Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package Technical Data ATF-38143 Features Surface Mount Package SOT-343 • Low Noise Figure Description Agilent Technologies’s ATF-38143 is a high dynamic range, low noise, PHEMT housed in a 4-lead SC-70 (SOT-343) surface mount plastic package. • Excellent Uniformity in Product Specifications • Low Cost Surface Mount Small Plastic Package SOT-343 (4 lead SC-70) • Tape-and-Reel Packaging Option Available Based on its featured performance, ATF-38143 is suitable for applications in cellular and PCS handsets, LEO systems, MMDS, and other systems requiring super low noise figure with good intercept in the 450␣ MHz to 10␣ GHz frequency range. Pin Connections and Package Marking 1.9 GHz; 2 V, 10 mA (Typ.) DRAIN • 0.4 dB Noise Figure • 16 dB Associated Gain • 12.0 dBm Output Power at 1␣ dB Gain Compression rd • 22.0 dBm Output 3 Order Intercept SOURCE 8Px Specifications SOURCE GATE Note: Top View. Package marking provides orientation and identification. “8P” = Device code “x” = Date code character. A new character is assigned for each month, year. Applications • Low Noise Amplifier for Cellular/PCS Handsets • LNA for WLAN, WLL/RLL, LEO, and MMDS Applications • General Purpose Discrete PHEMT for Other Ultra Low Noise Applications 1 88759/05-6.PM6.5J Page 1 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC ATF-38143 Absolute Maximum Ratings[1] Symbol VDS VGS VGD IDS Pdiss Pin max TCH TSTG θjc Parameter Drain - Source Voltage [2] Gate - Source Voltage Gate Drain Voltage Drain Current Total Power Dissipation [2] RF Input Power Channel Temperature Storage Temperature Thermal Resistance [3] Absolute Maximum 4.5 -4 -4 Idss 580 17 160 -65 to 160 165 Units V V V mA mW dBm °C °C °C/W Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Source lead temperature is 25°C. Derate 6␣ mW/ °C for TL > 64°C. 3. Thermal resistance measured using 150°C Liquid Crystal Measurement method. Product Consistency Distribution Charts 250 300 Cpk = 1.59062 Stdev = 0.73 dBm 6 Wafers Sample Size = 450 +0.6 V 250 200 IDS (mA) 200 150 0V +3 Std -3 Std 150 100 100 50 50 –0.6 V 0 0 1 2 3 VDS (V) 4 0 18 5 24 26 Figure 2. OIP3 @ 2 GHz, 2 V, 10 mA. LSL=18.5, Nominal=21.99, USL=26.0 Cpk = 4.08938 Stdev = 0.03 dB 6 Wafers Sample Size = 450 150 22 OIP3 (dB) Figure 1. Typical I-V Curves. (VGS = -0.2 V per step) 180 20 160 Cpk = 2.58097 Stdev = 0.14 dB 6 Wafers Sample Size = 450 120 120 -3 Std +3 Std 90 -3 Std +3 Std 80 60 40 30 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 15 Figure 3. NF @ 2 GHz, 2 V, 10 mA. LSL=0, Nominal=0.44, USL=0.85 Note: Distribution data sample size is 450 samples taken from 6 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. 15.5 16 16.5 17 17.5 18 GAIN (dB) NF (dB) Figure 4. Gain @ 2 GHz, 2 V, 10 mA. LSL=15.0, Nominal=16.06, USL= 18.0 Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production test requirements. Circuit losses have been deembedded from actual measurements. 2 88759/05-6.PM6.5J Page 2 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC ATF-38143 Electrical Specifications TA = 25°C, RF parameters measured in a test circuit for a typical device Symbol Idss [1] VP [1] Id gm[1] IGDO Igss NF Ga OIP3 IIP3 P1dB Parameters and Test Conditions Units Min. Saturated Drain Current VDS = 1.5 V, VGS = 0 V mA 90 Pinchoff Voltage VDS = 1.5 V, IDS = 10% of Idss V -0.65 Quiescent Bias Current VGS = -0.54 V, VDS = 2 V mA — Transconductance VDS = 1.5 V, gm = Idss /VP mmho 180 Gate to Drain Leakage Current VGD = -5 V µA Gate Leakage Current VGD = VGS = -4 V µA — f = 2 GHz VDS = 2 V, IDS = 5 mA dB VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA Noise Figure f = 900 MHz VDS = 2 V, IDS = 5 mA dB VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA f = 2 GHz VDS = 2 V, IDS = 5 mA dB VDS = 2 V, IDS = 10 mA 15 V = 2 V, I = 20 mA DS DS Associated Gain[3] f = 900 MHz VDS = 2 V, IDS = 5 mA dB VDS = 2 V, IDS = 10 mA VDS = 2 V, IDS = 20 mA f = 2 GHz VDS = 2 V, IDS = 10 mA dBm 18.5 Output 3rd Order [3] Intercept Point f = 900 MHz VDS = 2 V, IDS = 10 mA dBm rd f = 2 GHz VDS = 2 V, IDS = 10 mA dBm Input 3 Order Intercept Point [3] f = 900 MHz VDS = 2 V, IDS = 10 mA dBm f = 2 GHz VDS = 2 V, IDS = 10 mA dBm 1 dB Compressed [3] Compressed Power f = 900 MHz VDS = 2 V, IDS = 10 mA dBm Typ.[2] Max. 118 145 -0.5 -0.35 10 — 230 — 500 30 300 0.6 0.4 0.85 0.3 0.6 0.4 0.3 15.3 16.0 18 17.0 17.0 19.0 20.5 22.0 22.0 6.0 3.0 12.0 12.0 Notes: 1. Guaranteed at wafer probe level. 2. Typical value determined from a sample size of 450 parts from 6 wafers. 3. Measurements obtained using production test board described in Figure 5. Input 50 Ohm Transmission Line (0.5 dB loss) Input Matching Circuit Γmag = 0.380 Γang = 58.2° (0.46 dB loss) DUT Output Matching Circuit Γmag = 0.336 Γang = 34.5° (0.46 dB loss) 50 Ohm Transmission Line (0.5 dB loss) Output Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 3 88759/05-6.PM6.5J Page 3 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC ATF-38143 Typical Performance Curves 30 OIP3 20 15 P1dB 10 OIP3 25 OIP3, P 1dB (dBm) OIP3, P 1dB (dBm) 25 0.7 5 20 15 P1dB 10 5 0 10 20 30 40 50 60 0.5 0.4 0.3 0.2 0.1 0 0 0 0 10 CURRENT, I DS (mA) 20 30 40 50 60 0 Figure 7. OIP3 and P1dB vs. Id at 2 V, 900 MHz. 21 0.3 0.2 0.1 ASSOCIATED GAIN (dB) 21 ASSOCIATED GAIN (dB) 22 0.6 0.4 20 19 18 17 16 0 10 20 30 40 50 CURRENT, I DS (mA) Figure 9. Noise Figure vs. Id at 2 V, 900 MHz. 60 15 0 30 40 50 60 Figure 8. Noise Figure vs. Id at 2 V, 2 GHz. 22 0.5 20 CURRENT, I DS (mA) 0.7 0 10 CURRENT, I DS (mA) Figure 6. OIP3 and P1dB vs. Id at 2 V, 2 GHz. NOISE FIGURE (dB) 0.6 NOISE FIGURE (dB) 30 20 19 18 17 16 10 20 30 40 50 60 15 0 10 20 30 40 50 60 CURRENT, I DS (mA) CURRENT, I DS (mA) Figure 10. Associated Gain vs. Id at 2 V, 2 GHz. Figure 11. Associated Gain vs. Id at 2 V, 900 MHz. Notes: 1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 2 V 10␣ mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 2. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. 4 88759/05-6.PM6.5J Page 4 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC ATF-38143 Typical Performance Curves, continued 1.6 30 0.8 1.4 25 0.7 0.5 0.4 0.3 20 1.0 0.8 15 15 0.6 10 10 0.4 –40°C +25°C +85°C 5 0 0 0 2 4 6 8 0 1 FREQUENCY (GHz) 2 3 4 5 6 GAIN (dB), P 1dB and OIP3 (dBm) 24 22 –40°C +25°C +85°C 16 14 12 10 1.0 20 0.8 15 0.6 10 0.4 P1dB OIP3 Gain NF 0.2 0 0 2000 4000 6000 8000 FREQUENCY (MHz) Figure 15. P1dB and OIP3 vs. Frequency and Temperature at 2 V, 10 mA. 0 10 20 30 40 6 8 10 12 50 1.4 30 1.2 25 5 4 Figure 14. Associated Gain vs. Frequency and Current at 2V. 1.4 30 0 2 FREQUENCY (GHz) Figure 13. Fmin and Ga vs. Frequency and Temperature at 2 V, 10 mA. 26 18 0 FREQUENCY (GHz) Figure 12. Fmin vs. Frequency and Current at 2V. 20 0 7 NF (dB) 0 5 mA 10 mA 20 mA 5 0.2 1.2 25 1.0 20 0.8 15 0.6 10 0.4 P1dB OIP3 Gain NF 5 0.2 0 0 60 0 10 20 30 40 50 60 CURRENT, I DS (mA) CURRENT, I DS (mA) Figure 16. NF, Gain, P 1dB and OIP3 vs. IDS at 2V, 3.9 GHz. Figure 17. NF, Gain, P 1dB and OIP3 vs. IDS at 2V, 5.8 GHz. Notes: 1. P1dB measurements are performed with passive biasing. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. 5 88759/05-6.PM6.5J Page 5 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC NF (dB) 5 mA 10 mA 20 mA 0.1 GAIN (dB), P 1dB and OIP3 (dBm) 0.2 P1dB, OIP3 (dBm) 25 1.2 Fmin Ga 20 Ga (dB) Fmin (dB) 0.6 30 Ga (dB) 0.9 ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 5 mA Freq. (GHz) S11 Mag. Ang. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.98 0.95 0.93 0.87 0.82 0.80 0.75 0.71 0.67 0.66 0.66 0.68 0.70 0.72 0.74 0.78 0.82 0.83 0.85 0.87 0.88 0.88 0.89 -25 -40 -51 -75 -89 -98 -120 -139 -170 162 137 113 92 73 56 39 23 10 -2 -16 -30 -39 -50 dB S21 Mag. Ang. dB 14.47 14.19 14.00 13.28 12.79 12.45 11.48 10.48 8.68 7.24 6.02 4.78 3.51 2.39 1.51 0.44 -0.73 -2.17 -3.54 -4.84 -6.16 -7.51 -9.07 5.289 5.122 5.010 4.613 4.362 4.192 3.751 3.342 2.716 2.302 2.000 1.734 1.498 1.316 1.190 1.052 0.919 0.779 0.665 0.573 0.492 0.421 0.352 160 148 140 122 111 105 89 76 52 30 10 -10 -29 -47 -64 -83 -100 -117 -132 -147 -161 -176 173 -26.56 -22.85 -21.21 -18.49 -17.52 -16.95 -16.19 -15.70 -15.44 -15.44 -15.60 -15.92 -16.59 -17.20 -17.46 -17.86 -18.42 -19.33 -20.00 -20.45 -20.82 -21.11 -21.83 S12 Mag. Ang. S22 Mag. Ang. MSG/MAG (dB) 0.047 0.072 0.087 0.119 0.133 0.142 0.155 0.164 0.169 0.169 0.166 0.160 0.148 0.138 0.134 0.128 0.120 0.108 0.100 0.095 0.091 0.088 0.081 0.67 0.65 0.62 0.56 0.52 0.50 0.44 0.40 0.34 0.31 0.29 0.28 0.29 0.32 0.37 0.42 0.47 0.52 0.57 0.63 0.68 0.71 0.75 -21 -32 -40 -58 -69 -77 -94 -110 -138 -162 173 146 121 103 87 66 47 28 11 0 -12 -26 -37 20.51 18.52 17.60 15.88 15.16 14.70 13.84 13.09 12.06 11.34 10.81 10.35 8.89 7.33 6.93 6.66 6.22 4.93 3.95 3.58 2.90 1.98 1.24 73 63 56 41 33 28 16 5 -12 -27 -41 -55 -67 -77 -86 -97 -106 -115 -121 -129 -136 -145 -151 ATF-38143 Typical Noise Parameters Γopt Mag. 0.69 0.69 0.68 0.68 0.66 0.65 0.62 0.59 0.50 0.49 0.51 0.53 0.54 0.59 0.62 Ang. 14 26 27 44 59 61 80 98 127 163 -169 -140 -111 -88 -68 Rn/50 0.25 0.23 0.22 0.20 0.17 0.17 0.14 0.11 0.08 0.04 0.04 0.09 0.20 0.36 0.60 Ga dB 23.0 20.5 19.8 17.1 16.0 15.4 14.3 13.1 10.8 9.8 8.7 7.7 6.8 6.1 6.0 25 20 MSG/MAG and S 21 (dB) VDS = 2 V, IDS = 5 mA Freq. Fmin GHz dB 0.5 0.18 0.9 0.21 1.0 0.22 1.5 0.26 1.8 0.29 2.0 0.32 2.5 0.40 3.0 0.48 4.0 0.60 5.0 0.70 6.0 0.84 7.0 0.96 8.0 1.12 9.0 1.27 10.0 1.38 15 MSG 10 MAG 5 S21 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 18. MSG/MAG and |S21|2 vs. Frequency at 2 V, 5 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 6 88759/05-6.PM6.5J Page 6 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 10 mA Freq. (GHz) S11 Mag. Ang. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.97 0.93 0.91 0.83 0.78 0.76 0.71 0.68 0.65 0.65 0.66 0.68 0.71 0.73 0.75 0.79 0.82 0.84 0.85 0.87 0.88 0.88 0.89 -29 -47 -58 -85 -100 -109 -131 -150 180 153 129 107 87 68 53 36 20 8 -4 -18 -31 -41 -51 dB S21 Mag. Ang. dB 17.41 17.00 16.69 15.69 15.02 14.57 13.38 12.22 10.24 8.68 7.35 6.03 4.72 3.57 2.71 1.61 0.47 -0.93 -2.24 -3.45 -4.63 -5.81 -7.27 7.423 7.081 6.834 6.086 5.634 5.350 4.665 4.083 3.251 2.716 2.330 2.003 1.722 1.509 1.366 1.204 1.055 0.898 0.773 0.672 0.587 0.512 0.433 158 145 136 117 107 100 86 73 50 30 11 -9 -27 -43 -60 -78 -94 -110 -125 -140 -153 -167 -179 -27.74 -24.01 -22.50 -20.00 -19.17 -18.71 -17.99 -17.65 -17.27 -17.08 -16.95 -16.95 -17.27 -17.46 -17.27 -17.39 -17.65 -18.34 -18.86 -19.17 -19.49 -19.74 -20.54 S12 Mag. Ang. S22 Mag. Ang. MSG/MAG (dB) 0.041 0.063 0.075 0.100 0.110 0.116 0.126 0.131 0.137 0.140 0.142 0.142 0.137 0.134 0.137 0.135 0.131 0.121 0.114 0.110 0.106 0.103 0.094 0.53 0.51 0.48 0.42 0.39 0.37 0.33 0.31 0.28 0.28 0.28 0.29 0.32 0.35 0.40 0.45 0.50 0.54 0.59 0.63 0.67 0.70 0.74 -26 -40 -50 -72 -85 -94 -114 -132 -163 172 147 122 99 83 70 52 35 17 2 -8 -19 -32 -41 22.58 20.51 19.60 17.84 17.09 16.64 15.68 14.94 13.75 12.88 12.15 11.49 9.09 7.94 7.55 7.27 6.84 5.72 4.77 4.42 3.85 3.03 2.34 72 61 55 40 33 28 18 9 -5 -18 -30 -42 -53 -62 -72 -83 -94 -104 -112 -122 -131 -141 -148 ATF-38143 Typical Noise Parameters Ang. 13 22 26 43 60 67 81 98 129 166 -165 -135 -106 -84 -65 Rn/50 0.17 0.16 0.15 0.14 0.12 0.12 0.10 0.08 0.06 0.04 0.04 0.08 0.16 0.29 0.46 Ga dB 24.1 21.0 20.4 17.9 17.0 16.1 15.2 13.9 11.9 10.8 9.6 8.7 7.7 7.0 6.8 25 20 MSG/MAG and S 21 (dB) VDS = 2 V, IDS = 10 mA Freq. Fmin Γopt GHz dB Mag. 0.5 0.18 0.66 0.9 0.19 0.64 1.0 0.20 0.63 1.5 0.23 0.60 1.8 0.25 0.57 2.0 0.28 0.56 2.5 0.32 0.54 3.0 0.39 0.52 4.0 0.52 0.44 5.0 0.65 0.44 6.0 0.75 0.45 7.0 0.84 0.48 8.0 0.95 0.51 9.0 1.10 0.55 10.0 1.20 0.56 MSG 15 10 MAG 5 S21 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 19. MSG/MAG and |S21|2 vs. Frequency at 2 V, 10 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 7 88759/05-6.PM6.5J Page 7 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC ATF-38143 Typical Scattering Parameters, VDS = 2 V, IDS = 20 mA Freq. (GHz) S11 Mag. Ang. 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 0.96 0.91 0.88 0.79 0.75 0.73 0.68 0.66 0.64 0.64 0.66 0.68 0.71 0.73 0.76 0.80 0.83 0.85 0.86 0.88 0.89 0.89 0.90 -33 -53 -65 -93 -109 -119 -140 -159 172 147 124 103 83 65 50 34 18 6 -5 -19 -32 -42 -52 dB S21 Mag. Ang. dB 19.50 18.94 18.51 17.23 16.41 15.88 14.52 13.26 11.16 9.52 8.12 6.77 5.41 4.25 3.39 2.27 1.11 -0.26 -1.51 -2.69 -3.80 -4.91 -6.29 9.436 8.850 8.425 7.269 6.616 6.220 5.321 4.604 3.616 2.992 2.548 2.179 1.864 1.632 1.478 1.299 1.136 0.971 0.840 0.734 0.646 0.568 0.485 155 141 132 113 103 97 83 70 49 30 11 -8 -25 -41 -57 -74 -90 -106 -120 -134 -147 -161 -173 -28.87 -25.19 -23.74 -21.41 -20.63 -20.26 -19.58 -19.09 -18.49 -17.99 -17.52 -17.33 -17.39 -17.27 -16.95 -16.89 -17.14 -17.72 -18.13 -18.42 -18.79 -19.02 -19.83 S12 Mag. Ang. S22 Mag. Ang. MSG/MAG (dB) 0.036 0.055 0.065 0.085 0.093 0.097 0.105 0.111 0.119 0.126 0.133 0.136 0.135 0.137 0.142 0.143 0.139 0.130 0.124 0.120 0.115 0.112 0.102 0.39 0.37 0.35 0.31 0.29 0.29 0.27 0.27 0.28 0.29 0.31 0.34 0.37 0.40 0.44 0.50 0.55 0.58 0.62 0.67 0.69 0.71 0.74 -33 -50 -63 -90 -106 -116 -139 -157 174 151 129 107 87 73 61 44 28 11 -4 -13 -24 -36 -46 24.18 22.07 21.13 19.32 18.52 18.07 17.05 16.18 14.83 13.76 12.82 11.08 9.34 8.33 7.91 7.63 7.20 6.20 5.32 5.01 4.34 3.57 2.94 71 60 54 41 34 30 21 14 2 -9 -20 -32 -43 -53 -63 -76 -87 -98 -107 -118 -127 -138 -146 ATF-38143 Typical Noise Parameters Ang. 13 22 26 43 55 68 82 100 133 172 -159 -129 -100 -79 -61 Rn/50 0.13 0.12 0.12 0.09 0.09 0.09 0.08 0.06 0.05 0.04 0.04 0.08 0.15 0.26 0.40 Ga dB 24.8 21.4 21.0 19.0 18.0 16.9 15.5 14.7 12.6 11.4 10.2 9.3 8.3 7.5 7.3 25 20 MSG/MAG and S 21 (dB) VDS = 2 V, IDS = 20 mA Freq. Fmin Γopt GHz dB Mag. 0.5 0.15 0.71 0.9 0.16 0.68 1.0 0.16 0.66 1.5 0.18 0.60 1.8 0.20 0.55 2.0 0.22 0.51 2.5 0.28 0.48 3.0 0.33 0.46 4.0 0.45 0.37 5.0 0.56 0.39 6.0 0.65 0.40 7.0 0.72 0.44 8.0 0.82 0.48 9.0 0.90 0.52 10.0 1.00 0.60 MSG 15 10 MAG S21 5 0 -5 -10 0 2 4 6 8 10 12 14 16 18 FREQUENCY (GHz) Figure 20. MSG/MAG and |S21|2 vs. Frequency at 2 V, 20 mA. Notes: 1. Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of that point. 8 88759/05-6.PM6.5J Page 8 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC Noise Parameter Applications Information Fmin values at 2␣ GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching network that transforms the source impedance, typically 50Ω, to an impedance represented by the reflection coefficient Γo. The designer must design a matching network that will present Γo to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is presented with Γo. If the reflection coefficient of the matching network is other than Γo, then the noise figure of the device will be greater than Fmin based on the following equation. NF = Fmin + 4 Rn |Γs – Γo | 2 Zo (|1 + Γo| 2) (1 – Γs| 2) Where Rn /Zo is the normalized noise resistance, Γo is the optimum reflection coefficient required to produce Fmin and Γs is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. Γo is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower Γo as compared to narrower gate width devices. Typically for FETs, the higher Γo usually infers that an impedance much higher than 50Ω is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when air-wound coils (Q > 100) are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using muilti-layer molded inductors with Qs in the 30 to 50 range results in additional loss over the air-wound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. A discussion concerning calculated and measured circuit losses and their effect on amplifier noise figure is covered in Agilent Application 1085. 9 88759/05-6.PM6.5J Page 9 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC ATF-38143 SC70 4 Lead, High Frequency Nonlinear Model INSIDE Package Var Ean VAR VAR1 K=5 Z2=85 Z1=30 GATE Port G Num=1 VIA2 V1 D=20 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40 mil TLINP TL4 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 TLINP TL3 Z=Z2 Ohm L=25 mil K=K A=0.000 F=1 GHz TanD=0.001 L L6 L=0.2 nH R=0.001 L L1 L=0.6 nH R=0.001 GaAsFET FET1 Model= MESFETN1 Mode= nonlinear SOURCE Port S1 Num=2 VIA2 V2 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil TLINP TL10 Z=Z1 Ohm L=15 mil K=1 A=0.000 F=1 GHz TanD=0.001 L TLINP L4 TL9 L=0.2 nH Z=Z2 Ohm R=0.001 L=10.0 mil K=K A=0.000 F=1 GHz TanD=0.001 VIA2 V3 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil TLINP TL2 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL1 Z=Z2/2 Ohm L=20 0 mil K=K A=0.0000 F=1 GHz TanD=0.001 MSub C C2 C=0.11 pF L L7 C=0.6 nH R=0.001 MSUB MSub1 H=25.0 mil Er=9.6 Mur=1 Cond=1.0E+50 Hu=3.9e+0.34 mil T=0.15 mil TanD=0 Rough=0 mil SOURCE TLINP TL7 Z=Z2/2 Ohm L=5.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL8 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 TLINP TL5 Z=Z2 Ohm L=26.0 mil K=K A=0.0000 F=1 GHz TanD=0.001 TLINP TL6 Z=Z1 Ohm L=15 mil K=1 A=0.0000 F=1 GHz TanD=0.001 VIA2 V4 D=20.0 mil H=25.0 mil T=0.15 mil Rho=1.0 W=40.0 mil Port S2 Num=4 DRAIN Port D Num=3 The vias are not part of the model as such. They are only included to account for the source vias in the test fixture. ATF-38143 Die Model Statz Model MESFETM1 NFET=yes PFET=no Vto=–0.75 Beta=0.3 Lambda=0.07 Alpha=4 B=0.8 Tnom=27 Idstc= Vbi=0.7 Tau= Betatce= Delta1= Delta2= Gscap=3 Cgs=0.997 pF Gdcap=3 Cgd=0.176 pF Rgd=0.195 Tqm= Vmax= Fc= Rd=0.084 Rg=0.264 Rs=0.054 Ld=0.0014 nH Lg-0.0883 nH Ls=0.001 nH Cds=0.0911 pF Crf=0.0936 Taumd1=no Fnc=1E6 R=0.17 C=0.2 P=1 wVgfwd= wBvgs= wBvgd= wBvds= wldsmax= wPmax= All Params= Rc=137 Gsfwd=1 Gsrev=0 Gdfwd=1 Gdrev=0 Vjr=1 Is=1 nA Ir=1 nA Imax=0.1 Xti= N= Eg= Vbr= Vtotc= Rin= 10 88759/05-6.PM6.5J Page 10 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC Part Number Ordering Information No. of Devices 3000 10000 100 Part Number ATF-38143-TR1 ATF-38143-TR2 ATF-38143-BLK Container 7" Reel 13" Reel antistatic bag Package Dimensions Outline 43 (SOT-343/SC-70 4 lead) 1.30 (0.051) BSC 1.30 (.051) REF 2.60 (.102) E 1.30 (.051) E1 0.85 (.033) 0.55 (.021) TYP 1.15 (.045) BSC e 1.15 (.045) REF D h A A1 b TYP L C TYP θ DIMENSIONS SYMBOL A A1 b C D E e h E1 L θ MAX. MIN. 1.00 (0.039) 0.80 (0.031) 0.10 (0.004) 0 (0) 0.35 (0.014) 0.25 (0.010) 0.20 (0.008) 0.10 (0.004) 2.10 (0.083) 1.90 (0.075) 2.20 (0.087) 2.00 (0.079) 0.65 (0.025) 0.55 (0.022) 0.450 TYP (0.018) 1.35 (0.053) 1.15 (0.045) 0.35 (0.014) 0.10 (0.004) 10 0 DIMENSIONS ARE IN MILLIMETERS (INCHES) 11 88759/05-6.PM6.5J Page 11 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC Device Orientation REEL END VIEW TOP VIEW 4 mm CARRIER TAPE 8 mm 3Px USER FEED DIRECTION 3Px 3Px 3Px COVER TAPE Tape Dimensions For Outline 4T P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) Tt (COVER TAPE THICKNESS) K0 8° MAX. A0 DESCRIPTION 5° MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.24 ± 0.10 2.34 ± 0.10 1.22 ± 0.10 4.00 ± 0.10 1.00 + 0.25 0.088 ± 0.004 0.092 ± 0.004 0.048 ± 0.004 0.157 ± 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 ± 0.05 4.00 ± 0.10 1.75 ± 0.10 0.061 ± 0.002 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 ± 0.30 0.255 ± 0.013 0.315 ± 0.012 0.010 ± 0.0005 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.4 ± 0.10 0.062 ± 0.001 0.205 ± 0.004 0.0025 ± 0.00004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 ± 0.05 0.079 ± 0.002 12 88759/05-6.PM6.5J Page 12 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC www.semiconductor.agilent.com Data subject to change. Copyright © 2000 Agilent Technologies, Inc. 5968-7868E (2/00) 13 88759/05-6.PM6.5J Page 13 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC 当社半導体部品のご使用にあたって 仕様及び仕様書に関して ・本仕様は製品改善および技術改良等により予告なく変更する場合があります。ご使用の際には最 新の仕様を問い合わせの上、用途のご確認をお願いいたします。 ・本仕様記載内容を無断で転載または複写することは禁じられております。 ・本仕様内でご紹介している応用例(アプリケーション)は当社製品がご使用できる代表的なもの です。ご使用において第三者の知的財産権などの保証または実施権の許諾に対して問題が発生し た場合、当社はその責任を負いかねます。 ・仕様書はメーカとユーザ間で交わされる製品に関する使用条件や誤使用防止事項を言及するもの です。仕様書の条件外で保存、使用された場合に動作不良、機械不良が発生しても当社は責任を 負いかねます。ただし、当社は納品後 1 年以内に当社の責任に帰すべき理由で、不良或いは故障 が発生した場合、無償で製品を交換いたします。 ・仕様書の製品が製造上および政策上の理由で満足できない場合には変更の権利を当社が有し、そ の交渉は当社の要求によりすみやかに行われることとさせて頂きます。なお、基本的に変更は3ヶ 月前、廃止は 1 年前にご連絡致しますが、例外もございますので予めご了承ください。 ご使用用途に関して ・当社の製品は、一般的な電子機器(コンピュータ、OA 機器、通信機器、AV 機器、家電製品、ア ミューズメント機器、計測機器、一般産業機器など)の一部に組み込まれて使用されるものです。 極めて高い信頼性と安全性が要求される用途(輸送機器、航空・宇宙機器、海底中継器、原子力 制御システム、生命維持のための医療機器などの財産・環境もしくは生命に悪影響を及ぼす可能 性を持つ用途)を意図し、設計も製造もされているものではありません。それゆえ、本製品の安 全性、品質および性能に関しては、仕様書(又は、カタログ)に記載してあること以外は明示的 にも黙示的にも一切の保証をするものではありません。 回路設計上のお願い ・当社は品質、信頼性の向上に努力しておりますが、一般的に半導体製品の誤動作や、故障の発生 は避けられません。本製品の使用に附随し、或いはこれに関連する誤動作、故障、寿命により、 他人の生命又は財産に被害や悪影響を及ぼし、或いは本製品を取り付けまたは使用した設備、施 設または機械器具に故障が生じ一般公衆に被害を起こしても、当社はその内容、程度を問わず、 一切の責任を負いかねます。 お客様の責任において、装置の安全設計をお願いいたします。 14 88759/05-6.PM6.5J Page 14 2001.04.26, 9:18 AM Adobe PageMaker 6.5J/PPC