INFINEON BFP420

SIEGET 25
BFP420
NPN Silicon RF Transistor
3
For high gain low noise amplifiers
4
For oscillators up to 10 GHz
Noise figure F = 1.1 dB at 1.8 GHz
outstanding G ms = 21 dB at 1.8 GHz
2
Transition frequency f T = 25 GHz
Gold metallization for high reliability
1
VPS05605
SIEGET 25 GHz f T - Line
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type
Marking
BFP420
AMs
Pin Configuration
1=B
2=E
3=C
Package
4=E
SOT343
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
4.5
Collector-base voltage
VCBO
15
Emitter-base voltage
VEBO
1.5
Collector current
IC
35
Base current
IB
3
Total power dissipation
Ptot
160
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
Tstg
-65 ... 150
Value
Unit
V
mA
TS 107°C 1)
Thermal Resistance
Junction - soldering point 2)
RthJS
260
K/W
1T is measured on the emitter lead at the soldering point to the pcb
S
2For calculation of R
please refer to Application Note Thermal Resistance
thJA
1
Aug-20-2001
SIEGET 25
BFP420
Electrical Characteristics at TA = 25°C, unless otherwise specified.
Symbol
Values
Parameter
Unit
min.
typ.
max.
4.5
5
-
V
ICBO
-
-
200
nA
IEBO
-
-
35
µA
hFE
50
100
150
-
18
25
-
-
0.15
0.3
-
0.37
-
-
0.55
-
-
1.1
-
-
21
-
14
17
-
-
22
-
-
12
-
DC characteristics
Collector-emitter breakdown voltage
IC = 1 mA, IB = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 1.5 V, IC = 0
DC current gain
IC = 20 mA, VCE = 4 V
V(BR)CEO
AC characteristics (verified by random sampling)
Transition frequency
fT
IC = 30 mA, VCE = 3 V, f = 2 GHz
Collector-base capacitance
Ccb
VCB = 2 V, f = 1 MHz
Collector-emitter capacitance
Cce
VCE = 2 V, f = 1 MHz
Emitter-base capacitance
Ceb
VEB = 0.5 V, f = 1 MHz
Noise figure
F
IC = 5 mA, VCE = 2 V, ZS = ZSopt ,
f = 1.8 GHz
Gms
Power gain, maximum stable 1)
IC = 20 mA, VCE = 2 V, ZS = ZSopt , ZL = ZLopt ,
f = 1.8 GHz
Insertion power gain
|S21|2
IC = 20 mA, VCE = 2 V, f = 1.8 GHz,
ZS = ZL = 50
Third order intercept point
IP3
IC = 20 mA, VCE = 2 V, ZS=ZSopt , ZL =ZLopt ,
f = 1.8 GHz
1dB Compression point
P-1dB
IC = 20 mA, VCE = 2 V, f = 1.8 GHz,
ZS=ZSopt , ZL =ZLopt
1G
ms
GHz
pF
dB
dBm
= |S21 / S12 |
2
Aug-20-2001
SIEGET 25
BFP420
SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :
Transistor Chip Data
IS =
0.20045
fA
BF =
72.534
-
NF =
1.2432
-
VAF =
28.383
V
IKF =
0.48731
A
ISE =
19.049
fA
NE =
2.0518
-
BR =
7.8287
-
NR =
1.3325
-
VAR =
19.705
V
IKR =
0.69141
A
ISC =
0.019237
fA
NC =
1.1724
-
RB =
8.5757
IRB =
0.72983
mA
RBM =
3.4849
RE =
0.31111
RC =
0.10105
CJE =
1.8063
fF
VJE =
0.8051
V
MJE =
0.46576
-
TF =
6.7661
ps
XTF =
0.42199
-
VTF =
0.23794
V
ITF =
1
mA
PTF =
0
deg
CJC =
234.53
fF
VJC =
0.81969
V
MJC =
0.30232
-
XCJC =
0.3
-
TR =
2.3249
ns
CJS =
0
F
VJS =
0.75
V
MJS =
0
-
XTB =
0
-
EG =
1.11
eV
XTI =
3
-
FC =
0.73234
-
TNOM
300
K
-
RS =
10
L BI =
0.47
nH
L BO =
0.53
nH
L EI =
0.23
nH
L EO =
0.05
nH
L CI =
0.56
nH
L CO =
0.58
nH
CBE =
136
fF
CCB =
6.9
fF
CCE =
134
fF
C'-E'-Diode Data (Berkley-SPICE 2G.6 Syntax) :
IS =
3.5
fA
N=
1.02
All parameters are ready to use, no scaling is necessary
Package Equivalent Circuit:
C CB
L BO
L BI
B
B’
Transistor
Chip
E’
C BE
C’
L CI
L CO
C
C’-E’Diode
C CE
L EI
L EO
E
EHA07389
Valid up to 6GHz
The SOT-343 package has two emitter leads. To avoid high complexity of the package equivalent circuit,
both leads are combined in one electrical connection.
Extracted on behalf of Infineon Technologies AG by:
Institut für Mobil-und Satellitentechnik (IMST)
For examples and ready to use parameters please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet:
http://www.infineon.com/silicondiscretes
3
Aug-20-2001
SIEGET 25
BFP420
For non-linear simulation:
Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
If you need simulation of the reverse characteristics, add the diode with the
C'-E'- diode data between collector and emitter.
Simulation of package is not necessary for frequencies < 100MHz.
For higher frequencies add the wiring of package equivalent circuit around the
non-linear transistor and diode model.
Note:
This transistor is constructed in a common emitter configuration. This feature causes
an additional reverse biased diode between emitter and collector, which does not
effect normal operation.
C
B
E
E
EHA07307
Transistor Schematic Diagram
The common emitter configuration shows the following advantages:
Higher gain because of lower emitter inductance.
Power is dissipated via the grounded emitter leads, because the chip is mounted
on copper emitter leadframe.
Please note, that the broadest lead is the emitter lead.
Common Emitter S- and Noise-parameter
For detailed S- and Noise-parameters please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon Technologies Application Notes
CD-ROM or see Internet: http://www.infineon.com/silicondiscretes
4
Aug-20-2001
SIEGET 25
BFP420
Transition frequency fT = f (IC)
Total power dissipation Ptot = f (TS )
f = 2 GHz
VCE = parameter in V
200
30
GHz
mW
2 to 4
1.5
160
24
1
22
0.75
20
fT
P tot
140
120
18
16
100
14
12
80
0.5
10
60
8
6
40
4
20
0
0
2
20
40
60
80
100
120 °C
0
0
150
5
10
15
20
25
30
TS
mA
40
IC
Permissible Pulse Load RthJS = f (tp)
Permissible Pulse Load
P totmax/P totDC = f (tp)
10 1
Ptotmax / PtotDC
10 3
RthJS
K/W
10 2
10 1 -7
10
-
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10
-6
10
-5
10
-4
10
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-3
10
-2
s
10
10 0 -7
10
0
tp
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
5
Aug-20-2001
SIEGET 25
BFP420
Power gain Gma, Gms , |S21 |2 = f ( f )
Power gain Gma, Gms = f (I C)
VCE = 2V, IC = 20 mA
VCE = 2V
f = parameter in GHz
44
30
dB
dB
0.9
36
24
22
32
G ms
G
G
28
1.8
20
18
24
16
20
14
2.4
3
4
12
16
|S 21|2
12
5
10
Gma
6
8
6
8
4
4
2
0
0.0
1.0
2.0
3.0
4.0
GHz
0
0
6.0
4
8
12
16
20
24
28
32 mA
40
IC
f
Power gain Gma, Gms = f (VCE)
Collector-base capacitance Ccb = f (VCB)
IC = 20 mA
f = 1MHz
f = parameter in GHz
0.30
30
dB
0.9
pF
24
22
1.8
Ccb
G
20
2.4
18
16
3
14
4
0.20
0.15
12
5
10
0.10
6
8
6
0.05
4
2
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V
0.00
0
4.5
VCE
1
2
V
4
VCB
6
Aug-20-2001
SIEGET 25
Noise figure F = f (IC )
Noise figure F = f (IC)
VCE = 2 V, ZS = ZSopt
VCE = 2 V, f = 1.8 GHz
4.0
BFP420
3.0
dB
dB
3.0
2.0
F
F
2.5
2.0
1.5
ZS = 50 Ohm
ZS = ZSopt
1.5
f = 6 GHz
f = 5 GHz
f = 4 GHz
f = 3 GHz
f = 2.4 GHz
f = 1.8 GHz
f = 0.9 GHz
1.0
0.5
0.0
0
4
8
12
16
20
24
28
1.0
0.5
0.0
0
32 mA 38
4
8
12
16
20
28 mA
24
IC
36
IC
Noise figure F = f ( f )
Source impedance for min.
VCE = 2 V, ZS = ZSopt
Noise Figure versus Frequency
VCE = 2 V, IC = 5 mA / 20 mA
3.0
+j50
+j25
dB
+j100
+j10
2.0
F
2.4GHz
1.8GHz
3GHz
0
1.5
10
25
0.9GHz
50
100
0.45GHz
4GHz
1.0
5GHz
IC = 20 mA
IC = 5 mA
-j10
6GHz
0.5
-j25
-j100
-j50
0.0
0.0
1.0
2.0
3.0
4.0
GHz
6.0
f
7
Aug-20-2001