APT36GA60B APT36GA60S 600V High Speed PT IGBT APT36GA60S TO -2 POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved 47 D3PAK through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the APT36GA60B poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency. Single die IGBT ® FEATURES TYPICAL APPLICATIONS • Fast switching with low EMI • ZVS phase shifted and other full bridge • Very Low Eoff for maximum efficiency • Half bridge • Ultra low Cres for improved noise immunity • High power PFC boost • Low conduction loss • Welding • Low gate charge • UPS, solar, and other inverters • Increased intrinsic gate resistance for low EMI • High frequency, high efficiency industrial • RoHS compliant Absolute Maximum Ratings Ratings Unit Collector Emitter Voltage 600 V IC1 Continuous Collector Current @ TC = 25°C 65 IC2 Continuous Collector Current @ TC = 100°C 36 ICM Pulsed Collector Current 109 VGE Gate-Emitter Voltage PD Total Power Dissipation @ TC = 25°C Vces Parameter 1 2 SSOA Switching Safe Operating Area @ TJ = 150°C TJ, TSTG Operating and Storage Junction Temperature Range TL Symbol VBR(CES) VGE(th) Gate Emitter Threshold Voltage °C 300 TJ = 25°C unless otherwise specified Collector-Emitter Breakdown Voltage Collector-Emitter On Voltage V W -55 to 150 Parameter VCE(on) ±30 290 109A @ 600V Lead Temperature for Soldering: 0.063" from Case for 10 Seconds Static Characteristics A Test Conditions Min VGE = 0V, IC = 1.0mA 600 Zero Gate Voltage Collector Current IGES Gate-Emitter Leakage Current Max 2.5 VGE = 15V, TJ = 25°C 2.0 IC = 20A TJ = 125°C 1.9 VGE =VCE , IC = 1mA ICES Typ 3 4.5 V 6 VCE = 600V, TJ = 25°C 250 VGE = 0V TJ = 125°C 2500 VGS = ±30V Unit μA ±100 nA Thermal and Mechanical Characteristics Symbol RθJC WT Torque Characteristic Min Typ Max Unit Junction to Case Thermal Resistance - - 0.43 °C/W Package Weight - 5.9 Mounting Torque (TO-247 Package), 4-40 or M3 screw Microsemi Website - http://www.microsemi.com - g 10 in·lbf 052-6327 Rev B 12 - 2008 Symbol Dynamic Characteristics Symbol Parameter Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance Qg Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf Gate- Collector Charge Switching Safe Operating Area Turn-On Delay Time APT36GA60B TJ = 25°C unless otherwise specified Test Conditions Min Typ Capacitance 2880 VGE = 0V, VCE = 25V 226 f = 1MHz 328 Gate Charge 102 VGE = 15V 18 IC = 20A L= 100uH, VCE = 600V Inductive Switching (25°C) 109 A 16 VCC = 400V 14 Turn-Off Delay Time VGE = 15V 122 IC = 20A 77 Eon2 Turn-On Switching Energy RG = 10Ω4 307 Eoff6 Turn-Off Switching Energy TJ = +25°C 254 td(on Turn-On Delay Time Inductive Switching (125°C) 14 tr td(off) Current Rise Time VCC = 400V 15 Turn-Off Delay Time VGE = 15V 149 IC = 20A 113 Eon2 Turn-On Switching Energy RG = 10Ω4 508 Eoff6 Turn-Off Switching Energy TJ = +125°C 439 tf Current Fall Time pF 34 Current Rise Time Current Fall Time Unit nC VCE= 300V TJ = 150°C, RG = 10Ω4, VGE = 15V, Max ns μJ ns μJ 052-6327 Rev B 12 - 2008 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature. 2 Pulse test: Pulse Width < 380μs, duty cycle < 2%. 3 See Mil-Std-750 Method 3471 4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452) 5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode. 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves TJ= 125°C 30 TJ= 25°C TJ= 150°C 20 10 250 200 150 100 TJ= 25°C 50 TJ= -55°C TJ= 125°C VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 0 12V 160 11V 120 2 4 6 8 10 12 TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 3 IC = 40A IC = 20A 2 IC = 10A 1 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature J VCE = 120V VCE = 300V VCE = 480V 8 6 4 2 0 0 10 20 30 40 50 60 70 80 GATE CHARGE (nC) FIGURE 4, Gate charge 90 100 5 4 IC = 40A 3 IC = 20A 2 IC = 10A 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 70 0.85 I = 20A C T = 25°C 10 1.05 0.90 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 12 80 0.95 8V 6V 14 1.10 1.00 9V 40 16 14 10V 80 0 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4 0 200 VGE, GATE-TO-EMITTER VOLTAGE (V) 250μs PULSE TEST<0.5 % DUTY CYCLE 13V 240 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 300 VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) IC, COLLECTOR CURRENT (A) TJ= 55°C 0 IC, COLLECTOR CURRENT (A) = 15V IC, DC COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) GE 15V 0 25 60 50 40 30 20 10 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6327 Rev B 12 - 2008 V APT36GA60B_S 280 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 40 Typical Performance Curves APT36GA60B_S 200 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 18 16 VGE = 15V 14 VCE = 400V TJ = 25°C, or 125°C RG = 10Ω L = 100μH 12 10 160 VGE =15V,TJ=125°C 120 40 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 150 RG = 10Ω, L = 100μH, VCE = 400V 35 VCE = 400V RG = 10Ω L = 100μH 0 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 40 VGE =15V,TJ=25°C 80 RG = 10Ω, L = 100μH, VCE = 400V 125 25 tr, FALL TIME (ns) tr, RISE TIME (ns) 30 20 15 10 TJ = 25 or 125°C,VGE = 15V 0 TJ = 25°C, VGE = 15V 50 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1200 V = 400V CE V = +15V GE R =10Ω G 1250 1000 TJ = 125°C 750 500 TJ = 25°C 250 0 EOFF, TURN OFF ENERGY LOSS (μJ) FIGURE 11, Current Rise Time vs Collector Current 1500 Eon2, TURN ON ENERGY LOSS (μJ) 75 0 0ICE, COLLECTOR-TO-EMITTER 5 10 15 20 25 30 35 40 CURRENT (A) 0 J 1600 Eon2,40A 1400 Eoff,40A 1200 1000 800 Eon2,20A 600 Eoff,20A 400 0 Eon2,10A Eoff,10A 200 0 800 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance TJ = 125°C 600 400 200 1600 V = 400V CE V = +15V GE T = 125°C 1800 G 1000 TJ = 25°C 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) 2000 V = 400V CE V = +15V GE R = 10Ω 0 5 10 15 20 25 30 35 40 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) TJ = 125°C, VGE = 15V 25 5 052-6327 Rev B 12 - 2008 100 1400 V = 400V CE V = +15V GE R = 10Ω G Eon2,40A 1200 1000 800 600 400 200 0 Eoff,40A Eon2,20A Eoff,20A Eon2,10A Eoff,10A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT36GA60B_S 10000 200 100 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 1000 Coes 100 Cres 10 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 10 1 0.1 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0.45 D = 0.9 0.40 0.35 0.7 0.30 0.25 0.5 Note: PDM 0.20 0.3 0.15 t2 0.10 t 0.1 0.05 0 0.05 SINGLE PULSE 10-5 10 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 10 -3 10 -2 10 -1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration -4 TJ (°C) Dissipated Power (Watts) t1 1.0 TC (°C) .1853 .2443 .0069 .239 ZEXT ZθJC, THERMAL IMPEDANCE (°C/W) 0.50 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. 052-6327 Rev B 12 - 2008 FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL APT36GA60B_S 10% Gate Voltage TJ = 125°C td(on) 90% APT30DQ120 tr IC V CC V CE Collector Current 10% 5% 5% Collector Voltage Switching Energy A D.U.T. Figure 20, Inductive Switching Test Circuit Figure 21, Turn-on Switching Waveforms and Definitions TJ = 125°C 90% td(off) Gate Voltage Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 22, Turn-off Switching Waveforms and Definitions D3PAK Package Outline TO-247 (B) Package Outline 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) (Heat Sink) e3 100% Sn Plated 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 052-6327 Rev B 12 - 2008 13.41 (.528) 13.51(.532) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Gate Collector 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Drain) and Leads are Plated Emitter 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter Collector Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.