BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G Dual General Purpose Transistors http://onsemi.com NPN Duals (3) These transistors are designed for general purpose amplifier applications. They are housed in the SOT−363/SC−88 which is designed for low power surface mount applications. (2) Q1 (1) Q2 Features • These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS (4) Compliant MAXIMUM RATINGS Rating Symbol BC846 BC847 BC848 Unit Collector −Emitter Voltage VCEO 65 45 30 V Collector −Base Voltage VCBO 80 50 30 V Emitter−Base Voltage VEBO 6.0 6.0 5.0 V IC 100 100 100 mAdc Collector Current − Continuous Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. (5) (6) MARKING DIAGRAM 6 1 SOT−363 CASE 419B STYLE 1 1x MG G 1x = Specific Device Code x = B, F, G, L M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) THERMAL CHARACTERISTICS Characteristic Symbol Max Unit PD 380 250 mW 3.0 mW/°C Thermal Resistance, Junction to Ambient RqJA 328 °C/W Junction and Storage Temperature Range TJ, Tstg −55 to +150 °C Total Device Dissipation Per Device FR−5 Board (Note 1) TA = 25°C Derate Above 25°C ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. 1. FR−5 = 1.0 x 0.75 x 0.062 in © Semiconductor Components Industries, LLC, 2010 July, 2010 − Rev. 7 1 Publication Order Number: BC846BDW1T1/D BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max 65 45 30 − − − − − − 80 50 30 − − − − − − 80 50 30 − − − − − − 6.0 6.0 5.0 − − − − − − − − − − 15 5.0 − − 150 270 − − 200 420 290 520 450 800 Unit OFF CHARACTERISTICS Collector −Emitter Breakdown Voltage (IC = 10 mA) Collector −Emitter Breakdown Voltage (IC = 10 mA, VEB = 0) Collector −Base Breakdown Voltage (IC = 10 mA) Emitter−Base Breakdown Voltage (IE = 1.0 mA) BC846 Series BC847 Series BC848 Series BC846 Series BC847 Series BC848 Series BC846 Series BC847 Series BC848 Series BC846 Series BC847 Series BC848 Series Collector Cutoff Current (VCB = 30 V) (VCB = 30 V, TA = 150°C) V(BR)CEO V(BR)CES V(BR)CBO V(BR)EBO ICBO V V V V nA mA ON CHARACTERISTICS DC Current Gain (IC = 10 mA, VCE = 5.0 V) (IC = 2.0 mA, VCE = 5.0 V) hFE BC846B, BC847B, BC847C, BC848C BC846B, BC847B, BC847C, BC848C − Collector −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA) Collector −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA) VCE(sat) − − − − 0.25 0.6 V Base −Emitter Saturation Voltage (IC = 10 mA, IB = 0.5 mA) Base −Emitter Saturation Voltage (IC = 100 mA, IB = 5.0 mA) VBE(sat) − − 0.7 0.9 − − V Base −Emitter Voltage (IC = 2.0 mA, VCE = 5.0 V) Base −Emitter Voltage (IC = 10 mA, VCE = 5.0 V) VBE(on) 580 − 660 − 700 770 mV fT 100 − − MHz Cobo − − 4.5 pF − − 10 SMALL−SIGNAL CHARACTERISTICS Current −Gain − Bandwidth Product (IC = 10 mA, VCE = 5.0 Vdc, f = 100 MHz) Output Capacitance (VCB = 10 V, f = 1.0 MHz) Noise Figure (IC = 0.2 mA, VCE = 5.0 Vdc, RS = 2.0 kW,f = 1.0 kHz, BW = 200 Hz) http://onsemi.com 2 NF dB BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G TYPICAL CHARACTERISTICS − BC846BDW1T1G 600 600 VCE = 10 V 150°C 400 25°C 300 200 −55°C 100 0 0.001 VCE(sat), COLL−EMITT SATURATION VOLTAGE (V) hFE, DC CURRENT GAIN 500 0.25 0.01 0.1 500 150°C 400 25°C 300 200 −55°C 100 0 0.001 1 Figure 1. DC Current Gain at VCE = 5 V Figure 2. DC Current Gain at VCE = 10 V IC/IB = 10 0.15 150°C 0.10 25°C 0.05 −55°C 0.00 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) 0.25 IC/IB = 20 0.2 0.15 25°C 0.1 0.05 0.80 25°C 0.70 0.60 150°C 0.50 0.40 0.30 0.20 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) VBE(sat), BASE−EMITT SATURATION VOLTAGE (V) VBE(sat), BASE−EMITT SATURATION VOLTAGE (V) −55°C 150°C −55°C 0 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) Figure 4. VCE(sat) at IC/IB = 20 IC/IB = 10 0.90 1 0.3 Figure 3. VCE(sat) at IC/IB = 10 1.00 0.1 IC, COLLECTOR CURRENT (A) 0.20 1.10 0.01 IC, COLLECTOR CURRENT (A) VCE(sat), COLL−EMITT SATURATION VOLTAGE (V) hFE, DC CURRENT GAIN VCE = 5 V 1.10 1.00 IC/IB = 20 0.90 0.80 0.70 −55°C 25°C 0.60 0.50 0.40 150°C 0.30 0.20 0.0001 Figure 5. VBE(sat) at IC/IB = 10 0.001 0.01 IC, COLLECTOR CURRENT (A) Figure 6. VBE(sat) at IC/IB = 20 http://onsemi.com 3 0.1 BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G TYPICAL CHARACTERISTICS − BC846BDW1T1G 1000 VCE = 5 V 1.10 fT, CURRENT−GAIN − BANDWIDTH PRODUCT VBE(on), BASE−EMITTER VOLTAGE (V) 1.20 1.00 0.90 −55°C 0.80 25°C 0.70 0.60 150°C 0.50 0.40 0.30 0.20 0.0001 0.001 0.01 0.1 1 10 100 Figure 7. VBE(on) at VCE = 5 V Figure 8. Current − Gain − Bandwidth Product 2 VCE, COLLECTOR−EMITTER VOLTAGE (V) Cib C, CAPACITANCE (pF) 10 0.1 IC, COLLECTOR CURRENT (A) TA = 25°C Cob 1 10 100 1.6 TA = 25°C IC = 10 mA IC = 20 mA IC = 50 mA IC = 100 mA 1.2 0.8 0.4 0 0.01 0.1 1 10 VR, REVERSE VOLTAGE (V) IB, BASE CURRENT (mA) Figure 9. Capacitances Figure 10. Collector Saturation Region qVB, TEMPERATURE COEFFICIENT (mV/°C) 0.1 100 IC, COLLECTOR CURRENT (A) 10 1 VCE = 10 V TA = 25°C −0.2 VCE = 5 V −0.6 −1 −1.4 qVB, for VBE −1.8 −55°C to 150°C −2.2 −2.6 −3 0.1 1 10 IB, BASE CURRENT (mA) 100 Figure 11. Base−Emitter Temperature Coefficient http://onsemi.com 4 100 BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G TYPICAL CHARACTERISTICS − BC847BDW1T1G 400 25°C 300 −55°C 200 100 0.25 0.001 0.01 0.1 25°C 150°C 0.05 −55°C 0.001 0.01 IC, COLLECTOR CURRENT (A) 0.1 Figure 14. VCE at IC/IB = 10 IC/IB = 10 1.00 −55°C 25°C 0.60 150°C 0.20 0.00 0.0001 −55°C 200 100 0.001 0.01 0.1 Figure 13. DC Current Gain at VCE = 10 V 0.10 0.40 25°C 300 Figure 12. DC Current Gain at VCE = 5 V 0.15 0.80 400 IC, COLLECTOR CURRENT (A) 0.20 1.20 150°C 500 IC, COLLECTOR CURRENT (A) IC/IB = 10 0.00 0.0001 VCE = 10 V 0 0.0001 1 0.001 0.01 IC, COLLECTOR CURRENT (A) 0.1 VCE(sat), COLL−EMITT SATURATION VOLTAGE (V) VCE(sat), COLL−EMITT SATURATION VOLTAGE (V) hFE, DC CURRENT GAIN 150°C 500 0 0.0001 VBE(sat), BASE−EMITT SATURATION VOLTAGE (V) 600 VCE = 5 V VBE(sat), BASE−EMITT SATURATION VOLTAGE (V) hFE, DC CURRENT GAIN 600 0.30 IC/IB = 20 0.25 0.20 0.15 25°C 0.10 0.05 150°C −55°C 0.00 0.0001 0.001 0.01 IC, COLLECTOR CURRENT (A) 0.1 Figure 15. VCE at IC/IB = 20 1.20 IC/IB = 20 1.00 0.80 0.60 0.40 −55°C 25°C 150°C 0.20 0.00 0.0001 Figure 16. VBE(sat) at IC/IB = 10 0.001 0.01 IC, COLLECTOR CURRENT (A) Figure 17. VBE(sat) at IC/IB = 20 http://onsemi.com 5 1 0.1 BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G TYPICAL CHARACTERISTICS − BC847BDW1T1G 1.10 1000 VCE = 5 V 1.00 0.90 −55°C 0.80 0.70 100 25°C 0.60 0.50 150°C 0.40 0.30 0.20 0.0001 VCE = 10 V TA = 25°C fT, CURRENT−GAIN − BANDWIDTH PRODUCT VBE(on), BASE−EMITTER VOLTAGE (V) 1.20 0.001 0.01 IC, COLLECTOR CURRENT (A) 0.1 10 0.1 2 VCE, COLLECTOR−EMITTER VOLTAGE (V) TA = 25°C C, CAPACITANCE (pF) Cob 1 100 Figure 19. Current − Gain − Bandwidth Product Cib 10 100 1.6 TA = 25°C IC = 10 mA 1.2 IC = 20 mA IC = 50 mA IC = 100 mA 0.8 0.4 0 0.01 0.1 1 10 VR, REVERSE VOLTAGE (V) IB, BASE CURRENT (mA) Figure 20. Capacitances Figure 21. Collector Saturation Region qVB, TEMPERATURE COEFFICIENT (mV/°C) 1 0.1 10 IC, COLLECTOR CURRENT (A) Figure 18. VBE(on) at VCE = 5 V 10 1 VCE = 5 V −0.2 −0.6 −1 −1.4 qVB, for VBE −55°C to 150°C −1.8 −2.2 −2.6 −3 0.1 1 10 100 IB, BASE CURRENT (mA) Figure 22. Base−Emitter Temperature Coefficient http://onsemi.com 6 100 BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G TYPICAL CHARACTERISTICS − BC848CDW1T1G 1000 800 700 600 25°C 500 400 −55°C 300 200 100 0.001 0.01 0.1 800 700 25°C 600 500 400 −55°C 300 200 0 0.0001 1 0.001 Figure 23. DC Current Gain at VCE = 5 V Figure 24. DC Current Gain at VCE = 10 V IC/IB = 10 0.14 0.12 0.10 150°C 0.08 25°C 0.06 0.04 −55°C 0.02 0.00 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) 0.30 0.25 0.20 0.15 25°C 0.10 0.05 VBE(sat), BASE−EMITT SATURATION VOLTAGE (V) VBE(sat), BASE−EMITT SATURATION VOLTAGE (V) 0.9 −55°C 0.7 25°C 0.6 0.5 0.4 150°C 0.3 0.2 0.0001 0.001 0.01 150°C −55°C 0.00 0.0001 0.001 0.01 0.1 IC, COLLECTOR CURRENT (A) Figure 26. VCE at IC/IB = 20 IC/IB = 10 0.8 1 IC/IB = 20 Figure 25. VCE at IC/IB = 10 1.0 0.1 IC, COLLECTOR CURRENT (A) 0.16 1.1 0.01 IC, COLLECTOR CURRENT (A) VCE(sat), COLL−EMITT SATURATION VOLTAGE (V) VCE(sat), COLL−EMITT SATURATION VOLTAGE (V) 0.18 VCE = 10 V 100 0 0.0001 0.20 150°C 900 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 1000 VCE = 5 V 150°C 900 0.1 IC, COLLECTOR CURRENT (A) 1.2 IC/IB = 20 1.0 0.8 −55°C 25°C 0.6 0.4 150°C 0.2 0.0 0.0001 Figure 27. VBE(sat) at IC/IB = 10 0.001 0.01 IC, COLLECTOR CURRENT (A) Figure 28. VBE(sat) at IC/IB = 20 http://onsemi.com 7 0.1 BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G TYPICAL CHARACTERISTICS − BC848CDW1T1G 1000 VCE = 5 V 0.9 fT, CURRENT−GAIN − BANDWIDTH PRODUCT VBE(on), BASE−EMITTER VOLTAGE (V) 1.0 −55°C 0.8 25°C 0.7 0.6 0.5 0.4 150°C 0.3 0.2 0.1 0.0 0.0001 0.001 0.01 0.1 1 10 100 IC, COLLECTOR CURRENT (A) Figure 30. Current − Gain − Bandwidth Product 2 VCE, COLLECTOR−EMITTER VOLTAGE (V) Cib C, CAPACITANCE (pF) 10 0.1 IC, COLLECTOR CURRENT (A) TA = 25°C Cob 1 10 100 IC = 1.6 10 mA TA = 25°C IC = 20 mA 1.2 IC = 50 mA IC = 100 mA 0.8 0.4 0 0.01 0.1 1 10 VR, REVERSE VOLTAGE (V) IB, BASE CURRENT (mA) Figure 31. Capacitances Figure 32. Collector Saturation Region qVB, TEMPERATURE COEFFICIENT (mV/°C) 0.1 100 Figure 29. VBE(on) at VCE = 5 V 10 1 VCE = 10 V TA = 25°C VCE = 5 V −0.2 −0.6 −1 −1.4 −1.8 qVB, for VBE −55°C to 150°C −2.2 −2.6 −3 0.1 1 10 IB, BASE CURRENT (mA) 100 Figure 33. Base−Emitter Temperature Coefficient http://onsemi.com 8 100 BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G 1.0 r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) D = 0.5 0.2 0.1 0.1 0.05 0.02 0.01 ZqJA(t) = r(t) RqJA RqJA = 3285C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) − TC = P(pk) RqJC(t) P(pk) t1 0.01 t2 DUTY CYCLE, D = t1/t2 SINGLE PULSE 0.001 0 1.0 10 100 t, TIME (ms) 1.0k 10k 100k 1.0M Figure 34. Thermal Response The safe operating area curves indicate IC−VCE limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 35 is based upon TJ(pk) = 150°C; TC or TA is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided TJ(pk) ≤ 150°C. T J(pk) may be calculated from the data in Figure 34. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown. -200 IC, COLLECTOR CURRENT (mA) 1s 3 ms -100 TA = 25°C -50 TJ = 25°C BC558 BC557 BC556 -10 -5.0 -2.0 -1.0 BONDING WIRE LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT -5.0 -10 -30 -45 -65 -100 VCE, COLLECTOR-EMITTER VOLTAGE (V) Figure 35. Active Region Safe Operating Area ORDERING INFORMATION Device BC846BDW1T1G BC847BDW1T1G BC847BDW1T3G BC847CDW1T1G BC848CDW1T1G Markings Package Shipping† 1B SOT−363 (Pb−Free) 3000 / Tape & Reel 1F SOT−363 (Pb−Free) 3000 / Tape & Reel 1F SOT−363 (Pb−Free) 10000 / Tape & Reel 1G SOT−363 (Pb−Free) 3000 / Tape & Reel 1L SOT−363 (Pb−Free) 3000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 9 BC846BDW1T1G, BC847BDW1T1G, BC848CDW1T1G PACKAGE DIMENSIONS SC−88 (SC70−6/SOT−363) CASE 419B−02 ISSUE W D e 6 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419B−01 OBSOLETE, NEW STANDARD 419B−02. 4 HE −E− 1 2 3 b 6 PL 0.2 (0.008) M E M A3 INCHES NOM MAX 0.037 0.043 0.002 0.004 0.008 REF 0.004 0.008 0.012 0.004 0.005 0.010 0.070 0.078 0.086 0.045 0.049 0.053 0.026 BSC 0.004 0.008 0.012 0.078 0.082 0.086 MIN 0.031 0.000 STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2 C A A1 MILLIMETERS MIN NOM MAX 0.80 0.95 1.10 0.00 0.05 0.10 0.20 REF 0.10 0.21 0.30 0.10 0.14 0.25 1.80 2.00 2.20 1.15 1.25 1.35 0.65 BSC 0.10 0.20 0.30 2.00 2.10 2.20 DIM A A1 A3 b C D E e L HE L SOLDERING FOOTPRINT* 0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 SCALE 20:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative BC846BDW1T1/D