ANPEC APA2172OI-TRG

APA2172
Stereo, Differential Input Cap-Free Line Driver
Features
•
•
•
General Description
The APA2172 is a stereo, differential input, single supply,
and cap-free line driver, which is available in SOP-14 and
Operating Voltage: 2.3V~5.5V
Differential Input
TSSOP-14 packages.
The APA2172 is ground-reference output, and doesn’t
Ground Reference Output
- No Output Capacitor Required (for DC Blocking)
- Save the PCB Space
need the output capacitors for DC blocking. The advantages of eliminating the output capacitor are saving the
- Reduce the BOM Costs
•
cost, eliminating component height, and improving the
low frequency response.
- Improve the Low Frequency Response
Low Noise and THD+N
The external gain setting is recommended using from
±1V/V to ±10V/V. High PSRR provides increased immu-
- SNR > 108dB
- Noise < 8µVrms
•
•
•
•
•
•
nity to noise and RF rectification. APA2172 has shutdown
and under-voltage detector function for Depop solution.
- THD+N < 0.02% at 20Hz~20kHz
Output Voltage Swing Can Reach 2.1Vrms/Ch into
2.5kΩ at VDD=3.3V
The APA2172 is capable of driving 2.1Vrms at 3.3V into
2.5kΩ load, and provides short-circuit and thermal pro-
High PSRR: 80dB at 217Hz
tection.
Fast Start-up Time: 500µs
Integrate the De-Pop Circuitry
Simplified Application Circuit
Thermal and Short-Circuit Protection
Surface-Mount Packaging
- SOP-14
•
- TSSOP-14
Lead Free and Green Devices Available
(RoHS Compliant)
Stereo
Input Signal
Applications
•
•
•
•
APA2172
Stereo
Line-Out
Signal
Set-Top Boxes
CD/DVD Players
LCD TVs
HTIBs (Home Theater in Box)
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
1
www.anpec.com.tw
APA2172
Pin Configuration
RINP 1
14 LINP
RINP 1
14 LINP
RINN 2
13 LINN
RINN 2
13 LINN
ROUT 3
12 LOUT
ROUT 3
12 LOUT
11 UVP
GND 4
GND 4
APA2172
11 UVP
APA2172
SDN 5
10 PGND
SDN 5
10 PGND
VSS 6
CPN 7
9 VDD
VSS 6
CPN 7
9 VDD
8 CPP
8 CPP
TSSOP-14
(Top View)
SOP-14
(Top View)
Ordering and Marking Information
Package Code
O : TSSOP-14 K : SOP-14
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APA2172
Assembly Material
Handling Code
Temperature Range
Package Code
APA2172 O :
APA2172 K :
APA2172
XXXXX
XXXXX - Date Code
APA2172
XXXXX
XXXXX - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Absolute Maximum Ratings
Symbol
VPGND_GND
(Note 1)
Parameter
Rating
Unit
PGND to GND Voltage
-0.3 to 0.3
VDD
Supply Voltage (VDD to GND and PGND)
-0.3 to 6.0
VSDN
Input Voltage (SDN to GND)
VSS
VSS to GND and PGND Voltage
-6.0 to 0.3
VOUT
ROUT and LOUT to GND Voltage
VSS-0.3 to VDD+0.3
VGND-0.3 to VDD+0.3
V
VCPP
CPP to PGND Voltage
VPGND-0.3 to VDD+0.3
VCPN
CPN to PGND Voltage
VSS-0.3 to VPGND+0.3
TJ
Maximum Junction Temperature
150
TSTG
Storage Temperature Range
TSDR
Maximum Soldering Temperature Range, 10 Seconds
PD
o
C
-65 to +150
Power Dissipation
260
Internally Limited
W
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
2
www.anpec.com.tw
APA2172
Thermal Characteristics
Symbol
θJA
Parameter
Thermal Resistance - Junction to Ambient
Typical Value
Unit
(Note 2)
TSSOP-14
SOP-14
O
120
120
C/W
Note 2: Please refer to “Thermal Pad Consideration”. 2 layered 5 in2 printed circuit boards with 2oz trace and copper through several
thermal vias. The thermal pad is soldered on the PCB.
Recommended Operating Conditions
Symbol
Range
Parameter
Unit
Min.
Max.
2.3
5.5
VDD
Supply Voltage
VIH
High Level Threshold Voltage
SDN
1.0
-
VIL
Low Level Threshold Voltage
SDN
-
0.35
TA
Operating Ambient Temperature Range
-40
85
o
o
V
C
TJ
Operating Junction Temperature Range
-40
125
RL
Load Resistance
16
100k
C
Ω
Electrical Characteristics
o
VDD=3.3V, VGND=VPGND=0V, VSDN=VDD, CCPF=CCPO=1µF, Ci=1µF, RL=2.5kΩ, TA=25 C, Ri=10kΩ, Rf=20kΩ (unless otherwise noted)
Symbol
Parameter
APA2172
Test Conditions
Unit
Min.
Typ.
Max.
-
10
15
mA
IDD
VDD Supply Current
ISD
VDD Shutdown Current
VSDN=0V
-
1
5
µA
Input Current
SDN
-
0.1
-
µA
400
500
600
kHz
-
21
25
Ω
100
-
dB
Il
CHARGE PUMP
fOSC
Switching Frequency
Req
Equivalent Resistance
DRIVERS
AVO
Open Loop Voltage Gain
80
GW
Unity Gain Bandwidth
8
10
-
MHz
VSR
Slew Rate
-
4.5
-
V/µs
VOS
Output Offset Voltage
VDD=2.3V to 5.5V, RL = 2.5kΩ
-5
-
5
mV
Ri=10kΩ, Rf=10kΩ
-
8
15
µVrms
-
500
-
µs
-80
-80
-50
-60
-60
-45
-
220
-
pF
-
8
-
kV
VN
Output Noise
Tstart-up
Start-up Time
PSRR
Power Supply Rejection Ratio
CL
VESD
VDD=2.3V to 5.5V, Vrr=200mVrms
fin= 217Hz
fin= 1kHz
fin= 20kHz
Maximum Capacitive Load
ESD Protection
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
OUTR, OUTL
3
-
dB
www.anpec.com.tw
APA2172
Electrical Characteristics (Cont.)
o
VDD=3.3V, VGND=VPGND=0V, VSDN=VDD, CCPF=CCPO=1µF, Ci=1µF, RL=2.5kΩ, TA=25 C, Ri=10kΩ, Rf=20kΩ (unless otherwise noted)
Symbol
VO
Parameter
Output Voltage (Stereo, In
Phase)
THD+N=1%, fin=1kHz
RL=2.5kΩ
RL=100kΩ
THD+N=1%, fin=1kHz
RL=32Ω
PO
THD+N
APA2172
Test Conditions
Unit
Min.
Typ.
Max.
2.0
-
2.1
2.3
-
-
15
-
Output Power (Stereo, In
Phase)
Total Harmonic Distortion Plus
Noise
V
mW
VDD=5V
THD+N=1%, fin=1kHz
RL=32Ω
-
VO=2Vrms, RL=2.5kΩ
fin=20Hz
fin=1kHz
fin=20kHz
-
Po=10mW, RL=32Ω,fin=1kHz
40
-
0.02
0.001
0.02
0.002
-
-
0.03
-
VDD=5V, Po=30mW, RL=32Ω,
fin=1kHz
-
0.03
-
-
Crosstalk
Channel Separation
VO=2Vrms, RL=2.5kΩ
fin=20Hz
fin=1kHz
fin=20kHz
S/N
Signal to Noise Ratio
VO=2Vrms, RL=2.5kΩ, Ri=10kΩ,
Rf=10kΩ,
With A-weighting Filter
TSD
Thermal Shutdown Protection
Temperature
100
100
90
%
-
dB
102
108
-
dB
-
150
-
o
C
UVP FUNCTION
VUVP
External Under Voltage
Detection
-
1.25
-
V
IHYS
External Under Voltage
Detection Hysteresis Current
-
5.0
-
µA
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
4
www.anpec.com.tw
APA2172
Typical Operating Characteristics
THD+N vs. Output Power
10
In phase
RL=32Ω
Cin=2.2µ
f=1kHz
Av=2V/V
1
THD+N (%)
1
THD+N (%)
THD+N vs. Output Power
10
VDD=3.3V
0.1
0.01
0
VDD=5V
10
20
30
40
50
VDD=3.3V
0.1
out phase
RL=32Ω
Cin=2.2µ
f=1kHz
Av=2V/V
0.01
0
60
20
Output Power (mW)
80
100
In phase
RL=10kΩ
Cin=2.2µ
f=1kHz
Av=2V/V
1
VDD=2.3V
VDD=3.3V
0.1
60
THD+N vs. Output Voltage
10
In phase
RL=600Ω
Cin=2.2µ
f=1kHz
Av=2V/V
THD+N (%)
THD+N (%)
1
40
Output Power (mW)
THD+N vs. Output Voltage
10
VDD=5V
VDD=3.3V
0.1
VDD=2.3V
0.01
VDD=5V
0.01
VDD=5V
0.001
0.001
0
2
1
3
4
0
THD+N vs. Output Voltage
In phase
RL=100kΩ
Cin=2.2µ
f=1kHz
Av=2V/V
THD+N (%)
THD+N (%)
4
THD+N vs. Frequency
1
0.1
3
Output Voltage (V)
10
1
2
1
Output Voltage (V)
VDD=3.3V
VDD=2.3V
0.01
In phase
VDD=3.3V
RL=32Ω
Cin=2.2µ
Av=2V/V
0.1
Po=1mW
Po=5mW
Po=10mW
0.01
VDD=5V
0.001
0
1
2
3
0.002
20
4
Output Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
100
1k
10k 20k
Frequency (Hz)
5
www.anpec.com.tw
APA2172
Typical Operating Characteristics
THD+N vs. Frequency
1
THD+N vs. Frequency
1
In phase
VDD=5V
RL=32Ω
Cin=2.2µ
Av=2V/V
0.1
THD+N (%)
0.1
THD+N (%)
In phase
VDD=3.3V
RL=600Ω
Cin=2.2µ
Av=2V/V
Po=3mW
Po=30mW
Po=15mW
0.01
Vo=1.8Vrms
0.01
0.002
0.001
20
100
1k
20
10k 20k
100
In phase
VDD=3.3V
RL=100kΩ
Cin=2.2µ
Av=2V/V
0.1
THD+N (%)
THD+N (%)
1
In phase
VDD=3.3V
RL=10kΩ
Cin=2.2µ
Av=2V/V
0.1
0.01
0.01
Vo=1.8Vrms
Vo=1.8Vrms
0.001
0.001
20
100
1k
20
10k 20k
100
Gain
+0
+10
-50
+8
-2
10
100
Gain
-300
200k
-200
Phase
-2
10
-250
VDD=3.3V
RL=10kΩ
Cin=2.2µ
Vo=2Vrms
Av=2V/V
100
-300
-350
1k
10k
200k
Frequency (Hz)
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
+4
+0
-350
10k
-150
+2
-250
1k
-100
Phase(Deg)
-200
Phase
VDD=3.3V
RL=600Ω
Cin=2.2µ
Vo=2Vrms
Av=2V/V
-50
+6
Phase(Deg)
-150
+4
+0
-100
+6
Gain(dB)
+8
+0
10k 20k
Frequency Response
Frequency Response
+10
+2
1k
Frequency (Hz)
Frequency (Hz)
Gain(dB)
10k 20k
THD+N vs. Frequency
THD+N vs. Frequency
1
1k
Frequency (Hz)
Frequency (Hz)
6
www.anpec.com.tw
APA2172
Typical Operating Characteristics (Cont.)
Crosstalk vs. Frequency
Frequency Response
+10
+0
-50
+8
Gain
-200
Phase
+0
-2
10
-250
VDD=3.3V
RL=100kΩ
Cin=2.2µ
Vo=2Vrms
Av=2V/V
100
Crosstalk (dB)
+4
Phase(Deg)
-150
+2
VDD=3.3V
RL=600Ω
AV=-1V/V
Ci=1µF
VO=1Vrms
-70
-100
+6
Gain(dB)
-60
-80
-90
-100
Right to Left
-300
-110
-350
1k
10k
Left to Right
-120
200k
Frequency (Hz)
20
1k
20k
Frequency (Hz)
Crosstalk vs. Frequency
Output Noise Voltage vs. Frequency
20µ
-60
-80
Output Noise Voltage (Vrms)
VDD=3.3V
RL=100kΩ
AV=-1V/V
Ci=1µF
VO=1Vrms
-70
Crosstalk (dB)
100
-90
-100
Right to Left
-110
VDD=3.3V
RL=600Ω
AV=-1V/V
Ci=1µF
A-Weighting
15µ
Left channel
10µ
Right channel
5µ
Left to Right
-120
0µ
20
100
1k
20k
100
1k
20k
Frequency (Hz)
Output Noise Voltage vs. Frequency
PSRR vs. Frequency
+0
20µ
15µ
VDD=3.3V
RL=100kΩ
AV=-1V/V
Ci=1µF
A-Weighting
Power Supply Rejection Ratio (dB)
Output Noise Voltage (Vrms)
20
Frequency (Hz)
Left channel
10µ
Right channel
5µ
0µ
20
100
1k
-40
-60
Right channel
-80
Left channel
-100
-120
20
20k
100
1k
20k
Frequency (Hz)
Frequency (Hz)
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
-20
VDD=3.3V
RL=600Ω
AV=-1V/V
Ci=1µF
Vrr=0.2Vpp
7
www.anpec.com.tw
APA2172
Typical Operating Characteristics (Cont.)
PSRR vs. Frequency
Output Voltage FFT vs. Frequency
+0
VDD=3.3V
RL=100kΩ
AV=-1V/V
Ci=1µF
Vrr=0.2Vpp
-20
-40
-20
Output Voltage FFT (dBr)
-60
Right channel
-80
Left channel
-100
-40
VDD=3.3V
RL=600Ω
AV=-1V/V
VO=-60dB to 2Vrms
-60
-80
-100
-120
-140
-12020
100
1k
Frequency (Hz)
20k
0k
Supply Current vs. Supply Voltage
5k
10k
15k
Frequency (Hz)
GSM Power Supply Rejection vs. Frequency
10
+0
-25
-50
-75
-100
-125
AV=-2V/V
No Load
9
7
6
5
Output Voltage (dBV)
Supply Current (mA)
8
4
3
2
1
0
0.0
1.0
20k
2.0
3.0
4.0
Supply Voltage (V)
5.0 5.5
-150
+0
-25
-50
-75
-100
-125
-150
0
400
800
1.2k
Frequency (Hz)
1.6k
Supply Voltage (dBV)
Power Supply Rejection Ratio (dB)
+0
2k
GSM Power Supply Rejection vs. Time
1
VDD
V LOUT
2
VROUT
3
CH1: VDD, 500mV/Div, DC, Offset=3.3V
CH2: VLOUT, 20mV/Div, DC
CH3: VROUT, 20mV/Div, DC
TIME:2ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
8
www.anpec.com.tw
APA2172
Operating Waveforms
Output Transient at Power On
Output Transient at Power Off
VDD
VDD
1
1
V ROUT
VLOUT
2
2
VROUT
V LOUT
3
3
CH1: VDD, 1V/Div, DC
CH2: VLOUT, 20mV/Div, DC
CH3: VROUT, 20mV/Div, DC
TIME:2ms/Div
CH1: VDD, 1V/Div, DC
CH2: VLOUT, 20mV/Div, DC
CH3: VROUT, 20mV/Div, DC
TIME:10ms/Div
Shutdown Release
Shutdown
VSD
VS D
1
1
2
2
VROUT
VROUT
3
3
VLOUT
VLOUT
CH1: VSD, 1V/Div, DC
CH2: VLOUT, 1V/Div, DC
CH3: VROUT, 1V/Div, DC
TIME:1ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
CH1: VSD, 1V/Div, DC
CH2: VLOUT, 1V/Div, DC
CH3: VROUT, 1V/Div, DC
TIME:1ms/Div
9
www.anpec.com.tw
APA2172
Pin Description
PIN
NO.
NAME
1
RINP
FUNCTION
I/O/P
I
Right channel non-inverting input.
2
RINN
I
Right channel inverting input.
3
ROUT
O
Right channel output.
4
GND
P
Signal ground.
5
SDN
I
Shutdown mod control input signal, pull low for shutdown headphone driver. This pin should
be connect a 100Ω Protection Resistor.
Headphone driver negative power supply.
6
VSS
P
7
CPN
I/O
8
CPP
I/O
9
VDD
P
Supply voltage input.
10
PGND
P
Power ground.
Charge pump flying capacitor negative connection.
Charge pump flying capacitor positive connection.
11
UVP
I
Under voltage protection input. Floating or Pull “H” to disable this function.
12
LOUT
O
Left channel output.
13
LINN
I
Left channel inverting input.
14
LINP
I
Left channel non-inverting input.
Block Diagram
RINN
ROUT
RINP
LINP
LOUT
LINN
Under Voltage
Detection Circuit
Thermal
and Over
Current
Protection
SDN
Shutdown
Circuit
UVP
VDD
Power
and
Depop
Circuit
CPP
Charge
Pump
CPN
GND
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
PGND
10
VSS
www.anpec.com.tw
APA2172
Typical Application Circuit
Line Driver Amplifier
RFB
1. Inverting
R-CH
Input
RFB
CIN
1µF
RIN
R-CH
Output
RINN
ROUT
RINP
System
Power
CIN
1µF
L-CH
Output
LINP
LOUT
RIN
L-CH
Input
LINN
Under Voltage
Detection Circuit
Thermal
and Over
Current
Protection
RSD
100Ω
Shutdown SDN
Control
Shutdown
Circuit
UVP
R3
50kΩ
VDD
Charge
Pump
R2
1kΩ
LDO
CPP
Power
and
Depop
Circuit
R1
3kΩ
10µF
1µF
CCPF
1µF
CPN
VSS
CCPO
1µF
GND PGND
2. Non-Inverting
RFB
RFB
CX
1µF
RIN
RINN
ROUT
R-CH
Input
L-CH
Input
R-CH
Output
RINP
CIN
1µF
RX
CIN
1µF
RX
System
Power
LINP
LOUT
L-CH
Output
LINN
CX
1µF
RIN
Shutdown SDN
Control
RSD
100Ω
Under Voltage
Detection Circuit
Thermal
and Over
Current
Protection
Shutdown
Circuit
UVP
VDD
Power
and
Depop
Circuit
R3
50kΩ
CCPF
R2
1kΩ
LDO
CPP
Charge
Pump
R1
3kΩ
1µF
10µF
1µF
CPN
GND PGND
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
11
VSS
CCPO
1µF
www.anpec.com.tw
APA2172
Typical Application Circuit (Cont.)
Line Driver Amplifier (Cont.)
3. Differential
RFB
RFB
CIN
1µF
RIN
R-CH
Output
RINN
R-CH
Input
ROUT
RINP
CIN
1µF
CIN
1µF
RIN
RFB
System
Power
RFB
RIN
L-CH
Output
LINP
L-CH
Input
LOUT
R1
3kΩ
LINN
RIN
CIN
1µF
RSD
100Ω
Shutdown SDN
Control
Under Voltage
Detection Circuit
Thermal
and Over
Current
Protection
UVP
VDD
Power
and
Depop
Circuit
Shutdown
Circuit
LDO
CPP
Charge
Pump
R2
1kΩ
R3
50kΩ
10µF
1µF
CCPF
1µF
CPN
VSS
CCPO
1µF
GND PGND
Second-Order Active Low-Pass Filter
1. Differential
C1
R2
C3
R1
R-CH
Input
R3
C2
C3
R1
C3
R1
L-CH
Input
C2
R2
R2
RINN
R3
RINP
C1
C1
R2 C1
C1
R3
LINP
Cout
220pF
LINN
LOUT
C1
C3
Under Voltage
Detection Circuit
Thermal
and Over
Current
Protection
Shutdown SDN
Control
R-CH
Output
System
Power
R3
R1
ROUT
Cout
220pF
RSD
100Ω
Shutdown
Circuit
UVP
VDD
Power
and
Depop
Circuit
L-CH
Output
R3
50kΩ
CCPF
R2
1kΩ
LDO
CPP
Charge
Pump
R1
3kΩ
1µF
10µF
1µF
CPN
GND
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
PGND
12
VSS
CCPO
1µF
www.anpec.com.tw
APA2172
Typical Application Circuit (Cont.)
Second-Order Active Low-Pass Filter
2. Inverting
R2
C3
R1
R-CH
Input
C1
R3
RINN
C1
ROUT
Cout
220pF
RINP
C2
R2
C2
L-CH
Input
R1
R-CH
Output
System
Power
C1
Cout
220pF
LINP
R3
LINN
LOUT
C1
C3
Under Voltage
Detection Circuit
Thermal
and Over
Current
Protection
Shutdown SDN
Control
RSD
100Ω
L-CH
Output
Shutdown
Circuit
UVP
VDD
Power
and
Depop
Circuit
R3
50kΩ
CCPF
R2
1kΩ
LDO
CPP
Charge
Pump
R1
3kΩ
1µF
10µF
1µF
CPN
GND PGND
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
13
VSS
CCPO
1µF
www.anpec.com.tw
APA2172
Function Description
Line Driver Operation
Shutdown Function
In order to reduce power consumption while not in use,
the APA2172 contains shutdown controllers to externally
VDD
turn off the amplifier bias circuitry. This shutdown feature
turns the amplifier off when logic low is placed on the
VOUT
VDD/2
SDN pins for the APA2172. The trigger point between a
logic high is 1.0V and logic low level is 0.35V. It is recomGND
mended to switch between ground and the supply voltage VDD to provide maximum device performance. By
Conventional Line Driver
switching the SDN pins to a low level, the amplifier enters
a low-consumption current circumstance, charge pump
VDD
is disabled, and IDD for the APA2172 is in shutdown mode.
In normal operating, the APA2172’s SDN pins should be
pulled to a high level to keep the IC out of the shutdown
mode. The SDN pins should be tied to a definite voltage
VOUT
GND
to avoid unwanted circumstance changes.
Under-Voltage Protection
External under voltage detection can be used to shutdown the APA2172 before an input device can generate a
VSS
pop. The shutdown threshold at the UVP pin is 1.25V.
The user selects a resistor divider to obtain the shut-
Cap-free Line Driver
down threshold and hysteresis for the specific application.
The thresholds can be determined as below:
Figure 1. Cap-free Operation
The APA2172’s line drivers use a charge pump to invert
the positive power supply (VDD) to negative power supply
VUVP = (1.25-6µAxR3) x (R1+R2)/R2
Hysteresis = 5µA x R3 x (R1+R2)/R2
(VSS), see figure1. The headphone drivers operate at this
bipolar power supply (VDD and VSS) and the outputs refer-
With the condition: R3>>R1//R2
For example, to obtain VUVP=3.8V and 1V hysteresis, R1=
ence refers to the ground. This feature eliminates the
output capacitor that is using in conventional single-ended
3kΩ, R2=1kΩ and R3=50kΩ.
headphone drive amplifier. Compare with the single
power supply amplifier, the power supply range has al-
Vsystem
most doubled.
R1
3kΩ
Thermal Protection
The thermal protection circuit limits the junction temperature of the APA2172. When the junction temperature exceeds TJ=+150OC, a thermal sensor turns off the driver,
R2
1kΩ
R3
50kΩ
UVP Pin
1.25V
6µA
allowing the devices to cool. The thermal sensor allows
the driver to start-up after the junction temperature down
about 125OC. The thermal protection is designed with a
25OC hysteresis to lower the average TJ during continu-
Figure 2. Under-Voltage Protection
ous thermal overload conditions, increasing lifetime of
the ICs.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
14
www.anpec.com.tw
APA2172
Application Information
Input Capacitor, Ci
Using The APA2172 As A Second-Order Filter
Several audio DACs used today require an external lowpass filter to remove out-of-band noise. This is possible
Ri
Ci
Rf
with the APA2172, as it can be used like a standard Operational Amplifier. Several filter topologies can be
implemented, both single-ended and differential. In Figure 3, a multi-feedback (MFB) with differential input and
Figure 4. Typical Application Circuit
single-ended input is shown.
An ac-coupling capacitor to remove dc content from the
In the typical application, an input capacitor, Ci, is required
to allow the amplifier to bias the input signal to the proper
source is shown; it serves to block any dc content from
the source and lowers the dc-gain to 1, helping reducing
DC level for optimum operation. In this case, Ci and the
minimum input impedance Ri from a high-pass filter with
the output dc-offset to minimum.
R2
Cx
C3 R1 R3
Cy 6pF
In
C2 C1
the corner frequency are determined in the following
equation:
Differential Input
R2
Cx
C3 R1 R3
Cy 6pF
In C2 C1
Inverting Input
Out
C3 R1 R3
Cout
In +
220pF
C1
fc (highpass ) =
Out
Cout
220pF
circuit. Ri is the external input resistance that typical value
is 10kΩ and the specification calls for a flat bass re-
Figure 3. Second-Order Active Low-Pass Filter
sponse down to 20Hz. Equation is reconfigured as below:
Table 1: Filter Specifications.
High Low
C1
Gain
Pass Pass
(V/V)
(pF)
(Hz) (kHz)
Ci =
C2
(pF)
C3
(µF)
R1
(kΩ)
R2
(kΩ)
R3
(kΩ)
10
10
10
24
-1
1.6
40
100
680
-1.5
1.3
40
68
680
15
8.2
12
30
-2
1.6
60
33
150
6.8
15
30
47
-2
1.6
30
47
470
6.8
15
30
43
-3.33
1.2
30
33
470
10
13
43
43
-10
1.5
30
22
1000
22
4.7
47
27
leakage path from the input source through the input network (Ri + Rf, Ci) to the load.
This leakage current creates a DC offset voltage at the
input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a low
leakage tantalum or ceramic capacitor is the best choice.
When polarized capacitors are used, the negative side of
the capacitor should face the amplifiers’ input in most
(1)
1
2πR1C3
applications because the DC level of the amplifiers’ input is held at GND. Please note that it is important to
(2)
confirm the capacitor polarity in the application.
Input Resistor, Ri
The low pass filter’s cutoff frequency is:
fc(lowpass) =
1
2π R2R3C1C2
(5)
is 0.8µF, so a value in the range of 1µF to 2.2µF would be
chosen. A further consideration for this capacitor is the
The high pass filter’s cutoff frequency is:
fc(highpass) =
1
2πRifc(highpass)
When the input resistance variation is considered, the Ci
For Inverting Input, The overall gain is:
R2
AV = −
R1
(4)
The value of Ci must be considered carefully because it
directly affects the low frequency performance of the
R2
Cx+Cy=C1
Cy:internal Capacitance(6pF)
Cx+Cy=C1
Cy:internal Capacitance(6pF)
1
2πRiCi
The gain of the APA2172 is be set by the external input
resistor (Ri) and external feedback resistor (Rf). Please
(3)
see the figure 4.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
15
www.anpec.com.tw
APA2172
Application Information (Cont.)
Input Resistor, Ri (Cont.)
Gain ( A V ) =
Rf
Ri
Charge Pump Output Capacitor, CCPO
The output capacitor’s value affects the power ripple di-
(6)
rectly at CVSS (VSS). Increasing the value of output capacitor reduces the power ripple. The ESR of output capacitor
The external gain setting is recommended using from
-1V/V to -10V/V, and the Ri is in the range from 1kΩ to
affects the load transient of CVSS (VSS). Lower ESR and
greater than 1µF ceramic capacitor is a recommendation.
47kΩ. It’s recommended to use 1% tolerance resistor or
better. Keep the input trace as short as possible to limit
the noise injection.
The gain is recommended to set -1V/V, and Ri is 10kΩ,
Layout Recommendation
and Rf is 10kΩ.
1.5mm
Feedback Resistor, Rf
0.7mm
Refer the figure 4, the external gain is setting by Ri and Rf;
and the gain setting is recommended using from -1V/V to
1.27mm
-10V/V. The Rf is in the range from 4.7kΩ to 100kΩ. It’s
recommended to use 1% tolerance resistor or better.
Power Supply Decoupling, Cs
The APA2172 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to
ensure the output total harmonic distortion (THD+N) is
as low as possible. Power supply decoupling also prevents the oscillations being caused by long lead length
5.0mm
between the amplifier and the speaker.
The optimum decoupling is achieved by using two different types of capacitors that target on different types of
noise on the power supply leads. For higher frequency
SOP-14 Land Pattern Recommendation
transients, spikes, or digital hash on the line, a good low
equivalent-series-resistance (ESR) ceramic capacitor,
4.7mm
typically 0.1µF, is placed as close as possible to the device VDD and PVDD lead for the best performance. For
1.7mm
1.7mm
0.35mm
filtering lower frequency noise signals, a large aluminum electrolytic capacitor of 10µF or greater placed near
the audio power amplifier is recommended.
Charge Pump Flying Capacitor, CCPF
The flying capacitor affects the load transient of the charge
pump. If the capacitor’s value is too small, then that will
degrade the charge pump’s current driver capability and
0.65mm
the performance of line drive amplifier.
Increasing the flying capacitor’s value will improve the
TSSOP-14 Land Pattern Recommendation
load transient of charge pump. It is recommended using
the low ESR ceramic capacitors (X7R type is recommended) above 1µF.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
16
www.anpec.com.tw
APA2172
Package Information
TSSOP-14
D
b
A
0.25
c
A2
e
E
E1
SEE VIEW A
GAUGE PLANE
A1
SEATING PLANE
S
Y
M
B
O
L
VIEW A
L
TSSOP-14
INCHES
MILLIMETERS
MIN.
MAX.
A
MIN.
MAX.
1.20
0.047
A1
0.05
0.15
0.002
0.006
A2
0.80
1.05
0.031
0.041
b
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
4.90
5.10
0.193
0.201
E
6.20
6.60
0.244
0.260
E1
4.30
4.50
0.169
0.177
0.026 BSC
0.65 BSC
e
L
0.45
0.75
0.018
0.030
0
0°
8°
0°
8°
Note : 1. Follow from JEDEC MO-153 AB-1.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 6 mil per side.
3. Dimension "E1" does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
17
www.anpec.com.tw
APA2172
Package Information
SOP-14
D
E
E1
SEE VIEW A
h X 45
°
e
c
0.25
A
GAUGE PLANE
SEATING PLANE
A1
A2
b
L
VIEW A
S
Y
M
B
O
L
SOP-14
INCHES
MILLIMETERS
MIN.
MAX.
A
MIN.
MAX.
1.75
0.25
0.069
0.010
0.004
A1
0.10
A2
1.25
b
0.31
0.51
0.012
0.020
c
0.17
0.25
0.007
0.010
D
8.55
8.75
0.337
0.344
E
5.80
6.20
0.228
0.244
E1
3.80
4.00
0.150
0.157
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
0
0°
8°
0°
e
0.049
1.27 BSC
0.050 BSC
8°
Note: 1. Follow JEDEC MS-012 AB.
2. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
3. Dimension “E” does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
18
www.anpec.com.tw
APA2172
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
A
H
330.0±2.00
50 MIN.
P0
P1
TSSOP-14
T1
C
16.4+2.00 13.0+0.50
-0.00
-0.20
d
D
W
E1
F
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.50±0.10
P2
D0
D1
T
A0
B0
K0
1.5 MIN.
0.6+0.00
-0.40
6.40±0.20
5.20±0.20
1.60±0.20
4.00±0.10
8.00±0.10
2.00±0.10
1.5+0.10
-0.00
A
H
T1
C
d
D
W
E1
F
330.0±2.00
50 MIN.
16.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
16.0±0.30
1.75±0.10
7.50±0.10
P0
P1
P2
D0
D1
T
A0
B0
K0
2.0±0.10
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
6.40±0.20
9.00±0.20
2.10±0.20
Application
SOP-14
4.0±0.10
8.0±0.10
(mm)
Devices Per Unit
Package Type
Unit
Quantity
TSSOP-14
Tape & Reel
2500
SOP-14
Tape & Reel
2500
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
19
www.anpec.com.tw
APA2172
Taping Direction Information
TSSOP-14
USER DIRECTION OF FEED
SOP-14
USER DIRECTION OF FEED
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
20
www.anpec.com.tw
APA2172
Classification Profile
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3 °C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
21
www.anpec.com.tw
APA2172
Classification Reflow Profiles (Cont.)
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Thickness
<2.5 mm
Volume mm
<350
235 °C
Volume mm
≥350
220 °C
≥2.5 mm
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.8 - Aug., 2013
22
www.anpec.com.tw