AGILENT ATF-331M4-TR2

Agilent ATF-331M4 Low Noise
Pseudomorphic HEMT in a
Miniature Leadless Package
Data Sheet
Features
• Low noise figure
• Excellent uniformity in product
specifications
• 1600 micron gate width
• Miniature leadless package
1.4 mm x 1.2 mm x 0.7 mm
Description
Agilent Technologies’s
ATF-331M4 is a high linearity,
low noise pHEMT housed in a
miniature leadless package.
The ATF-331M4’s small size and
low profile makes it ideal for the
design of hybrid modules and
other space-constraint devices.
Based on its featured performance, ATF-331M4 is ideal for
the first or second stage of base
station LNA due to the excellent
combination of low noise figure
and enhanced linearity [1]. The
device is also suitable for applications in Wireless LAN,
WLL/RLL, MMDS, and other
systems requiring super low
noise figure with good intercept
in the 450 MHz to 10 GHz
frequency range.
Note:
1. From the same PHEMT FET family, the
smaller geometry ATF-34143 may also be
considered for the higher gain performance,
particularly in the higher frequency band
(1.8 GHz and up).
MiniPak 1.4 mm x 1.2 mm Package
Px
• Tape-and-reel packaging option
available
Specifications
2 GHz; 4 V, 60 mA (Typ.)
• 0.6 dB noise figure
• 15 dB associated gain
Pin Connections and
Package Marking
Source
Pin 3
Gate
Pin 2
Px
• 19 dBm output power at 1 dB gain
compression
Drain
Pin 4
Source
Pin 1
Note:
Top View. Package marking provides orientation,
product identification and date code.
“P” = Device Type Code
“x” = Date code character. A different
character is assigned for each month
and year.
• 31 dBm output 3rd order intercept
Applications
• Tower mounted amplifier, low noise
amplifier and driver amplifier for
GSM/TDMA/CDMA base stations
• LNA for WLAN, WLL/RLL, MMDS
and wireless data infrastructures
• General purpose discrete PHEMT for
other ultra low noise applications
ATF-331M4 Absolute Maximum Ratings [1]
Symbol
Parameter
Units
Absolute
Maximum
VDS
Drain-Source Voltage [2]
V
5.5
VGS
Gate-Source Voltage [2]
V
-5
VGD
Gate Drain Voltage [2]
V
-5
IDS
Drain Current [2]
mA
Idiss[3]
Pdiss
Total Power Dissipation [4]
mW
400
Pin max.
RF Input Power
dBm
20
TCH
Channel Temperature[5]
°C
160
TSTG
Storage Temperature
°C
-65 to 160
θjc
Thermal Resistance [6]
°C/W
200
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Assumes DC quiescent conditions.
3. VGS = 0 V
4. Source lead temperature is 25°C. Derate
5 mW/°C for TL > 40°C.
5. Please refer to failure rates in reliability data
sheet to assess the reliability impact of
running devices above a channel temperature
of 140°C.
6. Thermal resistance measured using 150°C
Liquid Crystal Measurement method.
500
+0.6 V
400
IDS (mA)
300
0V
200
100
-0.6 V
0
0
2
4
VDS (V)
6
8
Figure 1. Typical Pulsed I-V Curves[7].
(VGS = -0.2 V per step)
Note:
7. Under large signal conditions, VGS may swing
positive and the drain current may exceed
Idss. These conditions are acceptable as long
as the Maximum Pdiss and Pin max ratings are
not exceeded.
Product Consistency Distribution Charts [8, 9]
150
100
120
Cpk = 1.05
Stdev = 0.07
Cpk = 1.00
Stdev = 1.07
80
120
60
90
Cpk = 4.37
Stdev = 1.11
100
80
-3 Std
+3 Std
-3 Std
+3 Std
-3 Std
60
+3 Std
60
40
40
30
20
20
0
0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
NF (dBm)
Figure 2. NF @ 2 GHz, 4 V, 60 mA.
LSL = 28.5, Nominal = 0.6, USL = 0.8.
0.9
0
28
30
32
OIP3 (dBm)
34
Figure 3. OIP3 @ 2 GHz, 4 V, 60 mA.
LSL = 28.5, Nominal = 31.0, USL = 36.0
36
13
14
15
GAIN (dB)
16
17
Figure 4. Gain @ 2 GHz, 4 V, 60 mA.
LSL = 13.5, Nominal = 15.0, USL = 16.5
Notes:
8. Distribution data sample size is 349 samples from 4 different wafers. Future wafers allocated to this product may have nominal values anywhere within
the upper and lower spec limits.
9. Measurements made on production test board. This circuit represents a trade-off between an optimal noise match and a realizeable match based on
production test requirements. Circuit losses have been de-embedded from actual measurements.
2
ATF-331M4 DC Electrical Specifications
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol Parameter and Test Condition
Units
Min.
Typ.[2]
Max.
Idss [1]
Saturated Drain Current
Vds = 1.5 V, Vgs = 0V
mA
175
237
305
Vp [1]
Pinch-off Voltage
Vds = 1.5 V, Ids = 10% of Idss
V
-0.65
-0.5
-0.35
Id
Quiescent Bias Current
Vgs = -0.51 V, Vds = 4V
mA
—
60
—
Gm [1]
Transconductance
Vds = 1.5 V, Gm = Idss/Vp
mmho
360
440
—
Igdo
Gate to Drain Leakage Current
Vgd = -5 V
µA
—
—
1000
Igss
Gate Leakage Current
Vgd = Vgs = -4V
µA
—
42
600
NF
Noise Figure
f = 2 GHz
f = 900 MHz
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dB
dB
—
—
0.6
0.5
0.8
—
Ga
Associated Gain
f = 2 GHz
f = 900 MHz
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dB
dB
13.5
—
15
21
16.5
—
OIP3
Output 3rd Order
Intercept Point [3]
f = 2 GHz, 5 dBm Pout/Tone
f = 900 MHz, 5 dBm Pout/Tone
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dBm
dBm
28.5
—
31
30.8
—
—
P1dB
1dB Compressed
Output Power [3]
f = 2 GHz
f = 900 MHz
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dBm
dBm
—
—
19
18
—
—
Notes:
1. Guaranteed at wafer probe level
2. Typical values are determined from a sample size of 349 parts from 4 wafers.
3. Measurements obtained using production test board described in Figure 5.
Input
50Ω Input
Transmission Line
Including
Gate Bias T
(0.3 dB loss)
Input
Matching Circuit
Γ_mag = 0.13
Γ_ang = 113°
(0.3 dB loss)
DUT
50Ω Output
Transmission Line
Including
Gate Bias T
(0.5 dB loss)
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements. This circuit
represents a trade-off between an optimal noise match and a realizable match based on production test requirements. Circuit losses have been
de-embedded from actual measurements.
3
ATF-331M4 Typical Performance Curves
40
40
25
2V
3V
4V
2V
3V
4V
20
OIP3, IIP3 (dBm)
20
P1dB (dBm)
30
30
OIP3, IIP3 (dBm)
2V
3V
4V
20
15
10
10
10
5
0
40
60
80
100
0
0
20
40
Ids (mA)
GAIN (dB)
P1dB (dBm)
5
60
80
100
Idsq (mA)
Figure 9.
P1dB vs. Bias[1] 900 MHz.
Notes:
1. Measurements made on fixed tuned
production test board that was tuned for
optimal gain match with reasonable noise
figure at 4V 60 mA bias. This circuit
represents a trade-off between an optimal
noise match, maximum gain match and a
realizable match based on production test
board requirements. Circuit losses have been
de-embedded from actual measurements.
4
40
14
1.0
13
0.8
12
0.6
11
0
20
40
60
80
100
60
80
1.4
22
1.2
10
0
40
20
Figure 8. P1dB vs. Bias[1,2] 2 GHz.
1.4
2V
3V
4V
15
10
20
0
Idsq (mA)
16
15
0
100
Figure 7. OIP3, IIP3 & Bias[1] at 900 MHz.
2V
3V
4V
20
80
Ids (mA)
Figure 6. OIP3, IIP3 & Bias[1] at 2 GHz.
25
60
2V
3V
4V
21
1.2
20
1.0
19
0.8
18
0.6
0.4
17
0.4
0.2
100
16
Id (mA)
GAIN (dB)
20
NOISE FIGURE (dB)
0
0
20
40
60
80
100
0.2
120
Id (mA)
[1]
Figure 10. NF & Gain vs. Bias
at 2 GHz.
2. Quiescent drain current, Idsq, is set with zero
RF drive applied. As P1dB is approached, the
drain current may increase or decrease
depending on frequency and dc bias point. At
lower values of Idsq the device is running
closer to class B as power output approaches
P1dB. This results in higher P1dB and higher
PAE (power added efficiency) when compared
to a device that is driven by a constant
current source as is typically done with active
biasing.
Figure 11. NF & Gain vs. Bias[1] at 900 MHz.
NOISE FIGURE (dB)
0
ATF-331M4 Typical Performance Curves, continued
1.4
85°C
25°C
-40°C
25
0.8
GAIN (dB)
1.0
0.6
15
15
1.0
10
0.5
5
0
6
8
10
0
2
FREQUENCY (GHz)
30
OIP3, P1dB (dBm), GAIN (dB)
35
25
20
15
10
85°C
25°C
-40°C
5
2
3
4
5
8
10
0
2
6
7
8
FREQUENCY (GHz)
Figure 15. P1dB, OIP3 vs. Frequency and
Temp at Vd = 4V, Ids = 60 mA.
Notes:
1. Measurements made on fixed tuned
production test board that was tuned for
optimal gain match with reasonable noise
figure at 4V 60 mA bias. This circuit
represents a trade-off between an optimal
noise match, maximum gain match and a
realizable match based on production test
board requirements. Circuit losses have been
de-embedded from actual measurements.
35
30
3.0
30
25
P1dB
OIP3
2.5
Gain
NF
20
2.0
15
1.5
10
1.0
5
0.5
0
20
40
60
6
8
Figure 14. Fmin & Ga vs. Frequency and Temp.
Vd = 4V, Ids = 60 mA.
3.5
0
4
FREQUENCY (GHz)
Figure 13. Associated Gain vs. Frequency
at 4V, 60 mA.
35
1
6
FREQUENCY (GHz)
Figure 12. Fmin vs. Frequency at 4 V, 60 mA.
0
4
80
NOISE FIUGRE (dB)
4
0
100
Idsq (mA)
Figure 16. OIP3, P1dB, NF and Gain vs.
Bias[1,2] at 3.9 GHz.
2. Quiescent drain current, Idsq, is set with zero
RF drive applied. As P1dB is approached, the
drain current may increase or decrease
depending on frequency and dc bias point. At
lower values of Idsq the device is running
closer to class B as power output approaches
P1dB. This results in higher P1dB and higher
PAE (power added efficiency) when compared
to a device that is driven by a constant
current source as is typically done with active
biasing.
OIP3, P1dB (dBm), GAIN (dB)
2
0
5
0
0
3.5
3.0
P1dB
OIP3
Gain
NF
25
2.5
20
2.0
15
1.5
10
1.0
5
0.5
0
0
20
40
60
80
Idsq (mA)
Figure 17. OIP3, P1dB, NF at 5.8 GHz.
0
100
NOISE FIGURE (dB)
0.2
P1dB, OIP3 (dBm)
1.5
10
0.4
5
20
20
GAIN (dB)
Fmin (dB)
1.2
0
2.0
25
30
NOISE FIGURE (dB)
1.6
ATF-331M4 Typical Scattering Parameters, VDS = 2V, IDS = 40 mA
Freq.
GHz
S11
Mag. Ang.
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
S22
Mag. Ang.
MSG/MAG
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
0.82
0.79
0.78
0.76
0.75
0.74
0.72
0.69
0.71
0.73
0.71
0.73
0.74
0.76
0.79
0.86
0.87
0.88
0.88
0.91
0.93
0.93
-91.90
-119.10
-132.10
-151.40
-159.60
-163.60
-170.70
-174.30
163.10
150.00
140.90
123.90
112.90
97.70
83.60
61.90
62.10
51.90
44.60
38.70
33.30
28.40
22.10
18.85
18.06
14.75
13.55
13.36
10.33
9.60
6.62
4.98
3.94
2.92
2.77
2.60
2.00
0.08
-0.71
-1.54
-2.09
-4.00
-5.66
-5.68
12.74
8.76
8.00
5.46
4.76
4.65
3.29
3.02
2.14
1.77
1.57
1.40
1.38
1.35
1.26
1.01
0.92
0.84
0.79
0.63
0.52
0.52
127.90
112.80
106.00
93.73
88.20
85.00
77.97
71.83
53.23
41.60
28.80
14.70
6.70
-4.77
-18.20
-32.50
-37.90
-49.90
-58.90
-67.70
-74.80
-80.50
-27.13
-25.19
-24.44
-22.73
-21.72
-21.31
-20.09
-18.12
-17.20
-16.65
-16.08
-15.39
-15.04
-14.99
-14.75
-14.80
-14.33
-14.89
-15.44
-15.81
-18.71
-17.86
0.044
0.055
0.060
0.073
0.082
0.086
0.099
0.124
0.138
0.147
0.157
0.170
0.177
0.178
0.183
0.182
0.192
0.180
0.169
0.162
0.116
0.128
53.30
46.70
44.70
42.73
42.13
41.93
41.33
40.57
30.30
24.97
17.23
7.10
2.57
-6.27
-17.47
-29.77
-33.90
-44.67
-52.47
-60.63
-67.27
-73.07
0.40
0.47
0.49
0.53
0.53
0.54
0.53
0.55
0.56
0.56
0.57
0.57
0.58
0.59
0.59
0.58
0.65
0.69
0.73
0.75
0.78
0.79
-163.10
-169.67
-173.83
177.77
173.73
171.27
165.20
162.60
138.03
134.30
115.73
109.93
108.90
93.03
78.30
66.00
59.73
49.07
40.13
30.57
24.73
18.67
24.62
22.02
21.25
18.74
17.64
17.33
15.21
13.86
10.77
9.25
7.71
6.97
6.98
6.78
6.54
6.03
5.63
5.20
5.04
4.34
4.04
4.02
18.0
0.92
25.20
-6.58
0.47
-84.00
-17.99
0.126
-77.40
0.81
13.87
3.03
dB
Typical Noise Parameters, VDS = 2V, IDS = 40 mA
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
0.50
0.37
0.39
0.6
0.07
21.16
0.90
0.41
0.381
26.3
0.06
18.36
1.00
0.41
0.38
32.9
0.06
18.19
Ga
dB
1.50
0.46
0.38
63.6
0.05
15.96
1.80
0.48
0.385
80
0.05
15.43
2.00
0.5
0.39
90.1
0.05
14.56
2.50
0.54
0.407
112.8
0.04
13.29
3.00
0.59
0.431
132
0.04
12.18
4.00
0.67
0.492
161.3
0.03
10.4
5.00
0.76
0.565
-179
0.02
8.94
6.00
0.85
0.638
-166
0.02
7.96
7.00
0.93
0.702
-156.9
0.04
7
8.00
1.02
0.747
-148.9
0.07
6.16
9.00
1.11
0.762
-139
0.11
5.8
10.00
1.19
0.737
-124.5
0.18
4.89
MSG/MAG and |S21|2 (dB)
40
Freq
GHz
30
MSG
20
MAG
10
0
|S21|2
-10
0
5
10
15
20
FREQUENCY (GHz)
Figure 18. MSG/MAG and |S21|2 vs.
Frequency at 2V, 40 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
6
ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 40 mA
Freq.
GHz
S11
Mag. Ang.
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
S22
Mag. Ang.
MSG/MAG
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
0.82
0.78
0.77
0.75
0.74
0.74
0.72
0.69
0.71
0.73
0.71
0.73
0.74
0.76
0.79
0.86
0.87
0.88
0.89
0.91
0.93
0.93
-90.50
-117.70
-130.90
-150.40
-158.70
-162.70
-170.00
-174.10
163.70
150.50
141.50
124.40
113.40
98.20
84.10
62.40
62.50
52.30
44.90
39.00
33.40
28.50
22.45
19.31
18.50
15.23
14.02
13.79
10.81
9.60
7.13
5.46
4.37
3.34
3.14
2.94
2.33
0.44
-0.38
-1.20
-1.79
-3.64
-5.30
-5.40
13.27
9.24
8.41
5.77
5.02
4.89
3.47
3.02
2.27
1.87
1.65
1.47
1.44
1.40
1.31
1.05
0.96
0.87
0.81
0.66
0.54
0.54
128.40
113.30
106.40
93.93
88.30
85.10
77.97
71.63
53.03
41.40
28.50
14.10
6.00
-5.57
-19.10
-33.40
-38.90
-50.90
-60.20
-69.10
-76.40
-82.40
-27.54
-25.35
-24.58
-22.97
-21.94
-21.51
-20.18
-18.24
-17.33
-16.83
-16.31
-15.55
-15.19
-15.14
-14.94
-14.94
-14.47
-14.99
-15.55
-15.81
-18.64
-17.79
0.042
0.054
0.059
0.071
0.080
0.084
0.098
0.122
0.136
0.144
0.153
0.167
0.174
0.175
0.179
0.179
0.189
0.178
0.167
0.162
0.117
0.129
53.80
47.10
45.10
43.03
42.33
42.13
41.53
40.67
30.70
25.67
18.13
8.10
3.57
-4.97
-16.07
-28.27
-32.20
-42.87
-50.87
-59.03
-65.67
-71.87
0.38
0.44
0.46
0.49
0.49
0.50
0.50
0.52
0.52
0.52
0.54
0.54
0.54
0.55
0.55
0.55
0.61
0.66
0.70
0.73
0.76
0.78
-155.50
-165.77
-170.63
180.17
-184.17
173.27
166.80
163.70
139.43
136.10
118.23
111.83
110.90
95.33
80.50
67.80
61.73
50.97
41.63
32.17
26.13
19.77
24.99
22.33
21.54
19.10
17.98
17.65
15.49
13.92
11.20
9.63
8.02
7.28
7.28
7.05
6.83
6.40
6.00
5.55
5.33
4.81
4.49
4.48
18.0
0.92
25.10
-6.34
0.48
-86.10
-17.92
0.127
-76.40
0.80
14.87
3.39
dB
Typical Noise Parameters, VDS = 3V, IDS = 40 mA
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
0.50
0.37
0.377
0.7
0.07
21.42
0.90
0.41
0.367
24.5
0.06
18.53
1.00
0.42
0.366
31.1
0.06
18.28
1.50
0.46
0.365
61.6
0.05
15.95
1.80
0.49
0.37
77.8
0.05
15.42
2.00
0.51
0.374
87.9
0.05
14.61
2.50
0.55
0.392
110.5
0.04
13.33
3.00
0.59
0.416
129.6
0.04
12.25
4.00
0.68
0.479
159.2
0.03
10.5
5.00
0.77
0.553
179.4
0.02
9.06
6.00
0.86
0.627
-167.2
0.02
8.05
7.00
0.95
0.69
-157.6
0.04
7.13
8.00
1.04
0.733
-149.2
0.06
6.38
9.00
1.13
0.742
-139.1
0.1
5.97
10.00
1.22
0.709
-124.7
0.18
5
Ga
dB
MSG/MAG and |S21|2 (dB)
40
Freq
GHz
30
MSG
20
MAG
10
0
|S21|2
-10
0
5
10
15
20
FREQUENCY (GHz)
Figure 19. MSG/MAG and |S21|2 vs.
Frequency at 3V, 40 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
7
ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 60 mA
Freq.
GHz
S11
Mag. Ang.
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
S22
Mag. Ang.
MSG/MAG
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
0.81
0.78
0.77
0.75
0.74
0.74
0.72
0.70
0.71
0.73
0.71
0.73
0.74
0.76
0.79
0.86
0.87
0.88
0.89
0.92
0.94
0.94
-93.60
-120.70
-133.60
-152.50
-160.50
-164.40
-171.30
-175.30
162.70
149.70
140.60
123.70
112.70
97.60
83.40
61.80
62.00
52.00
44.50
38.80
33.20
28.20
22.93
19.68
18.81
15.50
14.27
14.02
11.06
9.80
7.39
5.70
4.61
3.54
3.33
3.12
2.52
0.66
-0.15
-0.96
-1.56
-3.38
-5.04
-5.15
14.01
9.64
8.72
5.96
5.17
5.02
3.57
3.09
2.34
1.93
1.70
1.50
1.47
1.43
1.34
1.08
0.98
0.90
0.84
0.68
0.56
0.55
127.00
112.10
105.40
93.43
88.00
84.80
77.97
71.93
53.33
41.90
29.10
15.10
7.10
-4.37
-17.80
-32.10
-37.60
-49.50
-58.70
-67.60
-74.90
-80.90
-28.64
-26.56
-25.68
-23.88
-22.73
-22.16
-20.72
-18.40
-17.52
-16.95
-16.31
-15.55
-15.09
-15.04
-14.75
-14.80
-14.29
-14.80
-15.34
-15.65
-18.42
-17.65
0.037
0.047
0.052
0.064
0.073
0.078
0.092
0.120
0.133
0.142
0.153
0.167
0.176
0.177
0.183
0.182
0.193
0.182
0.171
0.165
0.120
0.131
54.00
48.30
46.80
46.03
45.93
46.03
45.93
45.37
35.20
29.87
21.73
11.40
6.37
-2.77
-14.27
-26.87
-31.00
-41.97
-50.27
-58.43
-65.47
-71.67
0.39
0.46
0.48
0.51
0.51
0.52
0.52
0.53
0.54
0.54
0.55
0.56
0.56
0.57
0.57
0.57
0.63
0.68
0.71
0.74
0.77
0.78
-167.20
-172.07
-175.73
176.57
172.73
170.47
164.60
161.90
137.43
134.20
116.23
110.13
109.10
93.43
78.70
66.20
60.03
49.47
40.23
30.87
25.03
18.87
25.78
23.12
22.24
19.69
18.50
18.09
15.89
14.10
11.21
9.70
8.18
7.39
7.35
7.16
6.95
6.68
6.21
5.74
5.55
5.16
4.92
4.96
18.0
0.93
24.60
-6.11
0.50
-84.90
-17.79
0.129
-76.30
0.80
14.17
3.76
dB
Typical Noise Parameters, VDS = 3V, IDS = 60 mA
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
0.50
0.36
0.35
0.2
0.06
Ga
dB
21.97
0.90
0.4
0.341
24.3
0.06
18.96
1.00
0.41
0.34
31.1
0.05
18.77
1.50
0.45
0.341
62.5
0.04
16.31
1.80
0.48
0.346
79.3
0.05
15.79
2.00
0.5
0.351
89.6
0.05
14.93
2.50
0.54
0.37
112.8
0.04
13.67
3.00
0.59
0.395
132.4
0.04
12.62
4.00
0.68
0.461
162.3
0.03
10.78
5.00
0.77
0.538
-177.6
0.02
9.28
6.00
0.86
0.616
-164.4
0.02
8.34
7.00
0.95
0.683
-155.3
0.04
7.37
8.00
1.04
0.729
-147.2
0.07
6.63
9.00
1.13
0.742
-137.3
0.11
6.19
10.00
1.22
0.712
-122.6
0.19
5.23
40
MSG/MAG and |S21|2 (dB)
Freq
GHz
30
MSG
20
MAG
10
0
|S21|2
-10
0
5
10
15
20
FREQUENCY (GHz)
Figure 20. MSG/MAG and |S21|2 vs.
Frequency at 3V, 60 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
8
ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 40 mA
Freq.
GHz
S11
Mag. Ang.
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
S22
Mag. Ang.
MSG/MAG
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
0.82
0.78
0.77
0.75
0.74
0.74
0.72
0.69
0.70
0.73
0.71
0.73
0.74
0.76
0.79
0.86
0.87
0.88
0.89
0.92
0.94
0.94
-89.80
-116.90
-130.00
-149.70
-158.00
-162.20
-169.50
-173.80
164.10
150.90
141.80
124.70
113.70
98.50
84.30
62.60
62.70
52.60
45.10
39.20
33.50
28.40
22.59
19.49
18.68
15.42
14.21
13.70
11.50
10.20
7.34
5.66
4.54
3.52
3.29
3.08
2.45
0.59
-0.26
-1.08
-1.66
-3.49
-5.16
-5.30
13.48
9.43
8.59
5.90
5.13
4.84
3.76
3.24
2.33
1.92
1.69
1.50
1.46
1.43
1.33
1.07
0.97
0.88
0.83
0.67
0.55
0.54
128.80
113.60
106.60
94.13
88.40
85.10
77.87
71.53
52.63
40.90
28.00
13.40
5.20
-6.37
-20.00
-34.50
-40.00
-52.10
-61.60
-70.50
-78.00
-84.20
-27.54
-25.51
-24.73
-22.97
-22.05
-21.51
-20.26
-18.20
-17.46
-16.95
-16.42
-15.65
-15.29
-15.29
-15.04
-15.04
-14.56
-15.09
-15.55
-15.81
-18.64
-17.72
0.042
0.053
0.058
0.071
0.079
0.084
0.097
0.123
0.134
0.142
0.151
0.165
0.172
0.172
0.177
0.177
0.187
0.176
0.167
0.162
0.117
0.130
54.00
47.30
45.20
42.93
42.23
41.93
41.33
40.47
30.50
25.67
18.43
8.40
4.07
-4.27
-15.27
-27.37
-31.00
-41.67
-49.77
-58.03
-64.67
-71.07
0.36
0.41
0.43
0.46
0.46
0.47
0.48
0.49
0.50
0.50
0.51
0.52
0.52
0.53
0.53
0.53
0.59
0.64
0.69
0.71
0.75
0.77
-149.40
-162.57
-167.93
-177.83
177.53
174.77
168.10
164.80
140.63
137.60
120.43
113.63
112.80
97.33
82.40
69.40
63.63
52.57
43.13
33.47
27.23
20.77
25.06
22.50
21.70
19.20
18.13
17.61
15.88
14.20
11.39
9.81
8.14
7.45
7.42
7.18
6.94
6.64
6.29
5.80
5.59
5.35
4.93
4.97
18.0
0.93
24.90
-6.29
0.49
-88.30
-17.86
0.128
-75.90
0.79
15.87
3.70
dB
Typical Noise Parameters, VDS = 4V, IDS = 40 mA
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
0.50
0.4
0.335
0.5
0.07
Ga
dB
21.8
0.90
0.43
0.332
27.9
0.06
18.83
1.00
0.44
0.332
34.3
0.06
18.59
1.50
0.48
0.338
63.8
0.05
16.22
1.80
0.51
0.345
79.6
0.05
15.46
2.00
0.52
0.352
89.3
0.05
14.61
2.50
0.57
0.373
111.3
0.05
13.34
3.00
0.61
0.4
130
0.04
12.29
4.00
0.69
0.467
158.9
0.03
10.47
5.00
0.78
0.542
178.7
0.03
8.96
6.00
0.86
0.617
-167.8
0.02
8.05
7.00
0.95
0.68
-158.1
0.04
7.19
8.00
1.03
0.724
-149.3
0.06
6.41
9.00
1.12
0.738
-138.9
0.1
6.15
10.00
1.2
0.712
-124.2
0.18
5.07
40
MSG/MAG and |S21|2 (dB)
Freq
GHz
30
MSG
20
MAG
10
0
|S21|2
-10
0
5
10
15
20
FREQUENCY (GHz)
Figure 21. MSG/MAG and |S21|2 vs.
Frequency at 4V, 40 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
9
ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 60 mA
Freq.
GHz
S11
Mag. Ang.
S21
Mag.
Ang.
dB
S12
Mag.
Ang.
S22
Mag. Ang.
MSG/MAG
dB
0.5
0.8
1.0
1.5
1.8
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
0.81
0.78
0.77
0.75
0.74
0.74
0.72
0.69
0.71
0.73
0.71
0.73
0.74
0.76
0.79
0.86
0.87
0.88
0.89
0.92
0.94
0.94
-93.00
-120.00
-133.00
-152.00
-160.00
-164.00
-171.00
-175.00
163.00
150.00
141.00
124.00
113.00
97.90
83.70
62.10
62.30
52.20
44.70
39.00
33.30
28.20
23.11
19.90
19.03
15.74
14.50
14.24
11.29
10.21
7.64
5.93
4.81
3.75
3.52
3.29
2.67
0.83
0.00
-0.82
-1.41
-3.22
-4.88
-5.04
14.30
9.89
8.94
6.12
5.31
5.15
3.67
3.24
2.41
1.98
1.74
1.54
1.50
1.46
1.36
1.10
1.00
0.91
0.85
0.69
0.57
0.56
127.30
112.40
105.60
93.43
87.90
84.80
77.77
71.63
52.93
41.40
28.60
14.30
6.20
-5.37
-18.90
-33.30
-38.80
-50.80
-60.10
-69.20
-76.60
-82.80
-28.64
-26.56
-25.68
-23.88
-22.85
-22.27
-20.82
-19.25
-17.65
-17.08
-16.48
-15.65
-15.24
-15.14
-14.89
-14.89
-14.42
-14.89
-15.39
-15.65
-18.42
-17.59
0.037
0.047
0.052
0.064
0.072
0.077
0.091
0.109
0.131
0.140
0.150
0.165
0.173
0.175
0.180
0.180
0.190
0.180
0.170
0.165
0.120
0.132
53.90
48.30
46.80
45.83
45.73
45.83
45.73
45.27
35.20
30.07
22.23
11.90
7.07
-1.87
-13.17
-25.67
-29.70
-40.67
-48.97
-57.33
-64.27
-70.77
0.37
0.43
0.45
0.48
0.48
0.49
0.49
0.51
0.51
0.51
0.52
0.53
0.53
0.54
0.54
0.54
0.60
0.65
0.69
0.72
0.75
0.77
-161.30
-169.07
-173.33
178.37
174.33
171.87
165.90
162.80
138.63
135.70
118.43
111.93
111.10
95.43
80.60
67.90
61.93
51.07
41.93
32.27
26.33
19.97
25.87
23.23
22.35
19.81
18.68
18.25
16.06
14.73
11.41
9.89
8.31
7.56
7.52
7.31
7.10
6.92
6.50
5.93
5.76
5.53
5.19
5.22
18.0
0.93
24.70
-6.02
0.50
-86.90
-17.72
0.130
-75.60
0.79
15.07
3.90
dB
Typical Noise Parameters, VDS = 4V, IDS = 60 mA
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
0.50
0.38
0.316
0.7
0.06
Ga
dB
22.33
0.90
0.42
0.314
28.9
0.06
19.23
1.00
0.43
0.314
35.5
0.06
19.1
1.50
0.47
0.321
65.7
0.05
16.63
1.80
0.5
0.329
81.9
0.05
15.86
2.00
0.52
0.336
91.9
0.05
14.96
2.50
0.56
0.358
114.3
0.04
13.73
3.00
0.61
0.386
133.2
0.04
12.58
4.00
0.7
0.454
162.3
0.03
10.78
5.00
0.79
0.53
-178.1
0.03
9.3
6.00
0.88
0.606
-165.1
0.02
8.32
7.00
0.97
0.67
-155.8
0.04
7.44
8.00
1.06
0.714
-147.4
0.07
6.59
9.00
1.16
0.728
-137.1
0.11
6.36
10.00
1.25
0.703
-121.9
0.19
5.27
40
MSG/MAG and |S21|2 (dB)
Freq
GHz
30
MSG
20
MAG
10
0
|S21|2
-10
0
5
10
15
20
FREQUENCY (GHz)
Figure 22. MSG/MAG and |S21|2 vs.
Frequency at 4V, 60 mA.
Notes:
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the end of
the gate pad. The output reference plane is at the end of the drain pad.
10
S and Noise Parameter Measurements
The position of the reference
planes used for the measurement
of both S and Noise Parameter
measurements is shown in Figure
23. The reference plane can be
described as being at the center
of both the gate and drain pads.
S and noise parameters are
measured with a 50 ohm
microstrip test fixture made with
a 0.010" thickness aluminum
substrate. Both source pads are
connected directly to ground via
a 0.010" thickness metal rib
which provides a very low
inductance path to ground for
both source pads. The inductance
associated with the addition of
printed circuit board plated
through holes and source bypass
capacitors must be added to the
computer circuit simulation to
properly model the effect of
grounding the source leads in a
typical amplifier design.
Reference
Plane
Source
Pin 3
Drain
Pin 4
Px
Source
Pin 1
Gate
Pin 2
Microstrip
Transmission Lines
Figure 23. Position of the Reference Planes.
Noise Parameter Applications
Information
The Fmin values are based on a
set of 16 noise figure measurements made at 16 different
impedances using an ATN NP5
test system. From these measurements, a true Fmin is calculated.
Fmin represents the true minimum noise figure of the device
when the device is presented
with an impedance matching
11
network that transforms the
source impedance, typically 50Ω,
to an impedance represented by
the reflection coefficient Γo. The
designer must design a matching
network that will present Γo to
the device with minimal associated circuit losses. The noise
figure of the completed amplifier
is equal to the noise figure of the
device plus the losses of the
matching network preceding the
device. The noise figure of the
device is equal to Fmin only
when the device is presented
with Γo. If the reflection coefficient of the matching network is
other than Γo, then the noise
figure of the device will be
greater than Fmin based on the
following equation.
NF = Fmin + 4 Rn
|Γs – Γo | 2
Zo (|1 + Γo| 2) (1 - |Γs| 2)
Where Rn/Zo is the normalized
noise resistance, Γo is the optimum reflection coefficient
required to produce Fmin and Γs
is the reflection coefficient of the
source impedance actually
presented to the device.
The losses of the matching
networks are non-zero and they
will also add to the noise figure
of the device creating a higher
amplifier noise figure. The losses
of the matching networks are
related to the Q of the components and associated printed
circuit board loss. Γo is typically
fairly low at higher frequencies
and increases as frequency is
lowered. Larger gate width
devices will typically have a
lower Γo as compared to narrower gate width devices. Typically for FETs, the higher Γo
usually infers that an impedance
much higher than 50Ω is required for the device to produce
Fmin. At VHF frequencies and
even lower L Band frequencies,
the required impedance can be in
the vicinity of several thousand
ohms. Matching to such a high
impedance requires very hi-Q
components in order to minimize
circuit losses. As an example at
900 MHz, when air wound coils
(Q>100)are used for matching
networks, the loss can still be up
to 0.25 dB which will add directly to the noise figure of the
device. Using multilayer molded
inductors with Qs in the 30 to 50
range results in additional loss
over the air wound coil. Losses as
high as 0.5 dB or greater add to
the typical 0.15 dB Fmin of the
device creating an amplifier
noise figure of nearly 0.65 dB.
SMT Assembly
The package can be soldered
using either lead-bearing or leadfree alloys (higher peak temperatures). Reliable assembly of
surface mount components is a
complex process that involves
many material, process, and
equipment factors, including:
method of heating (e.g. IR or
vapor phase reflow, wave soldering, etc) circuit board material,
conductor thickness and pattern,
type of solder alloy, and the
thermal conductivity and thermal
mass of components. Components
with a low mass, such as the
Minipak 1412 package, will reach
solder reflow temperatures faster
than those with a greater mass.
The recommended leaded solder
time-temperature profile is
shown in Figure 24. This profile
is representative of an IR reflow
type of surface mount assembly
process. After ramping up from
room temperature, the circuit
board with components attached
to it (held in place with solder
paste) passes through one or
more preheat zones. The preheat
zones increase the temperature
of the board and components to
prevent thermal shock and begin
evaporating solvents from the
solder paste. The reflow zone
briefly elevates the temperature
sufficiently to produce a reflow
of the solder.
board and components should
only be exposed to the minimum
temperatures and times the
necessary to achieve a uniform
reflow of solder.
The rates of change of temperature for the ramp-up and cooldown zones are chosen to be low
enough to not cause deformation
of board or damage to components due to thermal shock. The
maximum temperature in the
reflow zone (Tmax) should not
exceed 235° C for leaded solder.
The recommended lead-free
reflow profile is shown in
Figure 25.
These parameters are typical for
a surface mount assembly
process for the ATF-331M4. As a
general guideline, the circuit
Electrostatic Sensitivity
FETs and RFICs are electrostatic
discharge (ESD) sensitive devices. Agilent devices are manufactured using a very robust and
reliable PHEMT process, however,
permanent damage may occur to
these devices if they are subjected to high-energy electrostatic
discharges. Electrostatic charges
as high as several thousand volts
(which readily accumulate on the
human body and on test equipment) can discharge without
detection and may result in
failure or degradation in performance and reliability.
Electronic devices may be
subjected to ESD damage in any
of the following areas:
• Storage & handling
• Inspection
• Assembly & testing
• In-circuit use
The ATF-331M4 is an ESD
Class 1 device. Therefore, proper
ESD precautions are recommended when handling, inspecting, testing, and assembling these
devices to avoid damage.
250
TMAX
Any user-accessible points in
wireless equipment (e.g. antenna
or battery terminals) provide an
opportunity for ESD damage.
TEMPERATURE (°C)
200
150
Reflow
Zone
100
Preheat
Zone
Cool Down
Zone
50
0
0
60
120
180
240
300
TIME (seconds)
Figure 24. Leaded Solder Reflow Profile.
350
Peak Temperature
Min. 240°C
Max. 255°C
TEMPERATURE (°C)
300
250
221
Reflow Time
Min. 60s
Max. 90s
200
150
100
Preheat 130 – 170°C
Min. 60s
Max. 150s
50
0
0
For circuit applications in which
the ATF-331M4 is used as an
input or output stage with close
coupling to an external antenna,
the device should be protected
from high voltage spikes due to
human contact with the antenna.
A good practice, illustrated in
Figure 26, is to place a shunt
inductor or RF choke at the
antenna connection to protect
the receiver and transmitter
circuits. It is often advantageous
to integrate the RF choke into the
design of the diplexer or T/R
switch control circuitry.
30
60
90
120
150
180
210
240
270
300
330
360
TIME (seconds)
Figure 25. Lead-free Solder Reflow Profile.
12
Figure 26. In-circuit ESD Protection.
ATF-331M4 Die Model
Advanced_Curtice2_Model
MESFETM1
NFET=yes
Cgs=1.764 pF
PFET=no
Gdcap=3
Vto=0.95
Cgd=0.338 pF
Beta=0.48
Rgd=
Lambda=0.09
Tqm=
Alpha=4
Vmax=
B=0.8
Fc=
Tnom=27
Rd=0.125
Idstc=
Rg=1
Vbi=0.7
Tau=
Rs=0.0625
Betatce=
Ld=0.0034 nH
Delta1=0.2
Lg=0.0039 nH
Delta2=
Ls=0.0012 nH
Gscap=3
Cds=0.0776 pF
Crf=0.1
Rc=62.5
Gsfwd=1
Gsrev=0
Gdfwd=1
Gdrev=0
Vjr=1
Is=1 nA
Ir=1 nA
Imax=0.1
Xti=
N=
Eg=
Vbr=
Vtotc=
Rin=
Taumdl=no
Fnc=1 E6
R=0.17
C=0.2
P=0.65
wVgfwd=
wBvgs=
wBvgd=
wBvds=
wldsmax=
wPmax=
AllParams=
This model can be used as a design tool. It has been tested on ADS for various specifications. However, for
more precise and accurate design, please refer to the measured data in this data sheet. For future
improvements, Agilent reserves the right to change these models without prior notice.
ATF-331M4 Minipak Model
INSIDE Package
Var
Egn
GATE
Port
G
Num=1
VAR
VAR1
K=5
Z2=85
Z1=30
C
C1
C=0.28 pF
TLINP
TL3
Z=Z2 Ohm
L=23.6 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL1
Z=Z2/2 Ohm
L=22 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L6
L=0.147 nH
R=0.001
L
L1
L=0.234 nH
R=0.001
GaAsFET
FET1
Mode1=MESFETM1
Mode=Nonlinear
C
C2
C=0.046 pF
SOURCE
Port
S1
Num=2
13
TLINP
TL9
Z=Z2 Ohm
L=11 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L4
L=0.281 nH
R=0.001
MSub
MSUB
MSub2
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+034 mil
T=0.15 mil
TanD=0
Rough=0 mil
L
L7
L=0.234 nH
R=0.001
SOURCE
TLINP
TL7
Z=Z2/2 Ohm
L=5.2 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=27.5 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
Port
S2
Num=4
DRAIN
Port
D
Num=3
Ordering Information
Part Number
No. of Devices
Container
ATF-331M4-TR1
3000
7” Reel
ATF-331M4-TR2
10000
13” Reel
ATF-331M4-BLK
100
antistatic bag
MiniPak Package Outline Drawing
Solder Pad Dimensions
1.44 (0.058)
1.40 (0.056)
3
4
Px
1.20 (0.048)
1.16 (0.046)
2
1
1.12 (0.045)
1.08 (0.043)
0.82 (0.033)
0.78 (0.031)
0.32 (0.013)
0.28 (0.011)
0.00
Top view
0.00
-0.07 (-0.003)
-0.03 (-0.001)
0.70 (0.028)
0.58 (0.023)
Side view
Dimensions are in millimeteres (inches)
14
0.92 (0.037)
0.88 (0.035)
0.42 (0.017)
1.32 (0.053)
0.38 (0.015)
1.28 (0.051)
Bottom view
-0.07 (-0.003)
-0.03 (-0.001)
Device Orientation for Outline 4T, MiniPak 1412
REEL
TOP VIEW
END VIEW
4 mm
CARRIER
TAPE
Px
Px
Px
Px
8 mm
USER
FEED
DIRECTION
Note: Px represents Package Marking Code.
Device orientation is indicated by package marking.
COVER TAPE
Tape Dimensions
P
P2
D
P0
E
F
W
C
B0
A0
D1
t1 (CARRIER TAPE THICKNESS)
Tt (COVER TAPE THICKNESS)
K0
5° MAX.
A0
DESCRIPTION
15
5° MAX.
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
1.40 ± 0.05
1.63 ± 0.05
0.80 ± 0.05
4.00 ± 0.10
0.80 ± 0.05
0.055 ± 0.002
0.064 ± 0.002
0.031 ± 0.002
0.157 ± 0.004
0.031 ± 0.002
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.50 ± 0.10
4.00 ± 0.10
1.75 ± 0.10
0.060 ± 0.004
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 + 0.30 - 0.10
0.254 ± 0.02
0.315 + 0.012 - 0.004
0.010 ± 0.0008
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.40 ± 0.10
0.062 ± 0.001
0.213 ± 0.004
0.0024 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
www.agilent.com/semiconductors
For product information and a complete list of
distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312 or
(408) 654-8675
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 271 2451
India, Australia, New Zealand: (+65) 271 2394
Japan: (+81 3) 3335-8152(Domestic/International), or
0120-61-1280(Domestic Only)
Korea: (+65) 271 2194
Malaysia, Singapore: (+65) 271 2054
Taiwan: (+65) 271 2654
Data subject to change.
Copyright © 2002 Agilent Technologies, Inc.
January 30, 2002
5988-4993EN