Agilent ATF-331M4 Low Noise Pseudomorphic HEMT in a Miniature Leadless Package Data Sheet Features • Low noise figure • Excellent uniformity in product specifications • 1600 micron gate width • Miniature leadless package 1.4 mm x 1.2 mm x 0.7 mm Description Agilent Technologies’s ATF-331M4 is a high linearity, low noise pHEMT housed in a miniature leadless package. The ATF-331M4’s small size and low profile makes it ideal for the design of hybrid modules and other space-constraint devices. Based on its featured performance, ATF-331M4 is ideal for the first or second stage of base station LNA due to the excellent combination of low noise figure and enhanced linearity [1]. The device is also suitable for applications in Wireless LAN, WLL/RLL, MMDS, and other systems requiring super low noise figure with good intercept in the 450 MHz to 10 GHz frequency range. Note: 1. From the same PHEMT FET family, the smaller geometry ATF-34143 may also be considered for the higher gain performance, particularly in the higher frequency band (1.8 GHz and up). MiniPak 1.4 mm x 1.2 mm Package Px • Tape-and-reel packaging option available Specifications 2 GHz; 4 V, 60 mA (Typ.) • 0.6 dB noise figure • 15 dB associated gain Pin Connections and Package Marking Source Pin 3 Gate Pin 2 Px • 19 dBm output power at 1 dB gain compression Drain Pin 4 Source Pin 1 Note: Top View. Package marking provides orientation, product identification and date code. “P” = Device Type Code “x” = Date code character. A different character is assigned for each month and year. • 31 dBm output 3rd order intercept Applications • Tower mounted amplifier, low noise amplifier and driver amplifier for GSM/TDMA/CDMA base stations • LNA for WLAN, WLL/RLL, MMDS and wireless data infrastructures • General purpose discrete PHEMT for other ultra low noise applications ATF-331M4 Absolute Maximum Ratings [1] Symbol Parameter Units Absolute Maximum VDS Drain-Source Voltage [2] V 5.5 VGS Gate-Source Voltage [2] V -5 VGD Gate Drain Voltage [2] V -5 IDS Drain Current [2] mA Idiss[3] Pdiss Total Power Dissipation [4] mW 400 Pin max. RF Input Power dBm 20 TCH Channel Temperature[5] °C 160 TSTG Storage Temperature °C -65 to 160 θjc Thermal Resistance [6] °C/W 200 Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Assumes DC quiescent conditions. 3. VGS = 0 V 4. Source lead temperature is 25°C. Derate 5 mW/°C for TL > 40°C. 5. Please refer to failure rates in reliability data sheet to assess the reliability impact of running devices above a channel temperature of 140°C. 6. Thermal resistance measured using 150°C Liquid Crystal Measurement method. 500 +0.6 V 400 IDS (mA) 300 0V 200 100 -0.6 V 0 0 2 4 VDS (V) 6 8 Figure 1. Typical Pulsed I-V Curves[7]. (VGS = -0.2 V per step) Note: 7. Under large signal conditions, VGS may swing positive and the drain current may exceed Idss. These conditions are acceptable as long as the Maximum Pdiss and Pin max ratings are not exceeded. Product Consistency Distribution Charts [8, 9] 150 100 120 Cpk = 1.05 Stdev = 0.07 Cpk = 1.00 Stdev = 1.07 80 120 60 90 Cpk = 4.37 Stdev = 1.11 100 80 -3 Std +3 Std -3 Std +3 Std -3 Std 60 +3 Std 60 40 40 30 20 20 0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 NF (dBm) Figure 2. NF @ 2 GHz, 4 V, 60 mA. LSL = 28.5, Nominal = 0.6, USL = 0.8. 0.9 0 28 30 32 OIP3 (dBm) 34 Figure 3. OIP3 @ 2 GHz, 4 V, 60 mA. LSL = 28.5, Nominal = 31.0, USL = 36.0 36 13 14 15 GAIN (dB) 16 17 Figure 4. Gain @ 2 GHz, 4 V, 60 mA. LSL = 13.5, Nominal = 15.0, USL = 16.5 Notes: 8. Distribution data sample size is 349 samples from 4 different wafers. Future wafers allocated to this product may have nominal values anywhere within the upper and lower spec limits. 9. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on production test requirements. Circuit losses have been de-embedded from actual measurements. 2 ATF-331M4 DC Electrical Specifications TA = 25°C, RF parameters measured in a test circuit for a typical device Symbol Parameter and Test Condition Units Min. Typ.[2] Max. Idss [1] Saturated Drain Current Vds = 1.5 V, Vgs = 0V mA 175 237 305 Vp [1] Pinch-off Voltage Vds = 1.5 V, Ids = 10% of Idss V -0.65 -0.5 -0.35 Id Quiescent Bias Current Vgs = -0.51 V, Vds = 4V mA — 60 — Gm [1] Transconductance Vds = 1.5 V, Gm = Idss/Vp mmho 360 440 — Igdo Gate to Drain Leakage Current Vgd = -5 V µA — — 1000 Igss Gate Leakage Current Vgd = Vgs = -4V µA — 42 600 NF Noise Figure f = 2 GHz f = 900 MHz Vds = 4 V, Ids = 60 mA Vds = 4 V, Ids = 60 mA dB dB — — 0.6 0.5 0.8 — Ga Associated Gain f = 2 GHz f = 900 MHz Vds = 4 V, Ids = 60 mA Vds = 4 V, Ids = 60 mA dB dB 13.5 — 15 21 16.5 — OIP3 Output 3rd Order Intercept Point [3] f = 2 GHz, 5 dBm Pout/Tone f = 900 MHz, 5 dBm Pout/Tone Vds = 4 V, Ids = 60 mA Vds = 4 V, Ids = 60 mA dBm dBm 28.5 — 31 30.8 — — P1dB 1dB Compressed Output Power [3] f = 2 GHz f = 900 MHz Vds = 4 V, Ids = 60 mA Vds = 4 V, Ids = 60 mA dBm dBm — — 19 18 — — Notes: 1. Guaranteed at wafer probe level 2. Typical values are determined from a sample size of 349 parts from 4 wafers. 3. Measurements obtained using production test board described in Figure 5. Input 50Ω Input Transmission Line Including Gate Bias T (0.3 dB loss) Input Matching Circuit Γ_mag = 0.13 Γ_ang = 113° (0.3 dB loss) DUT 50Ω Output Transmission Line Including Gate Bias T (0.5 dB loss) Output Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test requirements. Circuit losses have been de-embedded from actual measurements. 3 ATF-331M4 Typical Performance Curves 40 40 25 2V 3V 4V 2V 3V 4V 20 OIP3, IIP3 (dBm) 20 P1dB (dBm) 30 30 OIP3, IIP3 (dBm) 2V 3V 4V 20 15 10 10 10 5 0 40 60 80 100 0 0 20 40 Ids (mA) GAIN (dB) P1dB (dBm) 5 60 80 100 Idsq (mA) Figure 9. P1dB vs. Bias[1] 900 MHz. Notes: 1. Measurements made on fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4V 60 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 4 40 14 1.0 13 0.8 12 0.6 11 0 20 40 60 80 100 60 80 1.4 22 1.2 10 0 40 20 Figure 8. P1dB vs. Bias[1,2] 2 GHz. 1.4 2V 3V 4V 15 10 20 0 Idsq (mA) 16 15 0 100 Figure 7. OIP3, IIP3 & Bias[1] at 900 MHz. 2V 3V 4V 20 80 Ids (mA) Figure 6. OIP3, IIP3 & Bias[1] at 2 GHz. 25 60 2V 3V 4V 21 1.2 20 1.0 19 0.8 18 0.6 0.4 17 0.4 0.2 100 16 Id (mA) GAIN (dB) 20 NOISE FIGURE (dB) 0 0 20 40 60 80 100 0.2 120 Id (mA) [1] Figure 10. NF & Gain vs. Bias at 2 GHz. 2. Quiescent drain current, Idsq, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of Idsq the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. Figure 11. NF & Gain vs. Bias[1] at 900 MHz. NOISE FIGURE (dB) 0 ATF-331M4 Typical Performance Curves, continued 1.4 85°C 25°C -40°C 25 0.8 GAIN (dB) 1.0 0.6 15 15 1.0 10 0.5 5 0 6 8 10 0 2 FREQUENCY (GHz) 30 OIP3, P1dB (dBm), GAIN (dB) 35 25 20 15 10 85°C 25°C -40°C 5 2 3 4 5 8 10 0 2 6 7 8 FREQUENCY (GHz) Figure 15. P1dB, OIP3 vs. Frequency and Temp at Vd = 4V, Ids = 60 mA. Notes: 1. Measurements made on fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4V 60 mA bias. This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production test board requirements. Circuit losses have been de-embedded from actual measurements. 35 30 3.0 30 25 P1dB OIP3 2.5 Gain NF 20 2.0 15 1.5 10 1.0 5 0.5 0 20 40 60 6 8 Figure 14. Fmin & Ga vs. Frequency and Temp. Vd = 4V, Ids = 60 mA. 3.5 0 4 FREQUENCY (GHz) Figure 13. Associated Gain vs. Frequency at 4V, 60 mA. 35 1 6 FREQUENCY (GHz) Figure 12. Fmin vs. Frequency at 4 V, 60 mA. 0 4 80 NOISE FIUGRE (dB) 4 0 100 Idsq (mA) Figure 16. OIP3, P1dB, NF and Gain vs. Bias[1,2] at 3.9 GHz. 2. Quiescent drain current, Idsq, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease depending on frequency and dc bias point. At lower values of Idsq the device is running closer to class B as power output approaches P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant current source as is typically done with active biasing. OIP3, P1dB (dBm), GAIN (dB) 2 0 5 0 0 3.5 3.0 P1dB OIP3 Gain NF 25 2.5 20 2.0 15 1.5 10 1.0 5 0.5 0 0 20 40 60 80 Idsq (mA) Figure 17. OIP3, P1dB, NF at 5.8 GHz. 0 100 NOISE FIGURE (dB) 0.2 P1dB, OIP3 (dBm) 1.5 10 0.4 5 20 20 GAIN (dB) Fmin (dB) 1.2 0 2.0 25 30 NOISE FIGURE (dB) 1.6 ATF-331M4 Typical Scattering Parameters, VDS = 2V, IDS = 40 mA Freq. GHz S11 Mag. Ang. S21 Mag. Ang. dB S12 Mag. Ang. S22 Mag. Ang. MSG/MAG dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 0.82 0.79 0.78 0.76 0.75 0.74 0.72 0.69 0.71 0.73 0.71 0.73 0.74 0.76 0.79 0.86 0.87 0.88 0.88 0.91 0.93 0.93 -91.90 -119.10 -132.10 -151.40 -159.60 -163.60 -170.70 -174.30 163.10 150.00 140.90 123.90 112.90 97.70 83.60 61.90 62.10 51.90 44.60 38.70 33.30 28.40 22.10 18.85 18.06 14.75 13.55 13.36 10.33 9.60 6.62 4.98 3.94 2.92 2.77 2.60 2.00 0.08 -0.71 -1.54 -2.09 -4.00 -5.66 -5.68 12.74 8.76 8.00 5.46 4.76 4.65 3.29 3.02 2.14 1.77 1.57 1.40 1.38 1.35 1.26 1.01 0.92 0.84 0.79 0.63 0.52 0.52 127.90 112.80 106.00 93.73 88.20 85.00 77.97 71.83 53.23 41.60 28.80 14.70 6.70 -4.77 -18.20 -32.50 -37.90 -49.90 -58.90 -67.70 -74.80 -80.50 -27.13 -25.19 -24.44 -22.73 -21.72 -21.31 -20.09 -18.12 -17.20 -16.65 -16.08 -15.39 -15.04 -14.99 -14.75 -14.80 -14.33 -14.89 -15.44 -15.81 -18.71 -17.86 0.044 0.055 0.060 0.073 0.082 0.086 0.099 0.124 0.138 0.147 0.157 0.170 0.177 0.178 0.183 0.182 0.192 0.180 0.169 0.162 0.116 0.128 53.30 46.70 44.70 42.73 42.13 41.93 41.33 40.57 30.30 24.97 17.23 7.10 2.57 -6.27 -17.47 -29.77 -33.90 -44.67 -52.47 -60.63 -67.27 -73.07 0.40 0.47 0.49 0.53 0.53 0.54 0.53 0.55 0.56 0.56 0.57 0.57 0.58 0.59 0.59 0.58 0.65 0.69 0.73 0.75 0.78 0.79 -163.10 -169.67 -173.83 177.77 173.73 171.27 165.20 162.60 138.03 134.30 115.73 109.93 108.90 93.03 78.30 66.00 59.73 49.07 40.13 30.57 24.73 18.67 24.62 22.02 21.25 18.74 17.64 17.33 15.21 13.86 10.77 9.25 7.71 6.97 6.98 6.78 6.54 6.03 5.63 5.20 5.04 4.34 4.04 4.02 18.0 0.92 25.20 -6.58 0.47 -84.00 -17.99 0.126 -77.40 0.81 13.87 3.03 dB Typical Noise Parameters, VDS = 2V, IDS = 40 mA Fmin dB Γopt Mag. Γopt Ang. Rn/50 0.50 0.37 0.39 0.6 0.07 21.16 0.90 0.41 0.381 26.3 0.06 18.36 1.00 0.41 0.38 32.9 0.06 18.19 Ga dB 1.50 0.46 0.38 63.6 0.05 15.96 1.80 0.48 0.385 80 0.05 15.43 2.00 0.5 0.39 90.1 0.05 14.56 2.50 0.54 0.407 112.8 0.04 13.29 3.00 0.59 0.431 132 0.04 12.18 4.00 0.67 0.492 161.3 0.03 10.4 5.00 0.76 0.565 -179 0.02 8.94 6.00 0.85 0.638 -166 0.02 7.96 7.00 0.93 0.702 -156.9 0.04 7 8.00 1.02 0.747 -148.9 0.07 6.16 9.00 1.11 0.762 -139 0.11 5.8 10.00 1.19 0.737 -124.5 0.18 4.89 MSG/MAG and |S21|2 (dB) 40 Freq GHz 30 MSG 20 MAG 10 0 |S21|2 -10 0 5 10 15 20 FREQUENCY (GHz) Figure 18. MSG/MAG and |S21|2 vs. Frequency at 2V, 40 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of the gate pad. The output reference plane is at the end of the drain pad. 6 ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 40 mA Freq. GHz S11 Mag. Ang. S21 Mag. Ang. dB S12 Mag. Ang. S22 Mag. Ang. MSG/MAG dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 0.82 0.78 0.77 0.75 0.74 0.74 0.72 0.69 0.71 0.73 0.71 0.73 0.74 0.76 0.79 0.86 0.87 0.88 0.89 0.91 0.93 0.93 -90.50 -117.70 -130.90 -150.40 -158.70 -162.70 -170.00 -174.10 163.70 150.50 141.50 124.40 113.40 98.20 84.10 62.40 62.50 52.30 44.90 39.00 33.40 28.50 22.45 19.31 18.50 15.23 14.02 13.79 10.81 9.60 7.13 5.46 4.37 3.34 3.14 2.94 2.33 0.44 -0.38 -1.20 -1.79 -3.64 -5.30 -5.40 13.27 9.24 8.41 5.77 5.02 4.89 3.47 3.02 2.27 1.87 1.65 1.47 1.44 1.40 1.31 1.05 0.96 0.87 0.81 0.66 0.54 0.54 128.40 113.30 106.40 93.93 88.30 85.10 77.97 71.63 53.03 41.40 28.50 14.10 6.00 -5.57 -19.10 -33.40 -38.90 -50.90 -60.20 -69.10 -76.40 -82.40 -27.54 -25.35 -24.58 -22.97 -21.94 -21.51 -20.18 -18.24 -17.33 -16.83 -16.31 -15.55 -15.19 -15.14 -14.94 -14.94 -14.47 -14.99 -15.55 -15.81 -18.64 -17.79 0.042 0.054 0.059 0.071 0.080 0.084 0.098 0.122 0.136 0.144 0.153 0.167 0.174 0.175 0.179 0.179 0.189 0.178 0.167 0.162 0.117 0.129 53.80 47.10 45.10 43.03 42.33 42.13 41.53 40.67 30.70 25.67 18.13 8.10 3.57 -4.97 -16.07 -28.27 -32.20 -42.87 -50.87 -59.03 -65.67 -71.87 0.38 0.44 0.46 0.49 0.49 0.50 0.50 0.52 0.52 0.52 0.54 0.54 0.54 0.55 0.55 0.55 0.61 0.66 0.70 0.73 0.76 0.78 -155.50 -165.77 -170.63 180.17 -184.17 173.27 166.80 163.70 139.43 136.10 118.23 111.83 110.90 95.33 80.50 67.80 61.73 50.97 41.63 32.17 26.13 19.77 24.99 22.33 21.54 19.10 17.98 17.65 15.49 13.92 11.20 9.63 8.02 7.28 7.28 7.05 6.83 6.40 6.00 5.55 5.33 4.81 4.49 4.48 18.0 0.92 25.10 -6.34 0.48 -86.10 -17.92 0.127 -76.40 0.80 14.87 3.39 dB Typical Noise Parameters, VDS = 3V, IDS = 40 mA Fmin dB Γopt Mag. Γopt Ang. Rn/50 0.50 0.37 0.377 0.7 0.07 21.42 0.90 0.41 0.367 24.5 0.06 18.53 1.00 0.42 0.366 31.1 0.06 18.28 1.50 0.46 0.365 61.6 0.05 15.95 1.80 0.49 0.37 77.8 0.05 15.42 2.00 0.51 0.374 87.9 0.05 14.61 2.50 0.55 0.392 110.5 0.04 13.33 3.00 0.59 0.416 129.6 0.04 12.25 4.00 0.68 0.479 159.2 0.03 10.5 5.00 0.77 0.553 179.4 0.02 9.06 6.00 0.86 0.627 -167.2 0.02 8.05 7.00 0.95 0.69 -157.6 0.04 7.13 8.00 1.04 0.733 -149.2 0.06 6.38 9.00 1.13 0.742 -139.1 0.1 5.97 10.00 1.22 0.709 -124.7 0.18 5 Ga dB MSG/MAG and |S21|2 (dB) 40 Freq GHz 30 MSG 20 MAG 10 0 |S21|2 -10 0 5 10 15 20 FREQUENCY (GHz) Figure 19. MSG/MAG and |S21|2 vs. Frequency at 3V, 40 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of the gate pad. The output reference plane is at the end of the drain pad. 7 ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 60 mA Freq. GHz S11 Mag. Ang. S21 Mag. Ang. dB S12 Mag. Ang. S22 Mag. Ang. MSG/MAG dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 0.81 0.78 0.77 0.75 0.74 0.74 0.72 0.70 0.71 0.73 0.71 0.73 0.74 0.76 0.79 0.86 0.87 0.88 0.89 0.92 0.94 0.94 -93.60 -120.70 -133.60 -152.50 -160.50 -164.40 -171.30 -175.30 162.70 149.70 140.60 123.70 112.70 97.60 83.40 61.80 62.00 52.00 44.50 38.80 33.20 28.20 22.93 19.68 18.81 15.50 14.27 14.02 11.06 9.80 7.39 5.70 4.61 3.54 3.33 3.12 2.52 0.66 -0.15 -0.96 -1.56 -3.38 -5.04 -5.15 14.01 9.64 8.72 5.96 5.17 5.02 3.57 3.09 2.34 1.93 1.70 1.50 1.47 1.43 1.34 1.08 0.98 0.90 0.84 0.68 0.56 0.55 127.00 112.10 105.40 93.43 88.00 84.80 77.97 71.93 53.33 41.90 29.10 15.10 7.10 -4.37 -17.80 -32.10 -37.60 -49.50 -58.70 -67.60 -74.90 -80.90 -28.64 -26.56 -25.68 -23.88 -22.73 -22.16 -20.72 -18.40 -17.52 -16.95 -16.31 -15.55 -15.09 -15.04 -14.75 -14.80 -14.29 -14.80 -15.34 -15.65 -18.42 -17.65 0.037 0.047 0.052 0.064 0.073 0.078 0.092 0.120 0.133 0.142 0.153 0.167 0.176 0.177 0.183 0.182 0.193 0.182 0.171 0.165 0.120 0.131 54.00 48.30 46.80 46.03 45.93 46.03 45.93 45.37 35.20 29.87 21.73 11.40 6.37 -2.77 -14.27 -26.87 -31.00 -41.97 -50.27 -58.43 -65.47 -71.67 0.39 0.46 0.48 0.51 0.51 0.52 0.52 0.53 0.54 0.54 0.55 0.56 0.56 0.57 0.57 0.57 0.63 0.68 0.71 0.74 0.77 0.78 -167.20 -172.07 -175.73 176.57 172.73 170.47 164.60 161.90 137.43 134.20 116.23 110.13 109.10 93.43 78.70 66.20 60.03 49.47 40.23 30.87 25.03 18.87 25.78 23.12 22.24 19.69 18.50 18.09 15.89 14.10 11.21 9.70 8.18 7.39 7.35 7.16 6.95 6.68 6.21 5.74 5.55 5.16 4.92 4.96 18.0 0.93 24.60 -6.11 0.50 -84.90 -17.79 0.129 -76.30 0.80 14.17 3.76 dB Typical Noise Parameters, VDS = 3V, IDS = 60 mA Fmin dB Γopt Mag. Γopt Ang. Rn/50 0.50 0.36 0.35 0.2 0.06 Ga dB 21.97 0.90 0.4 0.341 24.3 0.06 18.96 1.00 0.41 0.34 31.1 0.05 18.77 1.50 0.45 0.341 62.5 0.04 16.31 1.80 0.48 0.346 79.3 0.05 15.79 2.00 0.5 0.351 89.6 0.05 14.93 2.50 0.54 0.37 112.8 0.04 13.67 3.00 0.59 0.395 132.4 0.04 12.62 4.00 0.68 0.461 162.3 0.03 10.78 5.00 0.77 0.538 -177.6 0.02 9.28 6.00 0.86 0.616 -164.4 0.02 8.34 7.00 0.95 0.683 -155.3 0.04 7.37 8.00 1.04 0.729 -147.2 0.07 6.63 9.00 1.13 0.742 -137.3 0.11 6.19 10.00 1.22 0.712 -122.6 0.19 5.23 40 MSG/MAG and |S21|2 (dB) Freq GHz 30 MSG 20 MAG 10 0 |S21|2 -10 0 5 10 15 20 FREQUENCY (GHz) Figure 20. MSG/MAG and |S21|2 vs. Frequency at 3V, 60 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of the gate pad. The output reference plane is at the end of the drain pad. 8 ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 40 mA Freq. GHz S11 Mag. Ang. S21 Mag. Ang. dB S12 Mag. Ang. S22 Mag. Ang. MSG/MAG dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 0.82 0.78 0.77 0.75 0.74 0.74 0.72 0.69 0.70 0.73 0.71 0.73 0.74 0.76 0.79 0.86 0.87 0.88 0.89 0.92 0.94 0.94 -89.80 -116.90 -130.00 -149.70 -158.00 -162.20 -169.50 -173.80 164.10 150.90 141.80 124.70 113.70 98.50 84.30 62.60 62.70 52.60 45.10 39.20 33.50 28.40 22.59 19.49 18.68 15.42 14.21 13.70 11.50 10.20 7.34 5.66 4.54 3.52 3.29 3.08 2.45 0.59 -0.26 -1.08 -1.66 -3.49 -5.16 -5.30 13.48 9.43 8.59 5.90 5.13 4.84 3.76 3.24 2.33 1.92 1.69 1.50 1.46 1.43 1.33 1.07 0.97 0.88 0.83 0.67 0.55 0.54 128.80 113.60 106.60 94.13 88.40 85.10 77.87 71.53 52.63 40.90 28.00 13.40 5.20 -6.37 -20.00 -34.50 -40.00 -52.10 -61.60 -70.50 -78.00 -84.20 -27.54 -25.51 -24.73 -22.97 -22.05 -21.51 -20.26 -18.20 -17.46 -16.95 -16.42 -15.65 -15.29 -15.29 -15.04 -15.04 -14.56 -15.09 -15.55 -15.81 -18.64 -17.72 0.042 0.053 0.058 0.071 0.079 0.084 0.097 0.123 0.134 0.142 0.151 0.165 0.172 0.172 0.177 0.177 0.187 0.176 0.167 0.162 0.117 0.130 54.00 47.30 45.20 42.93 42.23 41.93 41.33 40.47 30.50 25.67 18.43 8.40 4.07 -4.27 -15.27 -27.37 -31.00 -41.67 -49.77 -58.03 -64.67 -71.07 0.36 0.41 0.43 0.46 0.46 0.47 0.48 0.49 0.50 0.50 0.51 0.52 0.52 0.53 0.53 0.53 0.59 0.64 0.69 0.71 0.75 0.77 -149.40 -162.57 -167.93 -177.83 177.53 174.77 168.10 164.80 140.63 137.60 120.43 113.63 112.80 97.33 82.40 69.40 63.63 52.57 43.13 33.47 27.23 20.77 25.06 22.50 21.70 19.20 18.13 17.61 15.88 14.20 11.39 9.81 8.14 7.45 7.42 7.18 6.94 6.64 6.29 5.80 5.59 5.35 4.93 4.97 18.0 0.93 24.90 -6.29 0.49 -88.30 -17.86 0.128 -75.90 0.79 15.87 3.70 dB Typical Noise Parameters, VDS = 4V, IDS = 40 mA Fmin dB Γopt Mag. Γopt Ang. Rn/50 0.50 0.4 0.335 0.5 0.07 Ga dB 21.8 0.90 0.43 0.332 27.9 0.06 18.83 1.00 0.44 0.332 34.3 0.06 18.59 1.50 0.48 0.338 63.8 0.05 16.22 1.80 0.51 0.345 79.6 0.05 15.46 2.00 0.52 0.352 89.3 0.05 14.61 2.50 0.57 0.373 111.3 0.05 13.34 3.00 0.61 0.4 130 0.04 12.29 4.00 0.69 0.467 158.9 0.03 10.47 5.00 0.78 0.542 178.7 0.03 8.96 6.00 0.86 0.617 -167.8 0.02 8.05 7.00 0.95 0.68 -158.1 0.04 7.19 8.00 1.03 0.724 -149.3 0.06 6.41 9.00 1.12 0.738 -138.9 0.1 6.15 10.00 1.2 0.712 -124.2 0.18 5.07 40 MSG/MAG and |S21|2 (dB) Freq GHz 30 MSG 20 MAG 10 0 |S21|2 -10 0 5 10 15 20 FREQUENCY (GHz) Figure 21. MSG/MAG and |S21|2 vs. Frequency at 4V, 40 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of the gate pad. The output reference plane is at the end of the drain pad. 9 ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 60 mA Freq. GHz S11 Mag. Ang. S21 Mag. Ang. dB S12 Mag. Ang. S22 Mag. Ang. MSG/MAG dB 0.5 0.8 1.0 1.5 1.8 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 0.81 0.78 0.77 0.75 0.74 0.74 0.72 0.69 0.71 0.73 0.71 0.73 0.74 0.76 0.79 0.86 0.87 0.88 0.89 0.92 0.94 0.94 -93.00 -120.00 -133.00 -152.00 -160.00 -164.00 -171.00 -175.00 163.00 150.00 141.00 124.00 113.00 97.90 83.70 62.10 62.30 52.20 44.70 39.00 33.30 28.20 23.11 19.90 19.03 15.74 14.50 14.24 11.29 10.21 7.64 5.93 4.81 3.75 3.52 3.29 2.67 0.83 0.00 -0.82 -1.41 -3.22 -4.88 -5.04 14.30 9.89 8.94 6.12 5.31 5.15 3.67 3.24 2.41 1.98 1.74 1.54 1.50 1.46 1.36 1.10 1.00 0.91 0.85 0.69 0.57 0.56 127.30 112.40 105.60 93.43 87.90 84.80 77.77 71.63 52.93 41.40 28.60 14.30 6.20 -5.37 -18.90 -33.30 -38.80 -50.80 -60.10 -69.20 -76.60 -82.80 -28.64 -26.56 -25.68 -23.88 -22.85 -22.27 -20.82 -19.25 -17.65 -17.08 -16.48 -15.65 -15.24 -15.14 -14.89 -14.89 -14.42 -14.89 -15.39 -15.65 -18.42 -17.59 0.037 0.047 0.052 0.064 0.072 0.077 0.091 0.109 0.131 0.140 0.150 0.165 0.173 0.175 0.180 0.180 0.190 0.180 0.170 0.165 0.120 0.132 53.90 48.30 46.80 45.83 45.73 45.83 45.73 45.27 35.20 30.07 22.23 11.90 7.07 -1.87 -13.17 -25.67 -29.70 -40.67 -48.97 -57.33 -64.27 -70.77 0.37 0.43 0.45 0.48 0.48 0.49 0.49 0.51 0.51 0.51 0.52 0.53 0.53 0.54 0.54 0.54 0.60 0.65 0.69 0.72 0.75 0.77 -161.30 -169.07 -173.33 178.37 174.33 171.87 165.90 162.80 138.63 135.70 118.43 111.93 111.10 95.43 80.60 67.90 61.93 51.07 41.93 32.27 26.33 19.97 25.87 23.23 22.35 19.81 18.68 18.25 16.06 14.73 11.41 9.89 8.31 7.56 7.52 7.31 7.10 6.92 6.50 5.93 5.76 5.53 5.19 5.22 18.0 0.93 24.70 -6.02 0.50 -86.90 -17.72 0.130 -75.60 0.79 15.07 3.90 dB Typical Noise Parameters, VDS = 4V, IDS = 60 mA Fmin dB Γopt Mag. Γopt Ang. Rn/50 0.50 0.38 0.316 0.7 0.06 Ga dB 22.33 0.90 0.42 0.314 28.9 0.06 19.23 1.00 0.43 0.314 35.5 0.06 19.1 1.50 0.47 0.321 65.7 0.05 16.63 1.80 0.5 0.329 81.9 0.05 15.86 2.00 0.52 0.336 91.9 0.05 14.96 2.50 0.56 0.358 114.3 0.04 13.73 3.00 0.61 0.386 133.2 0.04 12.58 4.00 0.7 0.454 162.3 0.03 10.78 5.00 0.79 0.53 -178.1 0.03 9.3 6.00 0.88 0.606 -165.1 0.02 8.32 7.00 0.97 0.67 -155.8 0.04 7.44 8.00 1.06 0.714 -147.4 0.07 6.59 9.00 1.16 0.728 -137.1 0.11 6.36 10.00 1.25 0.703 -121.9 0.19 5.27 40 MSG/MAG and |S21|2 (dB) Freq GHz 30 MSG 20 MAG 10 0 |S21|2 -10 0 5 10 15 20 FREQUENCY (GHz) Figure 22. MSG/MAG and |S21|2 vs. Frequency at 4V, 60 mA. Notes: 1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements Fmin is calculated. Refer to the noise parameter measurement section for more information. 2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of the gate pad. The output reference plane is at the end of the drain pad. 10 S and Noise Parameter Measurements The position of the reference planes used for the measurement of both S and Noise Parameter measurements is shown in Figure 23. The reference plane can be described as being at the center of both the gate and drain pads. S and noise parameters are measured with a 50 ohm microstrip test fixture made with a 0.010" thickness aluminum substrate. Both source pads are connected directly to ground via a 0.010" thickness metal rib which provides a very low inductance path to ground for both source pads. The inductance associated with the addition of printed circuit board plated through holes and source bypass capacitors must be added to the computer circuit simulation to properly model the effect of grounding the source leads in a typical amplifier design. Reference Plane Source Pin 3 Drain Pin 4 Px Source Pin 1 Gate Pin 2 Microstrip Transmission Lines Figure 23. Position of the Reference Planes. Noise Parameter Applications Information The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements, a true Fmin is calculated. Fmin represents the true minimum noise figure of the device when the device is presented with an impedance matching 11 network that transforms the source impedance, typically 50Ω, to an impedance represented by the reflection coefficient Γo. The designer must design a matching network that will present Γo to the device with minimal associated circuit losses. The noise figure of the completed amplifier is equal to the noise figure of the device plus the losses of the matching network preceding the device. The noise figure of the device is equal to Fmin only when the device is presented with Γo. If the reflection coefficient of the matching network is other than Γo, then the noise figure of the device will be greater than Fmin based on the following equation. NF = Fmin + 4 Rn |Γs – Γo | 2 Zo (|1 + Γo| 2) (1 - |Γs| 2) Where Rn/Zo is the normalized noise resistance, Γo is the optimum reflection coefficient required to produce Fmin and Γs is the reflection coefficient of the source impedance actually presented to the device. The losses of the matching networks are non-zero and they will also add to the noise figure of the device creating a higher amplifier noise figure. The losses of the matching networks are related to the Q of the components and associated printed circuit board loss. Γo is typically fairly low at higher frequencies and increases as frequency is lowered. Larger gate width devices will typically have a lower Γo as compared to narrower gate width devices. Typically for FETs, the higher Γo usually infers that an impedance much higher than 50Ω is required for the device to produce Fmin. At VHF frequencies and even lower L Band frequencies, the required impedance can be in the vicinity of several thousand ohms. Matching to such a high impedance requires very hi-Q components in order to minimize circuit losses. As an example at 900 MHz, when air wound coils (Q>100)are used for matching networks, the loss can still be up to 0.25 dB which will add directly to the noise figure of the device. Using multilayer molded inductors with Qs in the 30 to 50 range results in additional loss over the air wound coil. Losses as high as 0.5 dB or greater add to the typical 0.15 dB Fmin of the device creating an amplifier noise figure of nearly 0.65 dB. SMT Assembly The package can be soldered using either lead-bearing or leadfree alloys (higher peak temperatures). Reliable assembly of surface mount components is a complex process that involves many material, process, and equipment factors, including: method of heating (e.g. IR or vapor phase reflow, wave soldering, etc) circuit board material, conductor thickness and pattern, type of solder alloy, and the thermal conductivity and thermal mass of components. Components with a low mass, such as the Minipak 1412 package, will reach solder reflow temperatures faster than those with a greater mass. The recommended leaded solder time-temperature profile is shown in Figure 24. This profile is representative of an IR reflow type of surface mount assembly process. After ramping up from room temperature, the circuit board with components attached to it (held in place with solder paste) passes through one or more preheat zones. The preheat zones increase the temperature of the board and components to prevent thermal shock and begin evaporating solvents from the solder paste. The reflow zone briefly elevates the temperature sufficiently to produce a reflow of the solder. board and components should only be exposed to the minimum temperatures and times the necessary to achieve a uniform reflow of solder. The rates of change of temperature for the ramp-up and cooldown zones are chosen to be low enough to not cause deformation of board or damage to components due to thermal shock. The maximum temperature in the reflow zone (Tmax) should not exceed 235° C for leaded solder. The recommended lead-free reflow profile is shown in Figure 25. These parameters are typical for a surface mount assembly process for the ATF-331M4. As a general guideline, the circuit Electrostatic Sensitivity FETs and RFICs are electrostatic discharge (ESD) sensitive devices. Agilent devices are manufactured using a very robust and reliable PHEMT process, however, permanent damage may occur to these devices if they are subjected to high-energy electrostatic discharges. Electrostatic charges as high as several thousand volts (which readily accumulate on the human body and on test equipment) can discharge without detection and may result in failure or degradation in performance and reliability. Electronic devices may be subjected to ESD damage in any of the following areas: • Storage & handling • Inspection • Assembly & testing • In-circuit use The ATF-331M4 is an ESD Class 1 device. Therefore, proper ESD precautions are recommended when handling, inspecting, testing, and assembling these devices to avoid damage. 250 TMAX Any user-accessible points in wireless equipment (e.g. antenna or battery terminals) provide an opportunity for ESD damage. TEMPERATURE (°C) 200 150 Reflow Zone 100 Preheat Zone Cool Down Zone 50 0 0 60 120 180 240 300 TIME (seconds) Figure 24. Leaded Solder Reflow Profile. 350 Peak Temperature Min. 240°C Max. 255°C TEMPERATURE (°C) 300 250 221 Reflow Time Min. 60s Max. 90s 200 150 100 Preheat 130 – 170°C Min. 60s Max. 150s 50 0 0 For circuit applications in which the ATF-331M4 is used as an input or output stage with close coupling to an external antenna, the device should be protected from high voltage spikes due to human contact with the antenna. A good practice, illustrated in Figure 26, is to place a shunt inductor or RF choke at the antenna connection to protect the receiver and transmitter circuits. It is often advantageous to integrate the RF choke into the design of the diplexer or T/R switch control circuitry. 30 60 90 120 150 180 210 240 270 300 330 360 TIME (seconds) Figure 25. Lead-free Solder Reflow Profile. 12 Figure 26. In-circuit ESD Protection. ATF-331M4 Die Model Advanced_Curtice2_Model MESFETM1 NFET=yes Cgs=1.764 pF PFET=no Gdcap=3 Vto=0.95 Cgd=0.338 pF Beta=0.48 Rgd= Lambda=0.09 Tqm= Alpha=4 Vmax= B=0.8 Fc= Tnom=27 Rd=0.125 Idstc= Rg=1 Vbi=0.7 Tau= Rs=0.0625 Betatce= Ld=0.0034 nH Delta1=0.2 Lg=0.0039 nH Delta2= Ls=0.0012 nH Gscap=3 Cds=0.0776 pF Crf=0.1 Rc=62.5 Gsfwd=1 Gsrev=0 Gdfwd=1 Gdrev=0 Vjr=1 Is=1 nA Ir=1 nA Imax=0.1 Xti= N= Eg= Vbr= Vtotc= Rin= Taumdl=no Fnc=1 E6 R=0.17 C=0.2 P=0.65 wVgfwd= wBvgs= wBvgd= wBvds= wldsmax= wPmax= AllParams= This model can be used as a design tool. It has been tested on ADS for various specifications. However, for more precise and accurate design, please refer to the measured data in this data sheet. For future improvements, Agilent reserves the right to change these models without prior notice. ATF-331M4 Minipak Model INSIDE Package Var Egn GATE Port G Num=1 VAR VAR1 K=5 Z2=85 Z1=30 C C1 C=0.28 pF TLINP TL3 Z=Z2 Ohm L=23.6 mil K=K A=0.000 F=1 GHz TanD=0.001 TLINP TL1 Z=Z2/2 Ohm L=22 mil K=K A=0.000 F=1 GHz TanD=0.001 TLINP TL2 Z=Z2/2 Ohm L=20 0 mil K=K A=0.000 F=1 GHz TanD=0.001 L L6 L=0.147 nH R=0.001 L L1 L=0.234 nH R=0.001 GaAsFET FET1 Mode1=MESFETM1 Mode=Nonlinear C C2 C=0.046 pF SOURCE Port S1 Num=2 13 TLINP TL9 Z=Z2 Ohm L=11 mil K=K A=0.000 F=1 GHz TanD=0.001 L L4 L=0.281 nH R=0.001 MSub MSUB MSub2 H=25.0 mil Er=9.6 Mur=1 Cond=1.0E+50 Hu=3.9e+034 mil T=0.15 mil TanD=0 Rough=0 mil L L7 L=0.234 nH R=0.001 SOURCE TLINP TL7 Z=Z2/2 Ohm L=5.2 mil K=K A=0.000 F=1 GHz TanD=0.001 TLINP TL5 Z=Z2 Ohm L=27.5 mil K=K A=0.000 F=1 GHz TanD=0.001 Port S2 Num=4 DRAIN Port D Num=3 Ordering Information Part Number No. of Devices Container ATF-331M4-TR1 3000 7” Reel ATF-331M4-TR2 10000 13” Reel ATF-331M4-BLK 100 antistatic bag MiniPak Package Outline Drawing Solder Pad Dimensions 1.44 (0.058) 1.40 (0.056) 3 4 Px 1.20 (0.048) 1.16 (0.046) 2 1 1.12 (0.045) 1.08 (0.043) 0.82 (0.033) 0.78 (0.031) 0.32 (0.013) 0.28 (0.011) 0.00 Top view 0.00 -0.07 (-0.003) -0.03 (-0.001) 0.70 (0.028) 0.58 (0.023) Side view Dimensions are in millimeteres (inches) 14 0.92 (0.037) 0.88 (0.035) 0.42 (0.017) 1.32 (0.053) 0.38 (0.015) 1.28 (0.051) Bottom view -0.07 (-0.003) -0.03 (-0.001) Device Orientation for Outline 4T, MiniPak 1412 REEL TOP VIEW END VIEW 4 mm CARRIER TAPE Px Px Px Px 8 mm USER FEED DIRECTION Note: Px represents Package Marking Code. Device orientation is indicated by package marking. COVER TAPE Tape Dimensions P P2 D P0 E F W C B0 A0 D1 t1 (CARRIER TAPE THICKNESS) Tt (COVER TAPE THICKNESS) K0 5° MAX. A0 DESCRIPTION 15 5° MAX. B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 1.40 ± 0.05 1.63 ± 0.05 0.80 ± 0.05 4.00 ± 0.10 0.80 ± 0.05 0.055 ± 0.002 0.064 ± 0.002 0.031 ± 0.002 0.157 ± 0.004 0.031 ± 0.002 PERFORATION DIAMETER PITCH POSITION D P0 E 1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10 0.060 ± 0.004 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 + 0.30 - 0.10 0.254 ± 0.02 0.315 + 0.012 - 0.004 0.010 ± 0.0008 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.40 ± 0.10 0.062 ± 0.001 0.213 ± 0.004 0.0024 ± 0.00004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 ± 0.05 0.079 ± 0.002 www.agilent.com/semiconductors For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (408) 654-8675 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 271 2451 India, Australia, New Zealand: (+65) 271 2394 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (+65) 271 2194 Malaysia, Singapore: (+65) 271 2054 Taiwan: (+65) 271 2654 Data subject to change. Copyright © 2002 Agilent Technologies, Inc. January 30, 2002 5988-4993EN