Memory ICs Reset IC with battery backup function BA6129AF / BA6162 / BA6162F The BA6129AF, BA6162, and BA6162F are reset ICs with a battery backup function, designed for equipment using SRAMs and other similar components. These ICs are configured of a reset signal and CS signal output unit and a power supply switching unit. If the BA6129AF detects that the power supply has dropped to 3.5V or lower, it outputs the CS, CSB, and Reset signals to set the SRAM in backup mode. If the voltage drops to 3.3V or lower, the power supply switches to the battery. With the BA6162 and BA6162F, in the same way, a power supply of 4.2V is detected, and if the voltage drops to 3.3V or lower, the power supply switches to the battery. These ICs allow SRAMs to be write protected and allow the system to be reset, in addition to switching between the power supply and the battery. Applications •Equipment using SRAMs (cards, cassettes, facsimile machines, copiers, word processors, personal computers, etc.) •1)Features Equipped with battery backup function. 4) Low voltage loss when powered from battery. 5) Smooth switching between power supply and battery. 2) Equipped with both CS signals (CS and CSB) and Reset signals. 3) Low current dissipation when powered from battery. •Absolute maximum ratings (Ta = 25°C) Symbol Limits Unit Power supply voltage Parameter VCC 7.0 V Output current 1 IOUT1 Output current 2 IOUT2 – 200 µA Pd 900∗1 (BA6162) 550∗2 (BA6129AF) mW Power dissipation – 80 (BA6129AF) – 40 (BA6162 / BA6162F) mA (BA6162F) Operating temperature Topr – 20 ~ + 75 °C Storage temperature Tstg – 40 ~ + 125 °C IOUT1 indicates the output current on the VCC side, and IOUT2 the output current on the VBAT side. ∗1 Reduced by 9.0mW for each increase in Ta of 1°C over 25°C. ∗2 Reduced by 5.5mW for each increase in Ta of 1°C over 25°C. 1 Memory ICs BA6129AF / BA6162 / BA6162F •Block diagram VCC N.C. Vo CSB 8 7 6 5 VREF + – + – + – 1 2 3 4 GND Reset CS VBAT •Pin descriptions Pin No. Pin name 1 GND Substrate GND Function 2 Reset Reset output 3 CS CS output 4 VBAT Battery power supply 5 CSB CSB output 6 VO 7 N.C. 8 VCC Power supply output — Power supply voltage •Input / output circuit VCC VCC VCC Pin 5 2 6 CSB output Pin 2 Pin 3 Reset CS output output 3 5 Pin 6 Power supply output GND Pin 4 Battery power supply 8 4 Pin 8 Power supply (VCC) Pin 6 Power supply output 2 GND GND 6 GND Memory ICs BA6129AF / BA6162 / BA6162F Electrical characteristics •BA6129AF (unless otherwise noted, Ta = 25°C, VR RES Parameter No-load current dissipation = VCC = 5V, RRES = 10kΩ) Symbol Min. Typ. Max. Unit ICC — — 2.0 mA Conditions VCC = 5V, VBAT = 3V VSAT1 — 0.03 0.05 V VCC = 5V, VBAT = 3V, IO = – 1mA Vo output voltage 1 VO1 4.95 4.97 — V VCC = 5V, VBAT = 3V, IO = – 1mA Vo output voltage 2 VO2 4.70 4.90 — V VCC = 5V, VBAT = 3V, IO = – 15mA I / O voltage differential 1 Vo output voltage 3 VO3 4.50 4.86 — V VCC = 5V, VBAT = 3V, IO = – 30mA Detection voltage VS 3.35 3.50 3.65 V VCC = H→L Detection hysteresis voltage VSH — 100 — mV Reset output low level voltage VRESL — — 0.4 V Reset leakage current IRESH — — 0.1 µA VCC = 5V, VRRES = 7V Reset operating limit voltage VOPL — 0.8 1.2 V VCC = H→L, VRES ⬉ 0.4V VCC = L→H VCC = 3V CS output low level voltage VCSL — — 0.1 V VCC = 3V, VBAT = 3V, ICS = + 1µA CS output high level voltage VCSH 4.9 — — V VCC = 5V, VBAT = 3V, ICS = – 1µA — — 0.1 V VCC = 5V, VBAT = 3V, ICSB = + 1µA Vo – 0.1 — — V VCC = 3V, VBAT = 3V, ICSB = – 1µA CSB output low level voltage VCSBL CSB output high level voltage VCSBH — + 0.05 % / °C — Detection voltage temperature characteristic VS – 0.05 Switching voltage VB 3.15 3.30 3.45 V VCC = H→L, VBAT = 3V, RO = 200kΩ Switching hysteresis voltage VBH — 100 — mV VCC = L→H, VBAT = 3V, RO = 200kΩ Switching voltage temperature characteristic VB Backup current dissipation ICCB I / O voltage differential 2 – 0.05 — % / °C — — + 0.05 — 0.5 µA VCC = GND, VBAT = 3V VSAT2 — 0.20 0.30 V VCC = GND, VBAT = 3V, IO = – 1µA Vo output voltage 4 VO4 2.70 2.80 — V VCC = GND, VBAT = 3V, IO = – 1µA Vo output voltage 5 VO5 2.60 2.67 — V VCC = GND, VBAT = 3V, IO = – 100µA Vo output voltage 6 VO6 VCC – 0.5 — — V IO = – 80mA Reverse current IOR — — 0.1 µA VCC = 5V, VBAT = GND (Note) IO, ICS, and ICSB are + when flowing toward the pin and – when flowing away from the pin. 䊊 Not designed for radiation resistance. 3 Memory ICs BA6129AF / BA6162 / BA6162F BA6162 / F (unless otherwise noted, Ta = 25°C, VRRES = VCC = 5V, RRES = 10kΩ) Parameter Symbol Min. No-load current dissipation ICC — I / O voltage differential 1 VSAT1 — Vo output voltage 1 VO1 4.95 Vo output voltage 2 VO2 4.70 Vo output voltage 3 VO3 Detection voltage Detection hysteresis voltage Reset output low level voltage Reset leakage current Typ. Max. Unit — 2.0 mA 0.03 0.05 V VCC = 5V, VBAT = 3V, IO = – 1mA 4.97 — V VCC = 5V, VBAT = 3V, IO = – 1mA 4.90 — V VCC = 5V, VBAT = 3V, IO = – 15mA 4.50 4.86 — V VCC = 5V, VBAT = 3V, IO = – 30mA VS 4.00 4.20 4.40 V VCC = H→L VSH — 100 — mV VCC = L→H VRESL — — 0.4 V VCC = 3.7V IRESH — — 0.1 µA VCC = 5V, VRRES = 7V Reset operating limit voltage VOPL — 0.8 1.2 V VCC = H→L, VRES ⬉ 0.4V CS output low level voltage VCSL — — 0.1 V VCC = 3.7V, VBAT = 3V, ICS = + 1µA CS output high level voltage VCSH 4.9 — — V VCC = 5V, VBAT = 3V, ICS = – 1µA CSB output low level voltage VCSBL — — 0.1 V VCC = 5V, VBAT = 3V, ICSB = + 1µA CSB output high level voltage VCSBH — V VCC = 3.7V, VBAT = 3V, ICSB = – 1µA % / °C — Vo – 0.1 — Detection voltage temperature characteristic KVS – 0.05 — Switching voltage VB 3.15 Switching hysteresis voltage VBH — Switching voltage temperature characteristic KVB – 0.05 3.30 100 — + 0.05 3.45 — + 0.05 VCC = 5V, VBAT = 3V V VCC = H→L, VBAT = 3V, RO = 200kΩ mV VCC = L→H, VBAT = 3V, RO = 200kΩ % / °C — Backup current dissipation ICCB — — 0.5 µA VCC = GND, VBAT = 3V I / O voltage differential 2 VSAT2 — 0.20 0.03 V VCC = GND, VBAT = 3V, IO = – 1µA Vo output voltage 4 VO4 2.70 2.80 — V VCC = GND, VBAT = 3V, IO = – 1µA Vo output voltage 5 VO5 2.60 2.67 — V VCC = GND, VBAT = 3V, IO = – 100µA Vo output voltage 6 VO6 VCC – 0.5 — — V IO = – 40mA Reverse current IOR — — 0.1 µA VCC = 5V, VBAT = GND (Note) IO, ICS, and ICSB are + when flowing toward the pin and – when flowing away from the pin. 䊊 Not designed for radiation resistance. 4 Conditions Memory ICs BA6129AF / BA6162 / BA6162F •Measurement circuit VSAT = VCC – VO RO 200kΩ VO IO V (VB) A ICC VCC VRRES 8 7 6 5 ICSB (VS.VB.VOPL) RRES VCSB V BA6129AF (BA6162 / F) 10kΩ 3 2 1 4 A GND ICCB.IOR IRES A VRES V VCS V ICS VBAT (VOPL) (VS) Fig. 1 5 Memory ICs BA6129AF / BA6162 / BA6162F Circuit operation •These ICs have two distinct functions, a logic output function and a power supply switching function. The logic output circuit consists of the following: (1) Reset output (NPN Tr open collector) (2) CS output (PNP Tr open collector + pull-down resistor) (3) CSB output (NPN Tr open collector + pull-up resistor) The power supply switching circuit consists of a PNP power transistor and an SBD (Schottky barrier diode). The normal power supply VCC and the battery backup power supply (VBAT) are both connected to the switching circuit. When the PNP power transistor is turned on and off, the IC power is switched from the normal power supply to the battery backup power supply, and vice versa. The power supply voltage detection circuit consists of a standard voltage source VREF and a hysteresis comparator. The power supply VCC is detected using a split resistance. When the power supply voltage drops below the detection voltage (BA6129AF: VS = 3.5Vtyp. when VCC drops and VS + 0.1Vtyp. when VCC rises; BA6162 / F: VS = 4.2Vtyp. when VCC drops, and VS + 0.1Vtyp. when VCC rises), the Reset signal (Low) and the CS signal (CS-Low, CSB-High) are output by the logic output function, and the SRAM (or other memory device) is switched to backup mode. If the power supply VCC drops further and goes below the switching voltage (BA6129AF and BA6162 / F: VB = 3.3Vtyp. when V CC drops, V B + 0.1Vtyp. when V CC rises), the SBD develops a forward bias because the PNP power transistor is off. The power supply output VO switches from the power supply VCC to the battery power supply (VBAT). When the normal power supply VCC rises, the above process is reversed. (BA6129AF) (BA6162 / F) 5V VS [3.5VTyp.] [4.2VTyp.] [3.3VTyp.] VB VCC OV VO (Vcc) [5V—VSAT1] VO VO (BAT) [3V—VSAT2] OV VRESH [ⱌ VCC] RESET VRESL [ⱌ GND] VCSH [ⱌ VCC] CS VCSL [ⱌ GND] CSB VCSBH [ⱌ VO] VCSBL [ⱌ GND] Fig. 2 Timing chart 6 Memory ICs BA6129AF / BA6162 / BA6162F •Application example Vcc 5V SRAM VDD C1 10µF C2 8 7 Vref 6 0.01µF 5 + – + – R1 10kΩ + – SRAM CEB 1 2 3 4 SRAM CE BATTERY 3V CPU Reset Fig. 3 notes •(1)Operation Power supply V These ICs are designed to operate with at VCC = 5V, but can also operate at VCC values of other than 5V. However, the following conditions must be met: (equation) (2) Battery voltage VBAT These ICs are designed to operate with at VBAT = 3V, but can also operate at VBAT values of other than 3V. However, the following conditions must be met: (equation) { VV +–VV < <V 5V< V { VV S CC SH BAT CC CC CCMax. < VB – VBAT < 5V BAT CC where) VS: detection voltage VSH: detection hysteresis voltage VB: switching voltage 7 Memory ICs BA6129AF / BA6162 / BA6162F 8 VBAT = 3V RRES = 10kΩ VRES = VCC 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 8 RRES = 10kΩ VRES = VCC 9 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 0 10 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 POWER SUPPLY VOLTAGE: VCC (V) POWER SUPPLY VOLTAGE: VCC (V) Fig. 4 CS output voltage vs. power supply voltage Fig. 5 CSB output voltage vs. power supply voltage Fig. 6 Reset output voltage vs. power supply voltage 5.0 VBAT = 3V RO = 200kΩ RRES = 10kΩ VRES = VCC OUTPUT VOLTAGE: VO (V) OUTPUT VOLTAGE: VO (V) 8 10 VBAT = 3V RRES = 10kΩ VRES = VCC 9 POWER SUPPLY VOLTAGE: VCC (V) 10 9 10 RESET VOLTAGE: VCSB (V) 9 7 6 5 4 3 2 2.9 VCC = 5V VBAT = 3V RRES = 10kΩ VRES = VCC 4.8 OUTPUT VOLTAGE: VO (V) CHIP SELECT VOLTAGE: VCS (V) 10 CHIP SELECT BAR VOLTAGE: VCSB (V) •Electrical characteristic curves (BA6129AF) 4.6 4.4 VCC = GND VBAT = 3V RRES = 10kΩ VRES = VCC 2.8 2.7 1 0 1 2 3 4 5 6 7 8 9 4.2 0 10 20 40 60 80 2.6 0 100 50 100 150 200 250 POWER SUPPLY VOLTAGE: VCC (V) OUTPUT CURRENT: IO (mA) OUTPUT CURRENT: IO (µA) Fig. 7 Output voltage vs. power supply voltage Fig. 8 Output voltage vs. output current (!) (when power supply is detected) Fig. 9 Output voltage vs. output current (@) (when using battery backup) •Electrical characteristic curves (BA6162 / F) 7 6 5 4 3 2 1 0 8 1 2 3 4 5 6 7 8 9 10 9 8 10 VBAT = 3V RRES = 10kΩ VRES = VCC 9 RESET VOLTAGE: VRES (V) VBAT = 3V 9 RRES = 10kΩ VRES = VCC 8 CHIP SERECT BAR VOLTAGE: VCSB (V) CHIP SELECT VOLTAGE: VCS (V) 10 7 6 5 4 3 2 1 0 RRES = 10kΩ VRES = VCC 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 POWER SUPPLY VOLTAGE: VCC (V) POWER SUPPLY VOLTAGE: VCC (V) POWER SUPPLY VOLTAGE: VCC (V) Fig. 10 CS output voltage vs. power supply voltage Fig. 11 CSB output voltage vs. power supply voltage Fig. 12 Reset output voltage vs. power supply voltage Memory ICs BA6129AF / BA6162 / BA6162F 10 5.0 7 6 5 4 3 2 2.9 VCC = 5V VBAT = 3V RRES = 10kΩ VRES = VCC OUTPUT VOLTAGE: VO (V) OUTPUT VOLTAGE: VO (V) 8 OUTPUT VOLTAGE: VO (V) VBAT = 3V RO = 200kΩ RRES = 10kΩ VRES = VCC 9 4.9 4.8 1 0 1 2 3 4 5 6 7 8 9 10 4.7 0 10 20 30 40 VCC = GND VBAT = 3V RRES = 10kΩ VRES = VCC 2.8 2.7 2.6 0 50 50 100 150 200 250 POWER SUPPLY VOLTAGE: VCC (V) OUTPUT CURRENT: IO (mA) OUTPUT CURRENT: IO (µA) Fig. 13 Output voltage vs. power supply voltage Fig. 14 Output voltage vs. output current (!) (when power supply is detected) Fig. 15 Output voltage vs. output current (@) (when using battery backup) •External dimensions (Units: mm) BA6129AF, BA6162F BA6162 9.3 ± 0.3 5.0 ± 0.2 5 1 4 0.4 ± 0.1 0.3Min. 7.62 0.51Min. 0.15 ± 0.1 4 3.2 ± 0.2 3.4 ± 0.3 0.11 1.27 8 6.5 ± 0.3 5 4.4 ± 0.2 1 1.5 ± 0.1 6.2 ± 0.3 8 0.3 ± 0.1 2.54 0.5 ± 0.1 0°~15° 0.15 SOP8 DIP8 9