AGILENT ATF-38143-TR1

Low Noise Pseudomorphic HEMT
in a Surface Mount Plastic Package
Technical Data
ATF-38143
Features
Surface Mount Package
SOT-343
• Low Noise Figure
Description
Agilent Technologies’s ATF-38143
is a high dynamic range, low
noise, PHEMT housed in a 4-lead
SC-70 (SOT-343) surface mount
plastic package.
• Excellent Uniformity in
Product Specifications
• Low Cost Surface Mount
Small Plastic Package
SOT-343 (4 lead SC-70)
• Tape-and-Reel Packaging
Option Available
Based on its featured performance, ATF-38143 is suitable for
applications in cellular and PCS
handsets, LEO systems, MMDS,
and other systems requiring super
low noise figure with good
intercept in the 450␣ MHz to
10␣ GHz frequency range.
Pin Connections and
Package Marking
1.9 GHz; 2 V, 10 mA (Typ.)
DRAIN
• 0.4 dB Noise Figure
• 16 dB Associated Gain
• 12.0 dBm Output Power at
1␣ dB Gain Compression
rd
• 22.0 dBm Output 3 Order
Intercept
SOURCE
8Px
Specifications
SOURCE
GATE
Note: Top View. Package marking
provides orientation and identification.
“8P” = Device code
“x” = Date code character. A new
character is assigned for each month, year.
Applications
• Low Noise Amplifier for
Cellular/PCS Handsets
• LNA for WLAN, WLL/RLL,
LEO, and MMDS
Applications
• General Purpose Discrete
PHEMT for Other Ultra Low
Noise Applications
1
88759/05-6.PM6.5J
Page 1
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
ATF-38143 Absolute Maximum Ratings[1]
Symbol
VDS
VGS
VGD
IDS
Pdiss
Pin max
TCH
TSTG
θjc
Parameter
Drain - Source Voltage [2]
Gate - Source Voltage
Gate Drain Voltage
Drain Current
Total Power Dissipation [2]
RF Input Power
Channel Temperature
Storage Temperature
Thermal Resistance [3]
Absolute
Maximum
4.5
-4
-4
Idss
580
17
160
-65 to 160
165
Units
V
V
V
mA
mW
dBm
°C
°C
°C/W
Notes:
1. Operation of this device above any one
of these parameters may cause
permanent damage.
2. Source lead temperature is 25°C.
Derate 6␣ mW/ °C for TL > 64°C.
3. Thermal resistance measured using
150°C Liquid Crystal Measurement
method.
Product Consistency Distribution Charts
250
300
Cpk = 1.59062
Stdev = 0.73 dBm
6 Wafers
Sample Size = 450
+0.6 V
250
200
IDS (mA)
200
150
0V
+3 Std
-3 Std
150
100
100
50
50
–0.6 V
0
0
1
2
3
VDS (V)
4
0
18
5
24
26
Figure 2. OIP3 @ 2 GHz, 2 V, 10 mA.
LSL=18.5, Nominal=21.99, USL=26.0
Cpk = 4.08938
Stdev = 0.03 dB
6 Wafers
Sample Size = 450
150
22
OIP3 (dB)
Figure 1. Typical I-V Curves.
(VGS = -0.2 V per step)
180
20
160
Cpk = 2.58097
Stdev = 0.14 dB
6 Wafers
Sample Size = 450
120
120
-3 Std
+3 Std
90
-3 Std
+3 Std
80
60
40
30
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
15
Figure 3. NF @ 2 GHz, 2 V, 10 mA.
LSL=0, Nominal=0.44, USL=0.85
Note:
Distribution data sample size is 450
samples taken from 6 different wafers.
Future wafers allocated to this product
may have nominal values anywhere within
the upper and lower spec limits.
15.5
16
16.5
17
17.5
18
GAIN (dB)
NF (dB)
Figure 4. Gain @ 2 GHz, 2 V, 10 mA.
LSL=15.0, Nominal=16.06, USL= 18.0
Measurements made on production test
board. This circuit represents a trade-off
between an optimal noise match and a
realizeable match based on production test
requirements. Circuit losses have been deembedded from actual measurements.
2
88759/05-6.PM6.5J
Page 2
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
ATF-38143 Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol
Idss [1]
VP [1]
Id
gm[1]
IGDO
Igss
NF
Ga
OIP3
IIP3
P1dB
Parameters and Test Conditions
Units Min.
Saturated Drain Current
VDS = 1.5 V, VGS = 0 V mA
90
Pinchoff Voltage
VDS = 1.5 V, IDS = 10% of Idss
V
-0.65
Quiescent Bias Current
VGS = -0.54 V, VDS = 2 V mA
—
Transconductance
VDS = 1.5 V, gm = Idss /VP mmho 180
Gate to Drain Leakage Current
VGD = -5 V
µA
Gate Leakage Current
VGD = VGS = -4 V
µA
—
f = 2 GHz
VDS = 2 V, IDS = 5 mA
dB
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 20 mA
Noise Figure
f = 900 MHz
VDS = 2 V, IDS = 5 mA
dB
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 20 mA
f = 2 GHz
VDS = 2 V, IDS = 5 mA
dB
VDS = 2 V, IDS = 10 mA
15
V
=
2
V,
I
=
20
mA
DS
DS
Associated Gain[3]
f = 900 MHz
VDS = 2 V, IDS = 5 mA
dB
VDS = 2 V, IDS = 10 mA
VDS = 2 V, IDS = 20 mA
f = 2 GHz VDS = 2 V, IDS = 10 mA dBm 18.5
Output 3rd Order
[3]
Intercept Point
f = 900 MHz VDS = 2 V, IDS = 10 mA dBm
rd
f = 2 GHz VDS = 2 V, IDS = 10 mA dBm
Input 3 Order
Intercept Point [3]
f = 900 MHz VDS = 2 V, IDS = 10 mA dBm
f = 2 GHz VDS = 2 V, IDS = 10 mA dBm
1 dB Compressed
[3]
Compressed Power
f = 900 MHz VDS = 2 V, IDS = 10 mA dBm
Typ.[2] Max.
118
145
-0.5 -0.35
10
—
230
—
500
30
300
0.6
0.4
0.85
0.3
0.6
0.4
0.3
15.3
16.0
18
17.0
17.0
19.0
20.5
22.0
22.0
6.0
3.0
12.0
12.0
Notes:
1. Guaranteed at wafer probe level.
2. Typical value determined from a sample size of 450 parts from 6 wafers.
3. Measurements obtained using production test board described in Figure 5.
Input
50 Ohm
Transmission Line
(0.5 dB loss)
Input
Matching Circuit
Γmag = 0.380
Γang = 58.2°
(0.46 dB loss)
DUT
Output
Matching Circuit
Γmag = 0.336
Γang = 34.5°
(0.46 dB loss)
50 Ohm
Transmission Line
(0.5 dB loss)
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test
board requirements. Circuit losses have been de-embedded from actual measurements.
3
88759/05-6.PM6.5J
Page 3
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
ATF-38143 Typical Performance Curves
30
OIP3
20
15
P1dB
10
OIP3
25
OIP3, P 1dB (dBm)
OIP3, P 1dB (dBm)
25
0.7
5
20
15
P1dB
10
5
0
10
20
30
40
50
60
0.5
0.4
0.3
0.2
0.1
0
0
0
0
10
CURRENT, I DS (mA)
20
30
40
50
60
0
Figure 7. OIP3 and P1dB vs. Id at 2 V,
900 MHz.
21
0.3
0.2
0.1
ASSOCIATED GAIN (dB)
21
ASSOCIATED GAIN (dB)
22
0.6
0.4
20
19
18
17
16
0
10
20
30
40
50
CURRENT, I DS (mA)
Figure 9. Noise Figure vs. Id at 2 V,
900 MHz.
60
15
0
30
40
50
60
Figure 8. Noise Figure vs. Id at 2 V,
2 GHz.
22
0.5
20
CURRENT, I DS (mA)
0.7
0
10
CURRENT, I DS (mA)
Figure 6. OIP3 and P1dB vs. Id at 2 V,
2 GHz.
NOISE FIGURE (dB)
0.6
NOISE FIGURE (dB)
30
20
19
18
17
16
10
20
30
40
50
60
15
0
10
20
30
40
50
60
CURRENT, I DS (mA)
CURRENT, I DS (mA)
Figure 10. Associated Gain vs. Id at 2 V,
2 GHz.
Figure 11. Associated Gain vs. Id at 2 V,
900 MHz.
Notes:
1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 2 V
10␣ mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on
production test board requirements. Circuit losses have been de-embedded from actual measurements.
2. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is
approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device
is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency)
when compared to a device that is driven by a constant current source as is typically done with active biasing.
4
88759/05-6.PM6.5J
Page 4
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
ATF-38143 Typical Performance Curves, continued
1.6
30
0.8
1.4
25
0.7
0.5
0.4
0.3
20
1.0
0.8
15
15
0.6
10
10
0.4
–40°C
+25°C
+85°C
5
0
0
0
2
4
6
8
0
1
FREQUENCY (GHz)
2
3
4
5
6
GAIN (dB), P 1dB and OIP3 (dBm)
24
22
–40°C
+25°C
+85°C
16
14
12
10
1.0
20
0.8
15
0.6
10
0.4
P1dB
OIP3
Gain
NF
0.2
0
0
2000
4000
6000
8000
FREQUENCY (MHz)
Figure 15. P1dB and OIP3 vs. Frequency
and Temperature at 2 V, 10 mA.
0
10
20
30
40
6
8
10
12
50
1.4
30
1.2
25
5
4
Figure 14. Associated Gain vs.
Frequency and Current at 2V.
1.4
30
0
2
FREQUENCY (GHz)
Figure 13. Fmin and Ga vs. Frequency
and Temperature at 2 V, 10 mA.
26
18
0
FREQUENCY (GHz)
Figure 12. Fmin vs. Frequency and
Current at 2V.
20
0
7
NF (dB)
0
5 mA
10 mA
20 mA
5
0.2
1.2
25
1.0
20
0.8
15
0.6
10
0.4
P1dB
OIP3
Gain
NF
5
0.2
0
0
60
0
10
20
30
40
50
60
CURRENT, I DS (mA)
CURRENT, I DS (mA)
Figure 16. NF, Gain, P 1dB and OIP3 vs.
IDS at 2V, 3.9 GHz.
Figure 17. NF, Gain, P 1dB and OIP3 vs.
IDS at 2V, 5.8 GHz.
Notes:
1. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is
approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device
is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency)
when compared to a device that is driven by a constant current source as is typically done with active biasing.
5
88759/05-6.PM6.5J
Page 5
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
NF (dB)
5 mA
10 mA
20 mA
0.1
GAIN (dB), P 1dB and OIP3 (dBm)
0.2
P1dB, OIP3 (dBm)
25
1.2
Fmin
Ga
20
Ga (dB)
Fmin (dB)
0.6
30
Ga (dB)
0.9
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 5 mA
Freq.
(GHz)
S11
Mag.
Ang.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.98
0.95
0.93
0.87
0.82
0.80
0.75
0.71
0.67
0.66
0.66
0.68
0.70
0.72
0.74
0.78
0.82
0.83
0.85
0.87
0.88
0.88
0.89
-25
-40
-51
-75
-89
-98
-120
-139
-170
162
137
113
92
73
56
39
23
10
-2
-16
-30
-39
-50
dB
S21
Mag.
Ang.
dB
14.47
14.19
14.00
13.28
12.79
12.45
11.48
10.48
8.68
7.24
6.02
4.78
3.51
2.39
1.51
0.44
-0.73
-2.17
-3.54
-4.84
-6.16
-7.51
-9.07
5.289
5.122
5.010
4.613
4.362
4.192
3.751
3.342
2.716
2.302
2.000
1.734
1.498
1.316
1.190
1.052
0.919
0.779
0.665
0.573
0.492
0.421
0.352
160
148
140
122
111
105
89
76
52
30
10
-10
-29
-47
-64
-83
-100
-117
-132
-147
-161
-176
173
-26.56
-22.85
-21.21
-18.49
-17.52
-16.95
-16.19
-15.70
-15.44
-15.44
-15.60
-15.92
-16.59
-17.20
-17.46
-17.86
-18.42
-19.33
-20.00
-20.45
-20.82
-21.11
-21.83
S12
Mag. Ang.
S22
Mag.
Ang.
MSG/MAG
(dB)
0.047
0.072
0.087
0.119
0.133
0.142
0.155
0.164
0.169
0.169
0.166
0.160
0.148
0.138
0.134
0.128
0.120
0.108
0.100
0.095
0.091
0.088
0.081
0.67
0.65
0.62
0.56
0.52
0.50
0.44
0.40
0.34
0.31
0.29
0.28
0.29
0.32
0.37
0.42
0.47
0.52
0.57
0.63
0.68
0.71
0.75
-21
-32
-40
-58
-69
-77
-94
-110
-138
-162
173
146
121
103
87
66
47
28
11
0
-12
-26
-37
20.51
18.52
17.60
15.88
15.16
14.70
13.84
13.09
12.06
11.34
10.81
10.35
8.89
7.33
6.93
6.66
6.22
4.93
3.95
3.58
2.90
1.98
1.24
73
63
56
41
33
28
16
5
-12
-27
-41
-55
-67
-77
-86
-97
-106
-115
-121
-129
-136
-145
-151
ATF-38143 Typical Noise Parameters
Γopt
Mag.
0.69
0.69
0.68
0.68
0.66
0.65
0.62
0.59
0.50
0.49
0.51
0.53
0.54
0.59
0.62
Ang.
14
26
27
44
59
61
80
98
127
163
-169
-140
-111
-88
-68
Rn/50
0.25
0.23
0.22
0.20
0.17
0.17
0.14
0.11
0.08
0.04
0.04
0.09
0.20
0.36
0.60
Ga
dB
23.0
20.5
19.8
17.1
16.0
15.4
14.3
13.1
10.8
9.8
8.7
7.7
6.8
6.1
6.0
25
20
MSG/MAG and S 21 (dB)
VDS = 2 V, IDS = 5 mA
Freq.
Fmin
GHz
dB
0.5
0.18
0.9
0.21
1.0
0.22
1.5
0.26
1.8
0.29
2.0
0.32
2.5
0.40
3.0
0.48
4.0
0.60
5.0
0.70
6.0
0.84
7.0
0.96
8.0
1.12
9.0
1.27
10.0
1.38
15
MSG
10
MAG
5
S21
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 18. MSG/MAG and |S21|2 vs.
Frequency at 2 V, 5 mA.
Notes:
1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From
these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
6
88759/05-6.PM6.5J
Page 6
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 10 mA
Freq.
(GHz)
S11
Mag.
Ang.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.97
0.93
0.91
0.83
0.78
0.76
0.71
0.68
0.65
0.65
0.66
0.68
0.71
0.73
0.75
0.79
0.82
0.84
0.85
0.87
0.88
0.88
0.89
-29
-47
-58
-85
-100
-109
-131
-150
180
153
129
107
87
68
53
36
20
8
-4
-18
-31
-41
-51
dB
S21
Mag.
Ang.
dB
17.41
17.00
16.69
15.69
15.02
14.57
13.38
12.22
10.24
8.68
7.35
6.03
4.72
3.57
2.71
1.61
0.47
-0.93
-2.24
-3.45
-4.63
-5.81
-7.27
7.423
7.081
6.834
6.086
5.634
5.350
4.665
4.083
3.251
2.716
2.330
2.003
1.722
1.509
1.366
1.204
1.055
0.898
0.773
0.672
0.587
0.512
0.433
158
145
136
117
107
100
86
73
50
30
11
-9
-27
-43
-60
-78
-94
-110
-125
-140
-153
-167
-179
-27.74
-24.01
-22.50
-20.00
-19.17
-18.71
-17.99
-17.65
-17.27
-17.08
-16.95
-16.95
-17.27
-17.46
-17.27
-17.39
-17.65
-18.34
-18.86
-19.17
-19.49
-19.74
-20.54
S12
Mag. Ang.
S22
Mag.
Ang.
MSG/MAG
(dB)
0.041
0.063
0.075
0.100
0.110
0.116
0.126
0.131
0.137
0.140
0.142
0.142
0.137
0.134
0.137
0.135
0.131
0.121
0.114
0.110
0.106
0.103
0.094
0.53
0.51
0.48
0.42
0.39
0.37
0.33
0.31
0.28
0.28
0.28
0.29
0.32
0.35
0.40
0.45
0.50
0.54
0.59
0.63
0.67
0.70
0.74
-26
-40
-50
-72
-85
-94
-114
-132
-163
172
147
122
99
83
70
52
35
17
2
-8
-19
-32
-41
22.58
20.51
19.60
17.84
17.09
16.64
15.68
14.94
13.75
12.88
12.15
11.49
9.09
7.94
7.55
7.27
6.84
5.72
4.77
4.42
3.85
3.03
2.34
72
61
55
40
33
28
18
9
-5
-18
-30
-42
-53
-62
-72
-83
-94
-104
-112
-122
-131
-141
-148
ATF-38143 Typical Noise Parameters
Ang.
13
22
26
43
60
67
81
98
129
166
-165
-135
-106
-84
-65
Rn/50
0.17
0.16
0.15
0.14
0.12
0.12
0.10
0.08
0.06
0.04
0.04
0.08
0.16
0.29
0.46
Ga
dB
24.1
21.0
20.4
17.9
17.0
16.1
15.2
13.9
11.9
10.8
9.6
8.7
7.7
7.0
6.8
25
20
MSG/MAG and S 21 (dB)
VDS = 2 V, IDS = 10 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
0.5
0.18
0.66
0.9
0.19
0.64
1.0
0.20
0.63
1.5
0.23
0.60
1.8
0.25
0.57
2.0
0.28
0.56
2.5
0.32
0.54
3.0
0.39
0.52
4.0
0.52
0.44
5.0
0.65
0.44
6.0
0.75
0.45
7.0
0.84
0.48
8.0
0.95
0.51
9.0
1.10
0.55
10.0
1.20
0.56
MSG
15
10
MAG
5
S21
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 19. MSG/MAG and |S21|2 vs.
Frequency at 2 V, 10 mA.
Notes:
1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From
these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
7
88759/05-6.PM6.5J
Page 7
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 20 mA
Freq.
(GHz)
S11
Mag.
Ang.
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
0.96
0.91
0.88
0.79
0.75
0.73
0.68
0.66
0.64
0.64
0.66
0.68
0.71
0.73
0.76
0.80
0.83
0.85
0.86
0.88
0.89
0.89
0.90
-33
-53
-65
-93
-109
-119
-140
-159
172
147
124
103
83
65
50
34
18
6
-5
-19
-32
-42
-52
dB
S21
Mag.
Ang.
dB
19.50
18.94
18.51
17.23
16.41
15.88
14.52
13.26
11.16
9.52
8.12
6.77
5.41
4.25
3.39
2.27
1.11
-0.26
-1.51
-2.69
-3.80
-4.91
-6.29
9.436
8.850
8.425
7.269
6.616
6.220
5.321
4.604
3.616
2.992
2.548
2.179
1.864
1.632
1.478
1.299
1.136
0.971
0.840
0.734
0.646
0.568
0.485
155
141
132
113
103
97
83
70
49
30
11
-8
-25
-41
-57
-74
-90
-106
-120
-134
-147
-161
-173
-28.87
-25.19
-23.74
-21.41
-20.63
-20.26
-19.58
-19.09
-18.49
-17.99
-17.52
-17.33
-17.39
-17.27
-16.95
-16.89
-17.14
-17.72
-18.13
-18.42
-18.79
-19.02
-19.83
S12
Mag. Ang.
S22
Mag.
Ang.
MSG/MAG
(dB)
0.036
0.055
0.065
0.085
0.093
0.097
0.105
0.111
0.119
0.126
0.133
0.136
0.135
0.137
0.142
0.143
0.139
0.130
0.124
0.120
0.115
0.112
0.102
0.39
0.37
0.35
0.31
0.29
0.29
0.27
0.27
0.28
0.29
0.31
0.34
0.37
0.40
0.44
0.50
0.55
0.58
0.62
0.67
0.69
0.71
0.74
-33
-50
-63
-90
-106
-116
-139
-157
174
151
129
107
87
73
61
44
28
11
-4
-13
-24
-36
-46
24.18
22.07
21.13
19.32
18.52
18.07
17.05
16.18
14.83
13.76
12.82
11.08
9.34
8.33
7.91
7.63
7.20
6.20
5.32
5.01
4.34
3.57
2.94
71
60
54
41
34
30
21
14
2
-9
-20
-32
-43
-53
-63
-76
-87
-98
-107
-118
-127
-138
-146
ATF-38143 Typical Noise Parameters
Ang.
13
22
26
43
55
68
82
100
133
172
-159
-129
-100
-79
-61
Rn/50
0.13
0.12
0.12
0.09
0.09
0.09
0.08
0.06
0.05
0.04
0.04
0.08
0.15
0.26
0.40
Ga
dB
24.8
21.4
21.0
19.0
18.0
16.9
15.5
14.7
12.6
11.4
10.2
9.3
8.3
7.5
7.3
25
20
MSG/MAG and S 21 (dB)
VDS = 2 V, IDS = 20 mA
Freq.
Fmin
Γopt
GHz
dB
Mag.
0.5
0.15
0.71
0.9
0.16
0.68
1.0
0.16
0.66
1.5
0.18
0.60
1.8
0.20
0.55
2.0
0.22
0.51
2.5
0.28
0.48
3.0
0.33
0.46
4.0
0.45
0.37
5.0
0.56
0.39
6.0
0.65
0.40
7.0
0.72
0.44
8.0
0.82
0.48
9.0
0.90
0.52
10.0
1.00
0.60
MSG
15
10
MAG
S21
5
0
-5
-10
0
2
4
6
8
10 12 14
16 18
FREQUENCY (GHz)
Figure 20. MSG/MAG and |S21|2 vs.
Frequency at 2 V, 20 mA.
Notes:
1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From
these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of
that point.
8
88759/05-6.PM6.5J
Page 8
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
Noise Parameter
Applications Information
Fmin values at 2␣ GHz and higher
are based on measurements while
the Fmins below 2 GHz have been
extrapolated. The Fmin values are
based on a set of 16 noise figure
measurements made at 16
different impedances using an
ATN NP5 test system. From these
measurements, a true Fmin is
calculated. Fmin represents the
true minimum noise figure of the
device when the device is presented with an impedance
matching network that transforms the source impedance,
typically 50Ω, to an impedance
represented by the reflection
coefficient Γo. The designer must
design a matching network that
will present Γo to the device with
minimal associated circuit losses.
The noise figure of the completed
amplifier is equal to the noise
figure of the device plus the
losses of the matching network
preceding the device. The noise
figure of the device is equal to
Fmin only when the device is
presented with Γo. If the reflection coefficient of the matching
network is other than Γo, then the
noise figure of the device will be
greater than Fmin based on the
following equation.
NF = Fmin + 4 Rn
|Γs – Γo | 2
Zo (|1 + Γo| 2) (1 – Γs| 2)
Where Rn /Zo is the normalized
noise resistance, Γo is the optimum reflection coefficient
required to produce Fmin and Γs is
the reflection coefficient of the
source impedance actually
presented to the device. The
losses of the matching networks
are non-zero and they will also
add to the noise figure of the
device creating a higher amplifier
noise figure. The losses of the
matching networks are related to
the Q of the components and
associated printed circuit board
loss. Γo is typically fairly low at
higher frequencies and increases
as frequency is lowered. Larger
gate width devices will typically
have a lower Γo as compared to
narrower gate width devices.
Typically for FETs, the higher Γo
usually infers that an impedance
much higher than 50Ω is required
for the device to produce Fmin. At
VHF frequencies and even lower
L Band frequencies, the required
impedance can be in the vicinity
of several thousand ohms.
Matching to such a high impedance requires very hi-Q components in order to minimize circuit
losses. As an example at 900 MHz,
when air-wound coils (Q > 100)
are used for matching networks,
the loss can still be up to 0.25 dB
which will add directly to the
noise figure of the device. Using
muilti-layer molded inductors
with Qs in the 30 to 50 range
results in additional loss over the
air-wound coil. Losses as high as
0.5 dB or greater add to the
typical 0.15 dB Fmin of the device
creating an amplifier noise figure
of nearly 0.65 dB. A discussion
concerning calculated and
measured circuit losses and their
effect on amplifier noise figure is
covered in Agilent Application
1085.
9
88759/05-6.PM6.5J
Page 9
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
ATF-38143 SC70 4 Lead, High Frequency Nonlinear Model
INSIDE Package
Var
Ean
VAR
VAR1
K=5
Z2=85
Z1=30
GATE
Port
G
Num=1 VIA2
V1
D=20 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40 mil
TLINP
TL4
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL3
Z=Z2 Ohm
L=25 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L6
L=0.2 nH
R=0.001
L
L1
L=0.6 nH
R=0.001
GaAsFET
FET1
Model= MESFETN1
Mode= nonlinear
SOURCE
Port
S1
Num=2
VIA2
V2
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL10
Z=Z1 Ohm
L=15 mil
K=1
A=0.000
F=1 GHz
TanD=0.001
L
TLINP
L4
TL9
L=0.2 nH
Z=Z2 Ohm R=0.001
L=10.0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
VIA2
V3
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL1
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
MSub
C
C2
C=0.11 pF
L
L7
C=0.6 nH
R=0.001
MSUB
MSub1
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+0.34 mil
T=0.15 mil
TanD=0
Rough=0 mil
SOURCE
TLINP
TL7
Z=Z2/2 Ohm
L=5.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL8
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=26.0 mil
K=K
A=0.0000
F=1 GHz
TanD=0.001
TLINP
TL6
Z=Z1 Ohm
L=15 mil
K=1
A=0.0000
F=1 GHz
TanD=0.001
VIA2
V4
D=20.0 mil
H=25.0 mil
T=0.15 mil
Rho=1.0
W=40.0 mil
Port
S2
Num=4
DRAIN
Port
D
Num=3
The vias are not part of the model as such. They are only included to
account for the source vias in the test fixture.
ATF-38143 Die Model
Statz Model
MESFETM1
NFET=yes
PFET=no
Vto=–0.75
Beta=0.3
Lambda=0.07
Alpha=4
B=0.8
Tnom=27
Idstc=
Vbi=0.7
Tau=
Betatce=
Delta1=
Delta2=
Gscap=3
Cgs=0.997 pF
Gdcap=3
Cgd=0.176 pF
Rgd=0.195
Tqm=
Vmax=
Fc=
Rd=0.084
Rg=0.264
Rs=0.054
Ld=0.0014 nH
Lg-0.0883 nH
Ls=0.001 nH
Cds=0.0911 pF
Crf=0.0936
Taumd1=no
Fnc=1E6
R=0.17
C=0.2
P=1
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
All Params=
Rc=137
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
10
88759/05-6.PM6.5J
Page 10
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
Part Number Ordering Information
No. of
Devices
3000
10000
100
Part Number
ATF-38143-TR1
ATF-38143-TR2
ATF-38143-BLK
Container
7" Reel
13" Reel
antistatic bag
Package Dimensions
Outline 43 (SOT-343/SC-70 4 lead)
1.30 (0.051)
BSC
1.30 (.051) REF
2.60 (.102)
E
1.30 (.051)
E1
0.85 (.033)
0.55 (.021) TYP
1.15 (.045) BSC
e
1.15 (.045) REF
D
h
A
A1
b TYP
L
C TYP
θ
DIMENSIONS
SYMBOL
A
A1
b
C
D
E
e
h
E1
L
θ
MAX.
MIN.
1.00 (0.039)
0.80 (0.031)
0.10 (0.004)
0 (0)
0.35 (0.014)
0.25 (0.010)
0.20 (0.008)
0.10 (0.004)
2.10 (0.083)
1.90 (0.075)
2.20 (0.087)
2.00 (0.079)
0.65 (0.025)
0.55 (0.022)
0.450 TYP (0.018)
1.35 (0.053)
1.15 (0.045)
0.35 (0.014)
0.10 (0.004)
10
0
DIMENSIONS ARE IN MILLIMETERS (INCHES)
11
88759/05-6.PM6.5J
Page 11
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
Device Orientation
REEL
END VIEW
TOP VIEW
4 mm
CARRIER
TAPE
8 mm
3Px
USER
FEED
DIRECTION
3Px
3Px
3Px
COVER TAPE
Tape Dimensions
For Outline 4T
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
Tt (COVER TAPE THICKNESS)
K0
8° MAX.
A0
DESCRIPTION
5° MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 ± 0.30
0.255 ± 0.013
0.315 ± 0.012
0.010 ± 0.0005
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.4 ± 0.10
0.062 ± 0.001
0.205 ± 0.004
0.0025 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
12
88759/05-6.PM6.5J
Page 12
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
www.semiconductor.agilent.com
Data subject to change.
Copyright © 2000 Agilent Technologies, Inc.
5968-7868E (2/00)
13
88759/05-6.PM6.5J
Page 13
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC
当社半導体部品のご使用にあたって
仕様及び仕様書に関して
・本仕様は製品改善および技術改良等により予告なく変更する場合があります。ご使用の際には最
新の仕様を問い合わせの上、用途のご確認をお願いいたします。
・本仕様記載内容を無断で転載または複写することは禁じられております。
・本仕様内でご紹介している応用例(アプリケーション)は当社製品がご使用できる代表的なもの
です。ご使用において第三者の知的財産権などの保証または実施権の許諾に対して問題が発生し
た場合、当社はその責任を負いかねます。
・仕様書はメーカとユーザ間で交わされる製品に関する使用条件や誤使用防止事項を言及するもの
です。仕様書の条件外で保存、使用された場合に動作不良、機械不良が発生しても当社は責任を
負いかねます。ただし、当社は納品後 1 年以内に当社の責任に帰すべき理由で、不良或いは故障
が発生した場合、無償で製品を交換いたします。
・仕様書の製品が製造上および政策上の理由で満足できない場合には変更の権利を当社が有し、そ
の交渉は当社の要求によりすみやかに行われることとさせて頂きます。なお、基本的に変更は3ヶ
月前、廃止は 1 年前にご連絡致しますが、例外もございますので予めご了承ください。
ご使用用途に関して
・当社の製品は、一般的な電子機器(コンピュータ、OA 機器、通信機器、AV 機器、家電製品、ア
ミューズメント機器、計測機器、一般産業機器など)の一部に組み込まれて使用されるものです。
極めて高い信頼性と安全性が要求される用途(輸送機器、航空・宇宙機器、海底中継器、原子力
制御システム、生命維持のための医療機器などの財産・環境もしくは生命に悪影響を及ぼす可能
性を持つ用途)を意図し、設計も製造もされているものではありません。それゆえ、本製品の安
全性、品質および性能に関しては、仕様書(又は、カタログ)に記載してあること以外は明示的
にも黙示的にも一切の保証をするものではありません。
回路設計上のお願い
・当社は品質、信頼性の向上に努力しておりますが、一般的に半導体製品の誤動作や、故障の発生
は避けられません。本製品の使用に附随し、或いはこれに関連する誤動作、故障、寿命により、
他人の生命又は財産に被害や悪影響を及ぼし、或いは本製品を取り付けまたは使用した設備、施
設または機械器具に故障が生じ一般公衆に被害を起こしても、当社はその内容、程度を問わず、
一切の責任を負いかねます。
お客様の責任において、装置の安全設計をお願いいたします。
14
88759/05-6.PM6.5J
Page 14
2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC