical Characteristics o VDD=5V, GND=0V, AV=6dB,TA= 25 C (unless otherwise noted) Symbol Parameter APA2600 Test Conditions Unit Min. Typ. Max. No Load - 3 7 IDD Supply Current ISD Shutdown Current VSD = Gnd - 1 2 Input Current SD, GAIN - 0.1 1 425 475 525 VDD=2.4V,IL=0.4A - 1200 1500 VDD=3.6V, IL=0.6A - 1000 1250 VDD=5V, IL=0.8A - 800 1000 128 150 172 kΩ - 20 - ms VGAIN=Gnd, No Load. 5.5 6 6.5 VGAIN=VDD, No Load. 11.5 12 12.5 - 2.2 2.35 - 0.2 - - 86 - Ii fOSC RDSON Ri TSTART-UP AV VPOR Oscillator Frequency Static Drain-Source On-State Resistance (P-Channel MOSFET+N-Channel MOSFET) Input Resistor Start-Up Time from Shutdown Closed-Loop Gain Power-On-Reset Voltage VDD rising Power-On-Reset Voltage Hysteresis mA µA kHz mΩ dB V VDD=5V, TA=25° C η PO Efficiency PO=1.4W, RL=8Ω+33µH THD+N = 1% fin = 1kHz RL = 4Ω 2 2.3 RL = 8Ω 1.1 1.34 - THD+N = 10% fin = 1kHz RL = 4Ω - 2.8 - RL = 8Ω - 1.65 - Output Power Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 3 % W www.anpec.com.tw APA2600 Electrical Characteristics (Cont.) o VDD=5V, Gnd=0V, AV=6dB,TA= 25 C (unless otherwise noted) Symbol Parameter Test Conditions Min. APA2600 Typ. Max. - 0.15 0.5 - 0.1 0.3 - 100 - Unit VDD=5V, TA=25° C THD+N Crosstalk PSRR Channel Separation RL = 4Ω PO= 1.4W fin = 1kHz RL = 8Ω PO= 0.9W PO=130mW, RL=8Ω, fin = 1kHz Total Harmonic Distortion Plus Noise % dB Power Supply Rejection Ratio RL = 8Ω, fin = 217Hz, Vrr=0.2Vrms - 74 - dB VOS Output Offset Voltage RL = 8Ω - 5 25 mV S/N Signal-to-Noise Ratio With A-weighting Filter PO = 0.9W, RL = 8Ω - 85 - dB Vn Noise Output Voltage With A-weighting Filter - 100 - µV (rms) VDD=3.6V, TA=25° C PO THD+N = 1% fin = 1kHz RL = 4Ω 0.85 1.1 - RL = 8Ω 0.5 0.68 - THD+N = 10% fin = 1kHz RL = 4Ω - 1.4 - RL = 8Ω - 0.84 - RL = 4Ω PO = 0.7W - 0.2 - RL = 8Ω PO= 0.5W - 0.1 - Output Power W Total Harmonic Distortion Plus Noise fin = 1kHz Channel separation PO=65mW, Rl=8Ω, fin=1kHz - 98 - Power Supply Rejection Ratio RL = 8Ω, fin = 217Hz, Vrr=0.2Vrms - 72 - VOS Output Offset Voltage RL = 8Ω - 5 25 mV S/N Signal-to-Noise Ratio With A-weighting Filter PO= 0.5W, RL = 8Ω, - 82 - dB Vn Noise Output Voltage With A-weighting Filter - 100 - µV (rms) RL = 4Ω 0.35 0.46 - RL = 8Ω 0.2 0.29 - RL = 4Ω - 0.57 - - 0.36 - - 0.2 - - 0.18 - THD+N Crosstalk PSRR % dB VDD=2.4V, TA=25° C THD+N = 1% fin = 1kHz PO Output Power THD+N = 10% fin = 1kHz W RL = 8Ω PO = 0.3W, RL = 4Ω fin = 1kHz PO = 0.2W, RL = 8Ω PO=27mW, Rl=8Ω, fin=1kHz - 60 - Power Supply Rejection Ratio RL = 8Ω, fin = 217Hz, Vrr=0.2Vrms - 70 - Vos Output Offset Voltage - 5 25 mV S/N Signal-to-Noise Ratio - 78 - dB Vn Noise Output Voltage RL = 8Ω With A-weighting Filter PO = 0.2W, RL = 8Ω With A-weighting Filter - 102 - µV (rms) THD+N Crosstalk PSRR Total Harmonic Distortion Plus Noise Channel Separation Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 4 % dB www.anpec.com.tw APA2600 Typical Operating Characteristics Efficiency vs. Output Power Efficiency vs. Output Power 90 VDD=2.4V Efficiency (%) 70 VDD=3.6V 50 RL=4Ω+33µH fin=1kHz Ci=0.1µF AV=6dB THD+N≦10% Mono AUX-0025 AES-17(20kHz) 40 30 20 10 0 0.5 1.0 1.5 2.0 60 50 RL=8Ω+33µH fin=1kHz Ci=0.1µF AV=6dB THD+N≦10% Mono AUX-0025 AES-17(20kHz) 40 30 20 10 0 2.5 0 0.3 0.6 Output Power (W) 3 Output Power (W) 2.5 1.2 1.5 THD+N vs. Output Power 20 RL=4Ω THD+N=10% 10 THD+N (%) fin=1kHz Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) 0.9 Output Power (W) Output power vs. Supply Voltage 3.5 VDD=5V VDD=3.6V 70 VDD=5V 60 0 VDD=2.4V 80 Efficiency (%) 80 90 2 RL=4Ω THD+N=1% 1.5 VDD=3.6V VDD=2.4V RL=4Ω fin=1kHz Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) 1 1 VDD=5V RL=8Ω THD+N=10% 0.5 0.1 RL=8Ω THD+N=1% 0 2 3 0.06 4 5 0 6 500m 1.5 2 2.5 3 10k 20k THD+N vs. Frequency THD+N vs. Frequency 10 10 VDD=3.6V RL=4Ω Ci=0.1µF AUX-0025 AES-17(20kHz) VDD=2.4V RL=4Ω Ci=0.1µF AUX-0025 AES-17(20kHz) 1 THD+N (%) THD+N (%) 1 1 Output Power (W) Supply Voltage (V) PO=0.3W AV=6dB PO=0.3W AV=12dB 0.1 0.1 PO=0.7W AV=6dB PO=0.7W AV=12dB PO=0.1W AV=12dB 0.01 20 PO=0.3W AV=12dB PO=0.3W AV=6dB PO=0.1W AV=6dB 100 1k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 10k 0.01 20 20k 100 1k Frequency (Hz) 5 www.anpec.com.tw APA2600 Typical Operating Characteristics (Cont.) THD+N vs. Frequency 10 Crosstalk vs. Frequency +0 R VDD=5V RL=4Ω Ci=0.1µF AUX-0025 AES-17(20kHz) -20 -30 -40 Crosstalk (dB) THD+N (%) VDD=2.4V RL=4Ω PO=41mW Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) -10 1 PO=1.4W AV=12dB PO=1.4W AV=6dB TTTTT TTTTTTTTTT T TT 0.1 -50 -60 -70 Left channel to Right channel -80 -90 PO=0.7W AV=12dB PO=0.7W AV=6dB 0.0120 100 -100 Right channel to Left channel -110 1k -120 20 20k Frequency (Hz) 100 +0 T VDD=3.6V RL=4Ω PO=100mW Ci=0.1µF Av=6dB AUX-0025 AES-17(20kHz) -20 -30 -40 -50 TTT T T T TTT T VDD=5V RL=4Ω PO=200mW Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) -10 -20 -30 Crosstalk (dB) -10 Crosstalk (dB) TTTTT TT -60 Left channel to Right channel -70 20k -40 -50 T -60 Left channel to Right channel -70 -80 -80 -90 -90 -100 -100 Right channel to Left channel Right channel to Left channel -110 -110 -120 -12020 20 100 1k 10k 20k 100 THD+N vs. Output Power 10k 20k THD+N vs. Frequency 10 10 VDD=2.4V 1k Frequency (Hz) Frequency (Hz) R R VDD=2.4V RL=8Ω Ci=0.1µF AUX-0025 AES-17(20kHz) VDD=3.6V VDD=5V PO=0.1W AV=12dB 1 THD+N (%) THD+N (%) 1 PO=0.2W AV=6dB PO=0.2W AV=12dB 0.1 0.1 0.010 10k Crosstalk vs. Frequency Crosstalk vs. Frequency +0 TTTTT TT 1k Frequency (Hz) 200m 400m 600m 800m 1 RL=8Ω fin=1kHz Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) 1.2 1.4 1.6 1.8 PO=0.1W AV=6dB 0.01 20 Output Power (W) Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 6 100 1k Frequency (Hz) 10k 20k www.anpec.com.tw APA2600 Typical Operating Characteristics (Cont.) THD+N vs. Frequency THD+N vs. Frequency 10 10 THD+N (%) THD+N (%) PO=0.5W AV=12dB PO=0.5W AV=6dB 0.1 R R VDD=5V RL=8Ω Ci=0.1µF AUX-0025 1 AES-17(20kHz) VDD=3.6V RL=8Ω Ci=0.1µF AUX-0025 AES-17(20kHz) 1 RRR PO=0.9W AV=6dB 0.1 PO=0.5W AV=6dB 0.01 PO=0.3W AV=12dB 0.01 0.006 20 PO=0.5W AV=12dB PO=0.3W AV=6dB 100 1k 10k 0.001 20 20k 100 -30 Crosstalk (dB) -40 -50 VDD=2.4V RL=8Ω PO=27mW Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) -20 -30 -70 -80 Left channel to Right channel Right channel to Left channel -110 20 100 1k Frequency (Hz) 10k 20k -40 -50 TTT TT TT T -70 -80 Left channel to Right channel VDD=5V RL=8Ω PO=130mW Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) -80 Left channel to Right channel -100 -120 20 Right channel to Left channel 100 -120 20 100 1k 10k 20k Right Channel, AV=12dB Left Channel, AV=12dB 100u -70 -110 Right channel to Left channel Output Noise Voltage vs. Frequency -60 -90 -110 200u T Output Noise Voltage (Vrms) Crosstalk (dB) -30 -60 Frequency (Hz) Crosstalk vs. Frequency -20 -50 -100 -100 -10 -40 -90 -90 +0 VDD=3.6V RL=8Ω PO=65mW Ci=0.1µF AV=6dB AUX-0025 AES-17(20kHz) -10 -60 -120 20k +0 Crosstalk (dB) -20 10k Crosstalk vs. Frequency Crosstalk vs. Frequency -10 1k Frequency (Hz) Hz Frequency (Hz) +0 PO=0.9W AV=12dB 1k 10k Right Channel, AV=6dB VDD=5V RL=4Ω Ci=0.1µF AUX-0025 AES-17(20kHz) A-Weighting 20u 20 20k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 Left Channel, AV=6dB 100 1k 10k 20k Frequency (Hz) 7 www.anpec.com.tw APA2600 Typical Operating Characteristics (Cont.) Output Noise Voltage vs. Frequency Input Voltage vs. Output Voltage 4.5 200u AV=12dB, RL=8Ω Left Channel, AV=12dB Right Channel, AV=12dB 100u 90u 80u 70u 3.5 Output Voltage (Vrms) Output Noise Voltage (Vrms) 4 2.5 Left Channel, AV=6dB Right Channel, AV=6dB 60u 50u VDD=5V RL=8Ω Ci=0.1µF 30u AUX-0025 AES-17(20kHz) A-Weighting 100 AV=6dB , RL8Ω 2 1.5 40u 20u 20 VDD=5V Ci=0.1µF AUX-0025 AES-17(20kHz) 1 500m 1k 10k Frequency (Hz) 00 20k 500m Frequency Response +0 +30 -10 +10 -20 -10 -30 +9 -30 -40 +8 -50 Gain, AV=12dB Phase, AV=6dB +11 Gain (dB) Phase (Degree) Phase, AV=12dB +10 Gain, AV=6dB +7 -70 +6 VDD=5V RL=8Ω Ci=0.1µF AUX-0025 +5 +4 +3 10 100 PSRR (dB) +12 1k Frequency (Hz) -20 PSRR (dB) -30 -40 -50 TTT T Right Channel -110 -80 -130 -90 Left Channel -100 20 -150 50k 10k -60 -70 T -10 -20 -30 Left Channel 2k 5k 10k 20k -40 -50 10k 20k T VDD=5V RL=8Ω Ci=0.1µF AV=6dB Vrr=0.2Vrms Input AC short AUX-0025 AES-17(20kHz) Left Channel -60 Right Channel -80 Right Channel -90 -90 100 1k -70 -80 20 500 PSRR vs. Frequency +0 -60 -100 50 100 200 Frequency (Hz) VDD=3.6V RL=8Ω Ci=0.1µF AV=6dB Vrr=0.2Vrms Input AC short AUX-0025 AES-17(20kHz) -70 2.5 VDD=2.4V RL=8Ω Ci=0.1µF AV=6dB Vrr=0.2Vrms Input AC short AUX-0025 AES-17(20kHz) -50 -90 PSRR (dB) -10 TT 2 TT PSRR vs. Frequency +0 1.5 1 Input Voltage (Vrms) PSRR vs. Frequency +50 +13 AV=6dB , RL=4Ω AV=12dB, RL=4Ω 3 1k 10k -100 20k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 20 100 1k Frequency (Hz) 8 www.anpec.com.tw APA2600 Typical Operating Characteristics (Cont.) Inter-Modulation Performance VDD=5V RL=4Ω Ci=0.1µF -20 AUX-0025 -30 AES-17(20kHz) VDD=5V RL=8Ω PO=1W Ci=0.01µF AV=6dB fin=19kHz&20kHz, 1:1 BW=22~22kHz AUX-0025 -20 -30 -40 -50 -60 -10 CMRR (dB) -10 FFT (dBr) CMRR vs. Frequency +0 +0 -70 -80 -90 -40 -50 Left Channel, AV=12dB Right Channel, AV=12dB -60 -70 -100 -110 -80 Right Channel, AV=6dB Left Channel, AV=6dB -120 -90 -130 -140 60 100 1k 10k -100 20 20k 100 1k 10k Supply Current vs. Output Power CMRR vs. Frequency +0 1.2 VDD=5V RL=8Ω Ci=0.1µF -20 AUX-0025 -30 AES-17(20kHz) 1.0 -10 Supply Current (A) CMRR (dB) VDD=5V -40 -50 Right Channel, A =12dB V Left Channel, AV=12dB -60 -70 -80 Left Channel, AV=6dB 0.8 VDD=3.6V 0.6 RL=4Ω+33µH fin=1kHz Ci=0.1µF AV=6dB THD+N≦1% Stereo AUX-0025 AES-17(20kHz) VDD=2.4V 0.4 0.2 Right Channel, AV=6dB -90 -100 20 100 1k 10k 0 20k 0 0.5 Frequency (Hz) 1.5 2 2.5 Supply Current vs. Supply Voltage Supply Current vs. Output Power 3.5 No Load VDD=5V 3 Supply Current (mA) 0.5 Supply Current (A) 1 Each Channel Output Power (W) 0.6 VDD=3.6V 0.4 0.3 VDD=2.4V RL=8Ω+33µH fin=1kHz Ci=0.1µF AV=6dB THD+N≦1% Stereo AUX-0025 AES-17(20kHz) 0.2 0.1 0 20k Frequency (Hz) Frequency (Hz) 0 0.2 0.4 0.6 0.8 1.0 1.2 2 1.5 1 0.5 00 1.4 1 2 3 4 5 6 Supply Voltage (V) Each Channel Output Power (W) Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 2.5 9 www.anpec.com.tw APA2600 Typical Operating Characteristics (Cont.) Shutdown Current vs. Supply Voltage GSM Power Supply Rejection vs. Time 0.8 No Load VDD 500mV/div Supply Current (µA) 0.7 High 3.6V Low 3.0V 0.6 0.5 0.4 0.3 Output Voltage 20mV/div 0.2 0.1 0 0 1 2 3 4 5 6 2ms/div GSM Power Supply Rejection vs. Frequency 0 -50 Output voltage (dB) -100 -150 0 Supply voltage (dB) Supply Voltage (V) -50 -100 -150 0 500 1k 1.5k 2k Frequency (Hz) Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 10 www.anpec.com.tw APA2600 Pin Description PIN NO. NAME FUNCTION I/O 1 LOUTP O The left channel positive output terminal of Class-D amplifier. 2 LOUTN O The left channel negative output terminal of Class-D amplifier. 3 SD I Shutdown mode control signal input, place entire IC in shutdown mode when held low. 4 LINP I 5 LINN I 6,7 NC - 8 RINN I 9 RINP I 10 GAIN I 11 ROUTN O The non-inverting input of left channel amplifier. LINP is connected to Gnd via a capacitor for single-end (SE) input signal. The inverting input of left channel amplifier. LINN is used as audio input terminal, typically. No connection. The inverting input of right channel amplifier. RINN is used as audio input terminal, typically. The non-inverting input of right channel amplifier. RINP is connected to Gnd via a capacitor for single-end (SE) input signal. Gain selection. Av=12dB, when GAIN pin is pull high. Av=6dB, when GAIN pin is pull low. The right channel negative output terminal of Class-D amplifier. 12 ROUTP O The right channel positive output terminal of Class-D amplifier. 13,16 GND - Ground connection for circuitry. 14,15 VDD - Supply voltage input terminal. Block Diagram LOUTP LINN Output Stage LINP LOUTN GAIN Gain Control Ramp Generator Biases & Reference Startup Logic Over Current Protection Thermal protection TTL Input Buffer SD ROUTN RINP Output Stage RINN ROUTP Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 11 www.anpec.com.tw APA2600 Typical Application Circuit Single-ended input mode VDD CS2 CS1 0.1µF 10µF VDD 14 15VDD 1 LOUTP 0.01µF LINN 5 Left-Channel Input Ci1 Output Stage 0.01µF LINP 4 Ci2 2 LOUTN GAIN Control GAIN 10 Gain Control Ramp Generator Biases & Reference Startup Logic Over Current Protection Thermal Protection TTL Input Buffer 3 SD Shutdown 11 ROUTN 0.01µF RINP 9 Ci3 Output Stage 0.01µF Right-Channel Input RINN 8 Ci4 12 ROUTP 16 GND GND 13 GND Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 12 www.anpec.com.tw APA2600 Typical Application Circuit (Cont.) Differential input mode VDD CS2 CS1 0.1µF 10µF VDD 14 15VDD 1 LOUTP 0.01µF LINN 5 Ci1 Left-Channel 0.01µF Input Output Stage LINP 4 Ci2 GAIN Control GAIN 10 2 LOUTN Gain Control Ramp Generator Biases & Reference Startup Logic Over Current Protection Thermal Protection TTL Input Buffer 3 SD Shutdown 11 ROUTN 0.01µF RINP 9 Ci3 Right-Channel 0.01µF Input RINN 8 Output Stage Ci4 12 ROUTP 16 GND GND 13 Gnd Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 13 www.anpec.com.tw APA2600 Function Description The APA2600 modulation scheme is shown in Figure 1. The outputs OUTP and OUTN are in phase with each other Fully Differential Amplifier The APA2600 is a fully differential amplifier with differential inputs and outputs. The fully differential amplifier has when no input signals. When output > 0V, the duty cycle of OUTP is greater than 50% and OUTN is less than 50%; some advantages versus traditional amplifier. First, don’t need the input coupling capacitors because the common- when output <0V, the duty cycle of OUTP is less than 50% and OUTN is greater than 50%. This method reduces the mode feedback compensates the input bias. The inputs can be biased from 0.5V~VDD-1V, and the outputs are still switching current across the load and the I2R loss in the load and improves the amplifiers’ efficiency. biased at mid-supply of APA2600. If the inputs are biased at out of the input range, the coupling capacitors are This modulation scheme has very short pulses across the load, this makes the small ripple current and very little required. Second, no need the mid-supply capacitor (CB) because any shift of the mid-supply of APA2600 will have loss on the load, and the LC filter can be eliminate in most applications. Added the LC filter can increase the same effect on both positive and negative input channels, and will cancel at the differential outputs. Third, the fully efficiency by filter the ripple current. differential amplifier has outstanding immunity against supply voltage ripple (217Hz) caused by GSM RF Shutdown Function transmitters’. In order to reduce power consumption while not in use, Class-D Operation the APA2600 contains a shutdown function to externally turn off the amplifier bias circuitry. This shutdown feature Output = 0V turns the amplifier off when logic low is placed on the SD pin of the APA2600. The trigger point between a logic high VOUTP VOUTN and a logic low level is typically 0.8V(VDD=5V). It is best to switch between ground and the supply voltage VDD to pro- VOUT (VOUTP-VOUTN) vide maximum device performance. By switching the SD pin to a low level, the amplifier enters a low-consump- IOUT tion- current state, IDD. The Supply Current for APA2600 is in shutdown mode. On normal operating, APA2600’s SD Output > 0V pin should pull to a high level to keep the IC out of the shutdown mode. The SD pin should be tied to a definite VOUTP voltage to avoid unwanted state changes. VOUTN Gain Selection Function VOUT (VOUTP-VOUTN ) For the convenient uses, the APA2600 provides two gain setting options. Pulling the GAIN pin high, the amplifier IOUT Output < 0V sets the AV=12dB; puling the GAIN pin low, the amplifier VOUTP sets the AV=6dB. Thermal Protection VOUTN The thermal protection circuit limits the junction VOUT (VOUTP-VOUTN) temperature of the APA2600. When the junction temperature exceeds TJ = +150oC, a thermal sensor turns off the IOUT amplifiers, allowing the device to cool. The thermal sensor allows the amplifiers to start-up after the junction Figure1: APA2600 Output Waveform (Voltage& Current) Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 temperature cools down to 125 oC. The thermal protec14 www.anpec.com.tw APA2600 Function Description (Cont.) Thermal Protection (Cont.) tion is designed with a 25 oC hysteresis to lower the average TJ during continuous thermal overload conditions, increasing lifetime of the IC. Over-Current Protection The APA2600 monitors the power amplifiers’ output current. When the current exceeds the current-limit threshold, the APA2600 turn-off the output buffers to prevent the IC from damages in over-current or short-circuit condition. The IC will turn-on the output buffer after 20ms; however, if the over-current or short-circuit condition is still remain, it enters the over-current protection again. The situation occurs repeatedly until the over-current or short-circuit has been removed. Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 15 www.anpec.com.tw APA2600 Application Information Square Wave Into the Speaker Power Supply Decoupling Capacitor, (Cs) To apply the square wave into the speaker may cause the voice coil of speaker jumping out the air gap and defacing The APA2600 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD+N) to the voice coil. However, this depends on the amplitude of square wave is high enough and the bandwidth of speaker be as low as possible. Power supply decoupling also prevents the oscillations being caused by long lead length is higher than the square wave’s frequency. For 475kHz switching frequency, this is not an issue for the speaker between the amplifier and the speaker. The optimum decoupling is achieved by using two dif- because the frequency is beyond the audio band and can’t significantly move the voice coil, as cone movement ferent types of capacitors that target on different types of noises on the power supply leads. For higher fre- 2 is proportional to 1/f for frequency out of audio band. quency transients, spikes or digital hash on the line, a good low equivalent-series- resistance (ESR) ceramic Input Capacitor, (Ci) In the typical application, an input capacitor, Ci, is required to allow the amplifier to bias the input signal to the proper capacitor, typical 0.1µF, placed as close as possible to the device VDD pin works best. For filtering lower fre- DC level for optimum operation. In this case, Ci and the minimum input impedance Ri form a high-pass filter with quency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near the audio power the corner frequency determined in the following equation: fC(highpass ) 1 = 2 πR iCi amplifier is recommended. (1) Output Capacitor, (CO) If the user wants to add capacitors at outputs without fer- The value of Ci must be considered carefully because it directly affects the low frequency performance of the circuit. rite beads or inductor, please note the output capacitors should not be greater than 1nf (VDD<4.2V). The high value Consider the example where Ri is 150kΩ and the speci- of output capacitor may trigger the OCP (Over-Current Protection) of APA2600. fication that calls for a flat bass response down to 100Hz. The equation is reconfigured as below: Ci = 1 2 π R i fc External Gain Settings (2) Using external resistors at the input can lower down the APA2600 gain. When the variation of input resistance (Ri) is considered, When AV=12dB, use the following equation : the value of Ci should be 0.01µF. Therefore, a value in the range from 0.01µF to 0.022µF would be chosen. A further 4 REXT (1+ ) 150kΩ AV = 20 log consideration for this capacitor is the leakage path from the input source through the input network (Ri + Rf, Ci) to Or, when A V=6dB, use the following equation : the load. AV = 20 log This leakage current creates a DC offset voltage at the input of the amplifier. The offset reduces useful 2 REXT (1 + ) 150k Ω headroom, especially in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is 0.01µF REXT the best choice. When polarized capacitors are used, the positive side of the capacitors should face the amplifiers’ inputs in most applications because the DC level of the amplifiers’ inputs are held at VDD/2. Please note that it is Input REXT (4) INP INN 0.01µF Figure 2. External Resistor important to confirm the capacitor polarity in the application. Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 (3) 16 www.anpec.com.tw APA2600 Application Information (Cont.) Layout Recommendation Output LC Filter 3mm If the traces from the APA2600’s outputs to speaker are short, it don’t require output filter for FCC & CE standard. A ferrite bead may be needed if it’s failing the test for FCC Via diameter = 0.3mm X 5 0.5mm * or CE tested without the LC filter. The figure 2 is the sample for adding ferrite beads. The ferrite beads have high im- 0.24mm 1.66 mm pedance in high frequency and low impedance in low frequency. 3mm 0.5mm 0.508mm 1.66mm 0.162mm Ferrite OUTN Bead 1nF OUTP Ferrite Bead Figure 5. TQFN3x3-16 Land Pattern Recommendation 1. All components should be placed close to the 1nF APA2600. For example, the input capacitor (Ci) should be close to APA2600’s input pins to avoid causing noise coupling to APA2600’s high impedance inputs; the decoupling capacitor (Cs) should be placed by the APA2600’s power pin to decouple the power rail Figure 3. Ferrite bead output filter Figure 3 is an example for adding the LC filter, and it’s noise. 2. The output traces should be short, wide ( >50mil), recommended for the situation that the trace from amplifier to speaker is too long, and the LC filter needs to elimi- and symmetric. 3. The input trace should be short and symmetric. nate the radiated emission or EMI. 4. The power trace width should be greater than 50mil. 5. The TQFN3X3-16 Thermal-Pad should be soldered on PCB, and the ground plane needs soldered mask (to avoid short circuit) except the Thermal-Pad area. OUTN 33µH 1µF OUTP 33µH 1µF Figure 4. LC output filter Figure 3’s low pass filter cut-off frequency is 27kHz (fC) fC(lowpass) = 1 2 π LC Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 (5) 17 www.anpec.com.tw APA2600 Package Information TQFN3X3-16 D b E A Pin 1 D2 A1 A3 k E2 Pin 1 Corner e S Y M B O L TQFN3x3-16 INCHES MILLIMETERS MIN. MAX. MIN. MAX. A 0.70 0.80 0.028 0.031 A1 0.00 0.05 0.000 0.002 A3 0.20 REF 0.008 REF b 0.18 0.30 0.007 0.012 D 2.90 3.10 0.114 0.122 D2 1.50 1.80 0.059 0.071 E 2.90 3.10 0.114 0.122 E2 1.50 1.80 0.059 0.071 e 0.50 BSC L 0.30 K 0.20 0.020 BSC 0.012 0.50 0.020 0.008 Note : Follow JEDEC MO-220 WEED-4. Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 18 www.anpec.com.tw APA2600 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application TQFN3X3-16 A H T1 C d D 330±2.00 50 MIN. 12.4+2.00 -0.00 13.0+0.50 -0.20 1.5 MIN. 20.2 MIN. P0 P1 P2 D0 D1 T A0 B0 K0 2.0±0.05 1.5+0.10 -0.00 1.5 MIN. 0.6+0.00 -0.40 3.30±0.20 3.30±0.20 1.30±0.20 4.0±0.10 8.0±0.10 W E1 12.0±0.30 1.75±0.10 F 5.5±0.05 (mm) Devices Per Unit Package Type TQFN3X3-16 Unit Tape & Reel Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 Quantity 3000 19 www.anpec.com.tw APA2600 Taping Direction Information TQFN3X3-16 USER DIRECTION OF FEED Classification Profile Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 20 www.anpec.com.tw APA2600 Classification Reflow Profiles Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly 100 °C 150 °C 60-120 seconds 150 °C 200 °C 60-120 seconds 3 °C/second max. 3°C/second max. 183 °C 60-150 seconds 217 °C 60-150 seconds See Classification Temp in table 1 See Classification Temp in table 2 Time (tP)** within 5°C of the specified classification temperature (Tc) 20** seconds 30** seconds Average ramp-down rate (Tp to Tsmax) 6 °C/second max. 6 °C/second max. 6 minutes max. 8 minutes max. Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts) Average ramp-up rate (Tsmax to TP) Liquidous temperature (TL) Time at liquidous (tL) Peak package body Temperature (Tp)* Time 25°C to peak temperature * Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum. Table 1. SnPb Eutectic Process – Classification Temperatures (Tc) 3 Package Thickness <2.5 mm Volume mm <350 235 °C Volume mm ≥350 220 °C ≥2.5 mm 220 °C 220 °C 3 Table 2. Pb-free Process – Classification Temperatures (Tc) Package Thickness <1.6 mm 1.6 mm – 2.5 mm ≥2.5 mm Volume mm <350 260 °C 260 °C 250 °C 3 Volume mm 350-2000 260 °C 250 °C 245 °C 3 Volume mm >2000 260 °C 245 °C 245 °C 3 Reliability Test Program Test item SOLDERABILITY HOLT PCT TCT HBM MM Latch-Up Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 Method JESD-22, B102 JESD-22, A108 JESD-22, A102 JESD-22, A104 MIL-STD-883-3015.7 JESD-22, A115 JESD 78 21 Description 5 Sec, 245°C 1000 Hrs, Bias @ 125°C 168 Hrs, 100%RH, 2atm, 121°C 500 Cycles, -65°C~150°C VHBM≧2KV VMM≧200V 10ms, 1tr≧100mA www.anpec.com.tw APA2600 Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.5 - Jul., 2013 22 www.anpec.com.tw