ANPEC APA2615QAI-TRG

APA2615
Mono/Stereo High-Power Class-D Amplifier
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
General Description
Operating Voltage: 8.0V-16.5V
The APA2615 is a stereo, high efficiency, Class-D audio
High Efficiency 90% at PO=10W, 8Ω Speaker,
amplifier available in a QFN5.2x6.2-32 package.
The filter-free Class-D architecture eliminates the exter-
VDD=12V
nal low pass filters, and save the PCB space and BOM
costs. The APA2615 also has a spread clock function that
Low Shutdown Current
–IDD=5µA at VDD=16.5V
reduces the high frequency radiation and low the EMI
noise. The Zero-crossing-change function changes the
Power Limit Function
Switchable Non-Clip Function /DRC (Dynamic
gain when both output (VOUTP and VOUTN) crossing together
can minimum the pop noise. The power limit function can
Range Control) Function
Build-In Oscillator
protect the speaker when output signal excess the
speaker limit rating. The non-clip and DRC functions are
Spread Clock Function
eliminate the distortion at large input signal, and can fit
the high dynamic input signal to a small dynamic speaker.
The operating voltage is from 8V to 16.5V. The APA2615
External Synchronization Function
Master/Slaver Synchronization Function
DC Detection Function
is capable of driving 10W at 12V or 18W at 16V into 8Ω
speaker and provides thermal and over-current
Stereo/Monaural Function
Shutdown and Mute Function
protections. It also can detect the DC that prevents the
speaker voice coil from being destroyed.
Thermal and Over-Current Protections with AutoRecovery
Efficiency vs. Output Power (8Ω)
Pin-to-Pin Compatible YDA148
100
Space Saving Package QFN5.2x6.2-32
90
Lead Free and Green Devices Available
80
(RoHS Compliant)
Efficiency (%)
70
Applications
•
LCD TV
60
50
40
20
Simplified Application Circuit
10
0
Left
Channel
Input
LOUTP
LINP
LINN
LOUTN
VDD=12V
RL=8Ω+33µH
fin=1kHz
AUX-0025
AES-17(20kHz)
30
Left
Channel
Speaker
0
1
2
3 4 5 6 7
Output Power (W)
8
9 10
APA2615
Right
Channel
Input
RINN
RINP
ROUTN
ROUTP
Right
Channel
Speaker
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
1
www.anpec.com.tw
APA2615
26 LPVDD
27 LOUTN
28 LOUTN
29 LPGND
30 LOUTP
31 LOUTP
32 LPVDD
Pin Configuration
AVDD 1
25 GAIN1
3V3REG 2
24 GAIN0
LINP 3
23 DRC1
LINN 4
22 DRC0
APA2615
(Top View)
VREF 5
21 OSCIN
RPVDD 16
ROUTN 15
ROUTN 14
17 SD
RPGND 13
18 PFLAG
PMAX 9
ROUTP 12
19 MUTE
AGND 8
ROUTP 11
20 OSCO
RINP 7
RPVDD 10
RINN 6
Ordering and Marking Information
Package Code
QA : QFN5.2x6.2-32
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APA2615
Assembly Material
Handling Code
Temperature Range
Package Code
APA2615 QA :
XXXXX - Date Code
APA2615
XXXXX
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Absolute Maximum Ratings (Note 1)
Symbol
Parameter
Rating
VDD
Supply Voltage (RPVDD to RPGND, LPVDD to LPGND, AVDD to
AGND)
-0.3 to 20
VSD
Input Voltage (SD to AGND)
-0.3 to 20
Vin
Input Voltage (LINN, LINP, RINN and RINP to AGND)
-0.3 to 4
Input Voltage (MUTE, PMAX, DRC0, DRC1, GAIN0 and GAIN1 to
AGND)
-0.3 to 4
Vcontrol
VPGND_AGND
Input Voltage (LPGND, RPGND to AGND)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
Unit
V
-0.3 to +0.3
2
www.anpec.com.tw
APA2615
Absolute Maximum Ratings (Cont.) (Note 1)
Symbol
TJ
Parameter
Rating
Maximum Junction Temperature
TSTG
Storage Temperature Range
TSDR
Soldering Temperature Range, 10 Seconds
PD
Power Dissipation
Unit
150
ο
-65 to +150
ο
260
ο
C
C
C
Internally Limited
W
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
Thermal Characteristics
Symbol
θJA
θJC
Parameter
Typical Value
Junction-to-Ambient Resistance in Free Air (Note 2)
Unit
o
22
QFN5.2x6.2-32
C/W
Junction-to-Case Resistance in Free Air (Note 3)
o
4
C/W
QFN5.2x6.2-32
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad
of QFN5.2X6.2-32 is soldered directly on the PCB.
Note 3: The case temperature is measured at the center of the exposed pad on the underside of the QFN5.2X6.2-32 package.
Recommended Operating Conditions (Note 4)
Symbol
Range
Parameter
VDD
Supply Voltage
VIH
High Level Threshold Voltage
Unit
Min.
Max.
8.0
16.5
SD
2.5
16.5
MUTE, PMAX, DRC0, DRC1,
GAIN0, GAIN1
2.5
3.6
SD
0
1
MUTE, PMAX, DRC0, DRC1,
GAIN0, GAIN1
0
1
0
3
V
VIL
Low Level Threshold Voltage
VIC
Common Mode Input Voltage
TA
Ambient Temperature Range
-40
85
TJ
Junction Temperature Range
-40
125
ο
C
Ω
RL
Speaker Resistance
3.5
Note 4: At stereo mode, if the RL=4Ω, the VDD should not excess 12V or it may trigger the Over-Current Protection.
Electrical Characteristics
VDD=12V, GND=0V, TA= 25oC, A =22dB (unless otherwise noted)
V
Symbol
Parameter
V3V3REG
IO=2mA
VVREF
VDET
The DC Detection Active
Voltage at Output
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
APA2615
Test Conditions
DC detection (>0.5s)
3
Unit
Min.
Typ.
Max.
2.85
3.3
3.75
-
V3V3REG /2
-
-
2
2.5
V
www.anpec.com.tw
APA2615
Electrical Characteristics (Cont.)
VDD=12V, GND=0V, TA= 25oC, A =22dB (unless otherwise noted)
V
Symbol
VFLAG
Parameter
APA2615
Test Conditions
Unit
Min.
Typ.
Max.
-
-
0.4
2.2
-
-
Protection Flag Output Voltage
ISOURCING=0.4mA
VOSCOH
Oscillator Output Voltage
ISOURCING=4mA
VOSCOL
Oscillator Output Voltage
ISINKING=4mA
-
-
0.6
Recovery Time from Shutdown
C5=0.1µF
-
1
1.5
-
-
0.001
-
18
36
-
2
10
TSD
TMUTE
IDD
IMUTE
ISD
II
Recovery Time from Mute
Supply Current
No Load
Mute Current
Shutdown Current
SD = 0V
-
5
100
Input Current
SD, MUTE, DRC0, DRC1,
GAIN0, GAIN1
-
-
5
FOSC
Internal Oscillator Frequency
400
500
600
FOSCI
External Clock at OSCI Pin
400
500
600
DCOSCI
Duty Cycle of External Clock
40
-
60
RDSON
Static Drain-Source On-State
Resistance (P-channel and N
channel Power MOSFET)
VDD=8V, IL=0.8A
-
530
-
VDD=12V, IL=1A
-
480
-
VDD=16V, IL=1.4A
-
440
-
Ri
Input Resistor
RINN, RINP, LINN, LINP (Gain
independent)
8
10
12
RO
Output Resistor
ROUTN, ROUTP, LOUTN,
LOUTP
-
300
-
η
Efficiency
Stereo, RL=8Ω, PO=9W
-
89
-
Stereo, RL=4Ω, PO=15W
-
85
-
AV
Closed-Loop Gain
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
s
mA
µA
kHz
%
mΩ
kΩ
DRC[1:0] (0,0), GAIN (0,0)
-
22
-
DRC (0,0), GAIN (0,1)
-
28
-
DRC (0,0), GAIN (1,0)
-
34
-
DRC (0,0), GAIN (1,1)
-
16
-
DRC (0,1), GAIN (0,0)
-
34
-
DRC (0,1), GAIN (0,1)
-
40
-
DRC (0,1), GAIN (1,0)
-
46
-
DRC (0,1), GAIN (1,1)
-
28
-
DRC (1,0), GAIN (0,0)
-
34
-
DRC (1,0), GAIN (0,1)
-
40
-
DRC (1,0), GAIN (1,0)
-
46
-
DRC (1,0), GAIN (1,1)
-
28
-
DRC (1,1), GAIN (0,0)
-
34
-
DRC (1,1), GAIN (0,1)
-
40
-
DRC (1,1), GAIN (1,0)
-
46
-
DRC (1,1), GAIN (1,1)
-
28
-
4
V
%
dB
www.anpec.com.tw
APA2615
Electrical Characteristics (Cont.)
VDD=12V, GND=0V, TA= 25oC, A =22dB (unless otherwise noted)
V
STEREO MODE
Symbol
Parameter
APA2615
Test Conditions
Unit
Min.
Typ.
Max.
VDD=16V,TA=25oC
THD+N=1%
fIn=1kHz
RL=8Ω
-
14
-
THD+N=10%
fIn=1kHz
RL=8Ω
-
18
-
Total Harmonic Distortion
Plus Noise
fIn=1kHz
RL=8Ω
PO=10W
-
0.05
0.1
Channel Separation
PO=1W,RL=8Ω, fin=1kHz
-
-70
-60
PSRR
Power Supply Rejection Ratio
fin=100Hz
-
-65
-55
RL= 8Ω
fin=1kHz
-
-65
-55
CMRR
Common Mode Rejection
Ration
fin=1kHz, RL=8Ω, Vin=0.1Vpp,
AV=22dB
-
-65
-55
AttMute
Mute Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-115
-100
Attshutdown
Shutdown Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-115
-100
Offset Voltage
No load, A V=22dB
-
-
20
mV
Noise Output Voltage
With A-weighting Filter
(AV=22dB)
-
250
500
µVrms
PO
THD+N
Crosstalk
VOS
Vn
Output Power
W
%
dB
o
VDD=12V,TA=25 C
PO
THD+N
Crosstalk
PSRR
CMRR
THD+N=1%
fin=1kHz
RL=4Ω
-
14
-
RL=8Ω
-
8
-
THD+N=10%
fin=1kHz
RL=4Ω
-
17
-
Output Power
RL=8Ω
-
10
-
RL=4Ω
PO=10W
-
0.07
0.1
RL=8Ω
PO=6W
-
0.07
0.1
Total Harmonic Distortion
Plus Noise
fin=1kHz
Channel Separation
PO=0.5W, RL=8Ω, fin=1kHz
Power Supply Rejection Ratio
Common Mode Rejection
Ration
RL=8Ω,
%
-
-70
-60
fin=100Hz
-
-65
-55
fin=1kHz
-
-65
-55
-
-65
-55
fin=1kHz, RL=8Ω, Vin=0.1Vpp,
AV=22dB
W
dB
AttMute
Mute Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-115
-100
Attshutdown
Shutdown Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-115
-100
Offset Voltage
No load, A V=22dB
-
-
20
mV
Noise Output Voltage
With A-weighting Filter
(AV=22dB)
-
230
500
µVrms
-
6
-
VOS
Vn
o
VDD=8V,TA=25 C
PO
THD+N=1%
fin=1kHz
RL=4Ω
RL=8Ω
-
3.5
-
THD+N=10%
fin=1kHz
RL=4Ω
-
7.5
-
RL=8Ω
-
4.5
-
Output Power
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
5
W
www.anpec.com.tw
APA2615
Electrical Characteristics (Cont.)
VDD=12V, GND=0V, TA= 25oC (unless otherwise noted)
STEREO MODE
Symbol
Parameter
APA2615
Test Conditions
Unit
Min.
Typ.
Max.
RL=4Ω
PO=4.5W
-
0.1
0.2
RL=8Ω
PO=2.5W
-
0.1
0.2
VDD=8V,TA=25oC (CONT.)
THD+N
Crosstalk
PSRR
CMRR
AttMute
Attshutdown
VOS
Vn
Total Harmonic Distortion
Plus Noise
fin=1kHz
Channel Separation
PO=0.5W, RL=8Ω, fin=1kHz
Power Supply Rejection Ratio
Common Mode Rejection
Ration
RL=8Ω
%
-
-60
-60
fin=100Hz
-
-65
-55
fin=1kHz
-
-65
-55
-
-70
-55
fin=1kHz, RL=8Ω, Vin=0.1Vpp,
AV=22dB
dB
Mute Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-115
-100
Shutdown Attenuation
fin=1kHz, RL=8Ω, Vin=1Vpp
-
-115
-100
Offset Voltage
No load, A V=22dB
-
-
20
mV
Noise Output Voltage
With A-weighting Filter
(AV=22dB)
-
200
400
µVrms
MONO MODE
Symbol
Parameter
APA2615
Test Conditions
Unit
Min.
Typ.
Max.
-
16
-
VDD=12V,TA=25oC
PO
THD+N
PSRR
THD+N=1%
fin=1kHz
RL=4Ω
RL=8Ω
-
8.5
-
THD+N=10%
fin=1kHz
RL=4Ω
-
20
-
RL=8Ω
-
11
-
RL=4Ω
PO=12W
-
0.08
0.2
RL=8Ω
PO=6W
-
0.1
0.2
fin=100Hz
-
-65
-55
fin=1kHz
-
-65
-55
Output Power
Total Harmonic Distortion
Plus Noise
fin=1kHz
Power Supply Rejection Ratio
RL=8Ω,
W
%
CMRR
Common Mode Rejection
Ration
fin=1kHz, RL=8Ω, Vin=0.1Vpp,
AV=22dB
-
-60
-55
AttMute
Mute Attenuation
fin=1kHz, RL=8Ω, Vin=1Vrms
-
-115
-100
Shutdown Attenuation
fin=1kHz, RL=8Ω, Vin=1Vrms
-
-115
-100
Offset Voltage
No load, A V=22dB
-
-
20
mV
Noise Output Voltage
With A-weighting Filter
(AV=22dB)
-
200
400
µVrms
Attshutdown
VOS
Vn
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
6
dB
www.anpec.com.tw
APA2615
Typical Operating Characteristics
Efficiency vs. Output Power (4Ω)
Efficiency vs. Output Power (8Ω)
100
100
90
90
VDD=8V
80
VDD=12V
70
VDD=8V
60
50
RL=4Ω+33µH
fin=1kHz
Ci=1µf
AV=22dB
THD+N≦10%
AUX-0025
AES-17(20KHz)
40
30
20
10
0
0
100
2
4
6 8 10 12 14 16
Output Power (W)
Output Power (W)
Efficiency (%)
70
60
RL=4Ω+33µH
fin=1kHz
Ci=1µf
AV=22dB
THD+N≦10%
AUX-0025
AES-17(20KHz)
MONO Mode
10
0
0
5
10
15 20
25
Output Power (W)
30
Output Power (W)
15
4
6 8 10 12 14 16 18 20
Output Power (W)
RL=4Ω
fin=1kHz
16 Ci=1µF
AV=22dB
AUX-0025
14 AES-17(20kHz)
THD+N=10%
12
10
6
35
THD+N=1%
8
20
18
THD+N=10%
Output Power (W)
RL=8Ω
fin=1kHz
Ci=1µF
AV=22dB
AUX-0025
AES-17(20kHz)
2
8
Output power vs. Supply Voltage
20
0
Output power vs. Supply Voltage
VDD=16V
20
30
18
VDD=12V
30
RL=8Ω+33µH
fin=1kHz
Ci=1µf
AV=22dB
THD+N≦10%
AUX-0025
AES-17(20KHz)
40
0
18 20
90
40
50
10
VDD=8V
50
60
20
Efficiency vs. Output Power
(4Ω_Mono mode)
80
VDD=16V
80
Efficiency (%)
Efficiency (%)
70
VDD=12V
10
THD+N=1%
5
16
14
9
10
11
Supply Voltage (V)
12
Output power vs. Supply Voltage
(Mono Mode)
RL=4Ω
fin=1kHz
Ci=1µF
AV=22dB
AUX-0025
AES-17(20kHz)
Mono Mode
THD+N=10%
12
THD+N=1%
10
8
0
8
10
12
14
Supply Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
6
16
7
8
9
10
11
Supply Voltage (V)
12
www.anpec.com.tw
APA2615
Typical Operating Characteristics (Cont.)
THD+N vs. Output Power
10
VDD=8V
5
2
1
THD+N (%)
THD+N (%)
VDD=12V
RL=4Ω
fin=1kHz
Ci=1µF
AV=22dB
AUX-0025
AES-17(20kHz)
Single Channel
1
THD+N vs. Output Power
10
0.1
VDD=8V
VDD=12V
VDD=16V
0.5
0.2
RL=8Ω
fin=1kHz
Ci=1µF
AV=22dB
AUX-0025
AES-17(20kHz)
Single Channel
0.1
0.05
0.02
0.01
0.01
0
0 1 2 3 4 5 6 7 8 9 101112131415161718
Output Power (W)
THD+N vs. Output Power
R
THD+N (%)
THD+N (%)
1
RL=4Ω
fin=1kHz
Ci=1µF
AV=22dB
AUX-0025
AES-17(20kHz)
Mono Mode
0.1
0.01
0
5
10
15
20
25
30
35
PO=10W
AV=34dB
0.1
0.006
20
100
Output Power (W)
THD+N vs. Frequency
THD+N (%)
VDD=12V
RL=8Ω
Ci=1µF
AUX-0025
AES-17(20kHz)
PO=6W
AV=34dB
0.1
0.01
0.006
20
PO=1W
AV=34dB
100
1
PO=6W
AV=22dB
THD+N (%)
1
PO=1W
AV=22dB
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
0.006
20
10k 20k
8
PO=1W
AV=22dB
1k
Frequency (Hz)
10k 20k
THD+N vs. Frequency
VDD=12V
RL=4Ω
Ci=1µF
AUX-0025
AES-17(20kHz)
Mono Mode
0.1
0.01
PO=10W
AV=22dB
PO=1W
AV=34dB
0.01
40 45
6 8 10 12 14 16 18 20 22
Output Power (W)
VDD=12V
RL=4Ω
Ci=1µF
AUX-0025
AES-17(20kHz)
VDD=16V
VDD=12V
4
THD+N vs. Frequency
1
10
VDD=8V
2
PO=11W
AV=34dB
100
PO=11W
AV=22dB
PO=1W
AV=34dB
PO=1W
AV=22dB
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2615
Typical Operating Characteristics (Cont.)
-30
1k
Frequency (Hz)
Output Noise Voltage (µV)
Output Noise Voltage (µV)
Right channel to Left channel
20
VDD=12V
RL=8Ω
Ci=1µF
AUX-0025
AES-17(20kHz)
A-Weighting
1k
Frequency (Hz)
VDD=12V
RL=4Ω
Ci=1µF
AUX-0025
AES-17(20kHz)
A-Weighting
Mono Mode
20
+22
+19.5
+17
+14.5
+12
20
VDD=12V
RL=8Ω
PO=0.6W
Ci=1µF
AUX-0025
100
Gain, AV=22dB
+0
-20
Gain (dB)
Gain (dB)
Phase, AV=34dB
+29.5
Phase, AV=34dB
+22
Gain, AV=22dB
+17
-60
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
Phase, AV=22dB
+24.5
+19.5
-40
1k
10k
Frequency (Hz)
+27
+14.5
+12
20
-80
100k
9
100
VDD=12V
RL=4Ω
PO=1.1W
Ci=1µF
AUX-0025
Mono Mode
1k
10k
Frequency (Hz)
+80
+60
+40
+20
+0
-20
-40
-60
-80
-100
-120
-140
-160
-180
100k
Phase (Degree)
+24.5
+20
Phase (Degree)
+27
10k 20k
Gain, AV=34dB
+32
+40
Phase, AV=22dB
1k
Frequency (Hz)
+34.5
+60
+29.5
100
Frequency Response
Gain, AV=34dB
+32
AV=16dB
+37
+80
+34.5
10k 20k
AV=34dB
AV=22dB
100µ
Frequency Response
+37
1k
Frequency (Hz)
AV=28dB
10µ
10k 20k
100
Output Noise Voltage vs. Frequency
1m
AV=16dB
AV=22dB
100
Left channel to Right channel
AV=34dB
AV=28dB
20
-80
-120
10k 20k
Output Noise Voltage vs. Frequency
10µ
-60
-70
-110
1m
100µ
-40
-50
-90
-100
Right channel to Left channel
100
VDD=12V
RL=8Ω
PO=0.6W
Ci=1µF
Av=22dB
AUX-0025
AES-17(20kHz)
-20
Left channel to Right channel
-120
20
Crosstalk vs. Frequency
+0
-10
VDD=12V
RL=4Ω
PO=1W
Ci=1µF
Av=22dB
AUX-0025
AES-17(20kHz)
Crosstalk (dB)
Crosstalk (dB)
Crosstalk vs. Frequency
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
www.anpec.com.tw
APA2615
Typical Operating Characteristics (Cont.)
Inter-Modulation Performance
Inter-Modulation Performance
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
VDD=12V
RL=8Ω
PO=1W
Ci=1µF
AV=22dB
fin=19kHz&20kHz, 1:1
BW=22~22kHz
AUX-0025
60 100 200
VDD=12V
RL=4Ω
PO=1W
Ci=1µF
AV=22dB
fin=19kHz&20kHz, 1:1
BW=22~22kHz
AUX-0025
Mono Mode
FFT (dBr)
FFT (dBr)
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
500 1k 2k
5k 10k 20k
Frequency (Hz)
60 100
-20
-30
-10
-20
-30
-40
CMRR (dB)
CMRR (dB)
+0
VDD=12V
RL=8Ω
Ci=1µF
VO=1Vrms
AUX-0025
AES-17(20kHz)
-10
-50
-60
AV=34dB
-70
AV=22dB
-80
-50
-60
AV=34dB
-70
AV=22dB
-90
-10
-20
-30
-40
-50
100
1k
Frequency (Hz)
-10020
10k 20k
+0
VDD=12V
RL=8Ω
Ci=1µF
AV=22dB
Vrr=0.2Vrms
Input AC short to GND
AUX-0025
AES-17(20kHz)
-10
-20
-30
-60
-40
-50
-70
-80
-80
-90
-90
100
1k
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
1k
Frequency (Hz)
10k 20k
-100
20
10k 20k
10
VDD=12V
RL=4Ω
Ci=1µF
AV=22dB
Vrr=0.2Vrms
Input AC short to GND
AUX-0025
AES-17(20kHz)
Mono Mode
-60
-70
-100
20
100
PSRR vs. Frequency
PSRR vs. Frequency
PSRR (dB)
20
+0
PSRR (dB)
-40
VDD=12V
RL=4Ω
Ci=1µF
VO=1Vrms
AUX-0025
AES-17(20kHz)
Mono Mode
-80
-90
-100
10k 20k
CMRR vs. Frequency
CMRR vs. Frequency
+0
1k
Frequency (Hz)
100
1k
Frequency (Hz)
10k 20k
www.anpec.com.tw
APA2615
Typical Operating Characteristics (Cont.)
Shutdown Attenuation vs. Frequency
Shutdown Attenuation (dB)
Mute Attenuation (dB)
Mute Attenuation vs. Frequency
+0
-10 VDD=12V
R =8Ω
-20 CL=1µF
i
-30 AV=22dB
V
-40
O=2Vrms
AUX-0025
-50 AES-17(20kHz)
-60
-70
-80
-90
-100
Left Channel
Right Channel
-110
-120
-130
20
100
1k
Frequency (Hz)
10k 20k
+0
VDD=12V
-10
RL=8Ω
-20
Ci=1µF
-30
AV=22dB
VO=2Vrms
-40
AUX-0025
-50
AES-17(20kHz)
-60
-70
-80
-90
-100
Left Channel
-110 Right Channel
-120
-130
20
100
1k
10k 20k
Frequency (Hz)
Supply Current vs. Output Power
Supply Current vs. Output Power
1.4
1
0.8
Supply Current (A)
Supply Current (A)
1.0
VDD=8V
0.8
0.6
RL=4Ω+33µH
fin=1kHz
Ci=1µF
AV=22dB
THD+N≦1%
AUX-0025
AES-17(20kHz)
0.4
0.2
0
0
12
4
6
8
10
2
Each Channel Output Power (W)
VDD=8V
0.5
0.4
RL=8Ω+33µH
fin=1kHz
Ci=1µF
AV=22dB
THD+N≦1%
AUX-0025
AES-17(20kHz)
0.3
0
14
0
1.6
Supply Current (mA)
RL=4Ω+33µH
fin=1kHz
Ci=1µF
AV=22dB
THD+N≦1%
Mono Mode
AUX-0025
AES-17(20kHz)
0.4
5
10
15
10
12
14
20
VDD=8V
0.2
8
No Load
1.2
0.6
6
Supply Current vs. Supply Voltage
VDD=12V
0.8
4
25
1.4
1.0
2
Each Channel Output Power (W)
VDD=5V
1.8
Supply Current (A)
VDD=12V
0.6
0.2
Supply current vs. Output power
0
0.7
0.1
2.0
0
VDD=16V
0.9
VDD=12V
1.2
20
25
10
5
0
30
l Output Power (W)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
15
11
0
2
4
6
8 10 12 14
Supply Voltage (V)
16 18
www.anpec.com.tw
APA2615
Typical Operating Characteristics (Cont.)
Mute Current vs. Supply Voltage
Shutdown Current vs. Supply Voltage
5
1.5
No Load
No Load
4
Supply Current (µA)
Supply Current (mA)
1.2
0.9
0.6
3
2
1
0.3
0
0
2
4
6
8 10 12
Supply Voltage (V)
14
16
0
18
0
4
6
8
10 12
14
16
18
Supply Voltage (V)
Input Voltage vs. Output Voltage
Input Voltage vs. Output Voltage
20
20
DRC 2 Mode
Non-Clip Mode
10
10
DRC 1 Mode
DRC 2 Mode
5
Output Voltage (V)
Output Voltage (V)
2
2
1
VDD=12V
VPMAX=0.5V
Ci=1µF
AV=46dB
AUX-0025
AES-17(20kHz)
500m
200m
1m
10m
100m
Input Voltage (V)
Non-Clip Mode
5
DRC 1 Mode
2
1
VDD=12V
VPMAX=1V
Ci=1µF
AV=46dB
AUX-0025
AES-17(20kHz)
500m
200m
1
1m
10m
100m
Input Voltage (V)
1
Input Voltage vs. Output Voltage
20
DRC 2 Mode
Output Voltage (V)
10
5
Non-Clip Mode
2
DRC 1 Mode
1
VDD=12V
VPMAX=1.3V
Ci=1µF
AV=46dB
AUX-0025
AES-17(20kHz)
500m
200m
1m
10m
100m
1
Input Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
12
www.anpec.com.tw
APA2615
Typical Operating Characteristics (Cont.)
Power On
Power Off
VDD
VDD
1
1
OUTP & OUTN
OUTP & OUTN
2&3
2&3
M1
OUTPUT
OUTPUT
M1
CH1: VDD, 10V/Div, DC
CH2: OUTP, 5V/Div, DC
CH3: OUTN, 5V/Div, DC
CHM1: OUTPUT, 5V/Div, DC
TIME: 200ms/Div
CH1: VDD, 10V/Div, DC
CH2: OUTP, 5V/Div, DC
CH3: OUTN, 5V/Div, DC
CHM1: OUTPUT, 5V/Div, DC
TIME: 100ms/Div
Shutdown
Shutdown Release
SD
SD
1
1
OUTP & OUTN
OUTP & OUTN
2&3
2&3
OUTPUT
OUTPUT
M1
M1
CH1: SD, 2V/Div, DC
CH2: OUTP, 5V/Div, DC
CH3: OUTN, 5V/Div, DC
CHM1: OUTPUT, 5V/Div, DC
TIME: 200ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
CH1: SD, 2V/Div, DC
CH2: OUTP, 5V/Div, DC
CH3: OUTN, 5V/Div, DC
CHM1: OUTPUT, 5V/Div, DC
TIME: 200ms/Div
13
www.anpec.com.tw
APA2615
Pin Description
PIN
NO.
NAME
I/O/P
FUNCTION
1
AVDD
P
Power supply for control block.
2
3V3REG
O
Regulator output, 3.3V. Only for internal used.
3
LINP
I
The positive input of left channel amplifier.
4
LINN
I
The negative input of left channel amplifier.
5
VREF
P
The reference voltage output.
6
RINN
I
The negative input of right channel amplifier.
7
RINP
I
The positive input of right channel amplifier.
8
AGND
P
Ground connection for control block.
9
PMAX
I
Input for set the power limit function. Enable: PO(MAX)=(1.65-VPMAX)x11.23, Disable: GND.
10,16
RPVDD
P
The power supply for right channel Class-D amplifier.
11,12
ROUTP
O
The positive output of right channel Class-D amplifier.
13
RPGND
P
Ground connection for right channel Class-D amplifier.
14,15
ROUTN
O
The negative output of right channel Class-D amplifier.
17
SD
I
Shutdown mode control input, place entire IC in shutdown mode when held low.
18
PFLAG
O
Protection flag output (open drain).
19
MUTE
I
Mute mode control input; pull low to mute the Class-D amplifier’s output.
20
OSCO
O
The internal oscillator’s output, for synchronization other APA2615s.
21
OSCIN
I
External clock input.
22
DRC0
I
Non-clip and DRC (Dynamic Range Compress) control; LSB bit 0.
23
DRC1
I
Non-clip and DRC (Dynamic Range Compress) control; MSB bit 1.
24
GAIN0
I
Control pin for internal gain setting, LSB, bit0.
25
GAIN1
I
Control pin for internal gain setting, MSB, bit1.
26,32
LPVDD
P
The power supply for left channel Class-D amplifier.
27,28
LOUTN
O
The negative output of left channel Class-D amplifier.
29
LPGND
P
Ground connection for left channel Class-D amplifier.
30,31
LOUTP
O
The positive output of left channel Class-D amplifier.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
14
www.anpec.com.tw
APA2615
Block Diagram
RPVDD
VINT
VINT
Gate
Drive
VINT
ROUTN
RINN
Power
Limit
RPGND
VINT
RINP
Gate
Drive
PMAX
AGND
ROUTP
RPVDD
VREF
Biases &
Reference
MUTE
VINT
Mute Control
AVDD
3V3REG
DRC0
DRC1
3.3V
regulator
DRC/NonClip Control
Protection
Function
GAIN
Control
OSCIN
Oscillator
OSCO
GAIN0
Shutdown
Control
GAIN1
PFLAG
SD
PMAX
LPVDD
VINT
PMAX
MUTE
VINT
Gate
Drive
VINT
LOUTN
LINN
Power
Limit
LPGND
VINT
LINP
Gate
Drive
LOUTP
LPVDD
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
15
www.anpec.com.tw
APA2615
Typical Application Circuits
VDD
VDD
VDD
26 LPVDD
27 LOUTN
28 LOUTN
CS4
1µF
29 LPGND
30 LOUTP
31 LOUTP
32 LPVDD
CS3
1µF
CS1
220µF
VDD
CS2
0.1µF
Left Channel
Input Signal
Left Channel
Input Signal
Ci1 1µF
AVDD 1
25 GAIN1
C1 3V3REG 2
1µF
24 GAIN0
LINP 3
23 DRC1
Ci2 1µF
LINN 4
22 DRC0
CB
0.1µF
VREF 5
RINN 6
20 OSCO
Ci3 1µF
RINP 7
19 MUTE
AGND 8
18 PFLAG
PMAX 9
17 SD
Ci4 1µF
APA2615
No Clip and DRC
Control
21 OSCIN
RPVDD 16
ROUTN 15
ROUTN 14
RPGND 13
ROUTP 11
ROUTP 12
RPVDD 10
VDD
CS6
1µF
Clock Output
Mute Control
3V3REG
120K
PFLAG
CS5
1µF
External Clock
Shutdown Control
R1
R2
Gain Setting
Protection Flag
VDD
Stereo Operation
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
16
www.anpec.com.tw
APA2615
Typical Application Circuits (Cont.)
VDD
VDD
26 LPVDD
28 LOUTN
29 LPGND
31 LOUTP
220µF
32 LPVDD
CS1
30 LOUTP
CS3
1µF
VDD
27 LOUTN
CS4
1µF
VDD
CS2
AVDD 1
0.1µF
3V3REG
2
C1 1µF
24 GAIN0
LINP 3
23 DRC1
Ci2 1µF
LINN 4
22 DRC0
CB
0.1µF
VREF 5
Ci1 1µF
Input Signal
25 GAIN1
21 OSCIN
APA2615
RINN 6
20 OSCO
RINP 7
19 MUTE
AGND 8
18 PFLAG
PMAX 9
17 SD
CS5
1µF
120K
PFLAG
Protection Flag
VDD
No Clip and DRC
Control
External Clock
Clock Output
Mute Control
Shutdown Control
RPVDD 16
ROUTN 15
ROUTN 14
RPGND 13
ROUTP 12
3V3REG
ROUTP 11
R2
RPVDD 10
R1
Gain Setting
CS6
1µF
VDD
Monaural Operation
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
17
www.anpec.com.tw
APA2615
Function Description
3.3V Regulator Operation
Class D Operation
Output = 0V
VOUTP
The 3V3REG regulates the voltage at 3.3V and only for
internal circuit used. And connect a capacitor from 1µF to
VOUTN
4.7µF (X5R or above) for stable. (0.8µF or more should
be secured including its variation and temperature
change.)
VOUT
(VOUTP-VOUTN)
Reference Voltage
The voltage output of VREF pin is equal to V3V3REG/2 and
needs to connect a capacitor of 0.1µF for voltage
IOUT
Output > 0V
stabilization.
VOUTP
Gain Setting Operation
VOUTN
Table 1. The gain setting
VOUT
(VOUTP-VOUTN)
IOUT
Output < 0V
VOUTP
VOUTN
VOUT
(VOUTP-VOUTN)
IOUT
GAIN1
GAIN0
DRC1
DRC0
Gain
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
X
X
X
X
1
1
1
1
0
0
0
0
1
1
1
1
X
X
X
X
22dB
28dB
34dB
16dB
34dB
40dB
46dB
28dB
34dB
40dB
46dB
28dB
The APA2615’s gain can be set by GAIN0, GAIN1. The
Figure 1. The APA2615 Output Waveform (Voltage&
detail gain setting value is list at table 1.
Current)
Mute Operation
The APA2615 power amplifier modulation scheme is
shown in figure 1. The outputs VOUTP and VOUTN are in phase
At mute state, the Class-D output will be forced at 50%
duty at OUTP and OUTN, so differential is zero, and output signals have be disabled. The recovery time of mute
with each other when no input signals. When output > 0V,
the duty cycle of VOUTP is greater than 50% and VOUTN is
state to normal operation is about 1ms (max.).
less than 50%; when Output <0V, the duty cycle of VOUTP is
less than 50% and VOUTN is greater than 50%. This method
Shutdown Operation
reduces the switching current across the load and reduces the I 2R losses in the load that improves the
In order to reduce power consumption while not in use,
the APA2615 contains a shutdown function to externally
amplifier’s efficiency.
This modulation scheme has very short pulses across
turn off the amplifier bias circuitry. This shutdown feature
turns the amplifier off when logic low is placed on the SD
the load, this making the small ripple current and very
little loss on the load, and the LC filter can be eliminated
pin for APA2615. The trigger point between a logic high
and logic low level is typically 1.5V. It is the best to switch
in most applications. Added the LC filter can increase the
efficiency by filter the ripple current.
between the ground and the supply voltage VDD to provide maximum device performance. By switching the SD
pin to low level, the amplifier enters a low-consumption-
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
18
www.anpec.com.tw
APA2615
Function Description (Cont.)
Shutdown Operation (Cont.)
seconds to release the non-clip function from -12dB to
0dB.
current state, IDD for APA2615 is in the shutdown mode.
The Non-clip operation should be switched under poweroff or shut down mode to prevent the pop noise between
On normal operating, APA2615’s SD pin should pull to a
high level to keep the IC out of the shutdown mode. The
the mode switching.
SD pin should be tied to a definite voltage to avoid unwanted state change.
DRC Operation
Oscillator Operation
OSCI PIN
Mode
OSCO
0 fixed
Internal fixed
clock mode
Internal fixed
clock output
1 fixed
Internal spread
clock mode (5)
Internal spread
clock output
External clock
mode
External clock
buffer output
Clock in
DRC1
DRC0
Mode
0
0
Normal mode (DRC mode off ,
Non-clip mode off)
0
1
Non-Clip mode
1
0
DRC 1 mode
1
1
DRC 2 mode
DR C 1 m o d e : DR C [ 1 : 0 ] = 1 0 ( DR C 1 = H i g h , an d
DRC0=Low), the DRC 1 mode is active. The gain is in-
When the OSCI pin pulls low, the APA2615 works at internal fixed clock mode, and OSCO pin is output that fixed
creasing by 12dB compared to the normal mode. The
power limit value is the point that active the Dynamic Range
clock (500kHz); when the OSCI pin pulls high, the APA2615
works at internal spread clock mode, and the clock range
Compression function, and the maximum attenuation is
-12dB. The attack time is zero second and needs 3.9
is from 400kHz to 600kHz; the OSCO pin is the buffer for
output these spread clock.
seconds to release the non-clip function from -12dB to
0dB.
Apply the external clock to the OSCI pin, the APA2615 will
work at external clock mode, and the external clock should
DRC2 mode: DRC [1:0]=11(DRC1=High, and DRC0=High),
similar to the DRC 1 mode, but not perform the power
at the range from 400kHz to 600kHz and the duty cycle
should be at range from 40% to 60%, and the OSCO is
the external clock’s output buffer.
limit function.
The DRC operation should be switched under power-off
Power Limit Operation
or shut down mode to prevent the pop noise between the
mode switching.
This function limits the maximum output power of APA2615
for prevent exceeding the maximum power of speaker.
Stereo/Mono Switching Operation
When connects the RINN and RINP to 3V3REG before
Except DRC 2 mode, this function is always enabled.
The setting value can be a voltage divider by resistor that
power-on, the APA2615 will enter the monaural operational when power-on. In this operation, the output of
connects 3V3REG and GND.
The maximum power limit value (peak voltage) = (1.65VPMAX)x11.23.
ROUTP should connect to LOUTP for positive output, and
the ROUN should connect to LOUTN for negative output,
Non-Clip Operation
the input signal will via LINN and LINP to input the
APA2615.
This mode can increase more output power compared to
the stereo mode single channel’s output power.
When the DRC [1:0]=01(DRC1=Low, and DRC0=High),
the non-clip mode is active. The gain is increasing by
12dB compared to the normal mode. The output peak
Multi-APA2615 Synchronization Operation
voltage becomes the power limit value. If the peak voltage excesses the power limit value, it will be attenuated
The external clock synchronization function and the clock
output function are prepared and the use of master/slave
to the power limit value, and the maximum attenuation is
-12dB. The attack time is zero second and needs 7.7
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
configuration realizes carrier clock synchronization.
19
www.anpec.com.tw
APA2615
Function Description (Cont.)
Multi-APA2615 Synchronization Operation (Cont.)
Thermal Protection
When using it with multi chips synchronized, one is used
The thermal protection has two modes to prevent the
APA2615 from being destroyed by over temperature.
as a master chip and the other is used as a slave chip. At
this time, connect OSCO pin of a master chip to OSCI pin
When the junction temperature exceeds 155°C and under the 165°C, the APA2615 will limit the output power by
of a slave chip. When using 3 pieces of APA2615 (master/
slave1/slave2), connect OSCO terminal of a slave1 chip
to OSCI pin of a slave2 chip.
6dB to lower the temperature. This calls thermal limit
mode. When the junction temperature falls down to
Protection Flag Operation
130°C, the thermal limit state will be cancelled.
When junction temperature exceeds 165°C, the Class-D
Protection
Function
PFLAG
Class-D
Latch
Output
Output State
Cancellation
output would turn-off, and the PFLAG pin will pull-low.
This calls thermal mute mode. All the state will be can-
DC
Detection
Low
Yes
Weak low
Shutdown or
Power-Off
celled when junction lower than 130°C. Some conditions,
like VDD=5V, RL=4Ω, can’t meet spec P O=14W because IC
UVLO
High-Z
-
Weak low
-
Over
Current
Protection
into thermal shutdown. Output power curve use dot line
to indicate thermal limit.
Low
Yes
Weak low
Shutdown or
Power-Off
Thermal
protection
(power limit)
-
No
Power limit
(-6dB)
Thermal
protection
(class-D off)
Low
No
Weak low
Shutdown or
Power-Off or
Lower
temperature
Shutdown or
Power-Off or
Low
temperature
DC Detection Operation
When a DC signal applies to the input of APA2615 and the
time excesses 0.5s, APA2615 will turn-off the Class-D
output, and the PFLAG pin will pull low. This function protects the speaker to be destroyed by large DC offset. At
mute mode, the DC detection function will be disabled.
The DC detection state will latch and need power-off or
shut down to release the protection.
Connect PFLAG to SD pin, the DC detection will be auto
recovery.
Over-Current Protection
The APA2615 monitors the output current. When the current exceeds the current-limit threshold, the APA2615 turnoff the output to prevent the IC from being damaged in
over-current or short-circuit condition, and the APA2615
will latch at this state until shutdown or power-off to release the over-current protection. PFLAG will pull-high
when the protection occurs.
Connect PFLAG to SD pin, the over-current protection will
be auto recovery.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
20
www.anpec.com.tw
APA2615
Application Information
Square Wave into the Speaker
Output Low-Pass Filter
Apply the square wave into the speaker may cause the
If the traces form APA2615 to speaker are short, it doesn’t
require output filter for FCC & CE standard.
voice coil of speaker jump out the air gap and deface the
voice coil. However, it depends on the amplitude of square
A ferrite bead may need if it’s failing the test for FCC or CE
tested without the LC filter. The figure 2 is the sample for
wave is high enough and the bandwidth of speaker is
higher than the square wave’s frequency. For 500kHz
added ferrite bead; the ferrite shows choosing high impedance in high frequency.
switching frequency, this is not issue for the speaker because the frequency is beyond the audio band, and can’t
significantly move the voice coil, as cone movement is
proportional to 1/f2 for frequency out of audio band.
Ferrite
VOUTP Bead
Input Resistance, Ri
1nF
The APA2615’s input resistor is fixed and the value is
18.8kΩ. The input resistance has wide variation (+/-15%)
which is being caused by manufacture.
Ferrite
Bead
VOUTN
Input Capacitor, Ci
4Ω
1nF
In the typical application, an input capacitor, Ci, is required
to allow the amplifier to bias the input signal to the proper
DC level for optimum operation. In this case, Ci and the
Figure 2. Ferrite bead output filter
input impedance Ri form a high-pass filter with the corner
Figure 3 and Figure 4 are examples for added the LC filter
frequency determined in the following equation:
fC(highpass ) =
1
2πRiCi
(Butterworth), it’s recommended for the situation that the
trace form amplifier to speaker is too long, and needs to
(1)
eliminate the radiated emission or EMI.
The value of Ci must be considered carefully because it
directly affects the low frequency performance of the circuit.
Where Ri is 18.8kΩ and the specification calls for a flat
bass response down to 40Hz. The equation is reconfigured
OUTP 33µH
as below:
1
Ci =
2πRifc
(2)
1µF
When the input resistance variation is considered, the Ci
is 0.22µF, so a value in the range of 0.22µF to 1.0µF
OUTN
would be chosen. A further consideration for this capacitor is the leakage path from the input source through the
33µH
8Ω
1µF
input network (Ri + Rf, Ci) to the load.
This leakage current creates a DC offset voltage at the
input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a low-
Figure 3. LC output filter for 8Ω speaker
Inductor :TOKO 11RHBP A7503AY-330M
leakage tantalum or ceramic capacitor is the best choice.
When polarized capacitors are used, the positive side of
the capacitor should face the amplifiers’ inputs in most
applications because the DC level of the ampliers’inputs
is held at V3V3REG/2. Please note that it is important to confirm the capacitor polarity in the application.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
21
www.anpec.com.tw
APA2615
Application Information (Cont.)
Output Low-Pass Filter (Cont.)
Layout Recommendation
In high power Class-D power amplifier, a correct layout is
important to ensure proper operation of the amplifier and
avoid the switch noise radiation. In general, interconnect-
OUTP 22µH
ing impedance should be minimized by using short and
wide printed circuit traces. Especial for the high slew rate
2.2µF
OUTN
22µH
output PWM signal to speaker, these loops should be as
small as possible.
4Ω
1.All components should be placed close to the APA2615.
For example, the input capacitor (Ci) should be close to
2.2µF
APA2615’s input pins to avoid causing noise coupling
to APA2615’s high impedance inputs; the decoupling
capacitor (CS) should be placed by the APA2615’s power
pin to decouple the power rail noise.
Figure 4. LC output filter for 4Ω speaker
Inductor :TOKO 11RHBP A7503AY-220M
2.The output traces should be short, wide, (>50mil) and
symmetric, and this loop like the figure 5, should be as
Figure 3 and 4’s low pass filter cut-off frequency are 25kHz
(FC).
Power-Supply Decoupling Capacitor, CS
VDD
VDD
tween the amplifier and the speaker.
The optimum decoupling is achieved by using two differ-
1µF
28 LOUTN
32 LPVDD
low as possible. Power supply decoupling also prevents
the oscillations being caused by long lead length be-
31 LOUTP
1µF
fier that requires adequate power supply decoupling to
ensure the output total harmonic distortion (THD) is as
27 LOUTN
The APA2615 is a high-performance CMOS audio ampli-
26 LPVDD
(3)
29 LPGND
2π LC
small as possible, (this loop is high slew rate and high
current path).
30 LOUTP
fC(lowpass) =
1
APA2615
ent types of capacitors that target on different types of
noise on the power supply leads. For higher frequency
Figure 5. APA2615 Output Topology
transients, spikes, or digital hash on the line, a good low
equivalent-series-resistance (ESR) ceramic capacitor,
3. The input trace should be short and symmetric.
typically 0.1µF placed as close as possible to the device
AVDD pin and 1mF placed to the LPVDD and RPVDD leads
4. The power trace width should greater than 50mil.
5. The QFN5.2x6.2-32 Thermal PAD should be soldered
for works best. For filtering lower frequency noise signals,
a large aluminum electrolytic capacitor of 220µF or greater
on PCB, and the ground plane needs soldered mask
(to avoid short circuit) except the Thermal PAD area.
placed near the audio power amplifier is recommended.
Like the figure 6 illustrate.
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
22
www.anpec.com.tw
APA2615
Application Information (Cont.)
Layout Recommendation (Cont.)
4.0mm
Thermal Via
Diameter
0.3mm X 12
1.15mm
4.3mm
0.5mm
5.0mm
0.25mm
3.3mm
Solder Mask
to Prevent
Short Circuit
Ground
Plane for
ThermalPAD
Figure 6. QFN5.2x6.2-32 Land Pattern Recommendation
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
23
www.anpec.com.tw
APA2615
Package Information
QFN5.2x6.2-32
A
E
D
b
Pin 1
A1
D2
A3
L K
E2
Pin 1 Corner
e
S
Y
M
B
O
L
A
A1
QFN5.2x6.2-32
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
0.80
1.00
0.031
0.039
0.00
0.05
0.000
0.002
A3
0.20 REF
0.008 REF
b
0.18
0.30
0.007
0.012
D
6.10
6.30
0.240
0.248
D2
4.20
4.60
0.165
0.181
0.209
0.142
E
5.10
5.30
0.201
E2
3.20
3.60
0.126
0.70
0.020
e
0.50 BSC
L
0.50
K
0.20
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
0.020 BSC
0.028
0.008
24
www.anpec.com.tw
APA2615
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
A
H
330.0±2.00 50 MIN.
QFN5.2x6.2-32
P0
4.0±0.10
T1
P1
8.0±0.10
C
d
D
W
E1
12.4+2.00 13.0+0.50
-0.00
-0.20 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10
P2
D0
2.0±0.10
1.5+0.10
-0.00
D1
1.5 MIN.
T
A0
B0
F
5.5±0.10
K0
0.6+0.00
-0.40 5.60±0.20 6.6±0.20 1.30±0.20
(mm)
Devices Per Unit
Package Type
Unit
Quantity
QFN5.2x6.2-32
Tape & Reel
2500
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
25
www.anpec.com.tw
APA2615
Taping Direction Information
QFN5.2x6.2-32
USER DIRECTION OF FEED
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
26
www.anpec.com.tw
APA2615
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Thickness
<2.5 mm
Volume mm
<350
235 °C
Volume mm
≥350
220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
27
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APA2615
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.4 - Sep., 2011
28
www.anpec.com.tw