APT30GS60B_SRDQ2(G)_B.pdf

APT30GS60BRDQ2(G)
APT30GS60SRDQ2(G)
600V, 30A, VCE(ON) = 2.8V Typical
Thunderbolt® High Speed NPT IGBT with Anti-Parallel 'DQ' Diode
The Thunderbolt HS™ series is based on thin wafer non-punch through (NPT) technology similar to
the Thunderbolt® series, but trades higher VCE(ON) for significantly lower turn-on energy Eoff. The low
switching losses enable operation at switching frequencies over 100kHz, approaching power MOSFET
performance but lower cost.
TO
-24
7
An extremely tight parameter distribution combined with a positive VCE(ON) temperature coefficient
make it easy to parallel Thunderbolts HS™ IGBT's. Controlled slew rates result in very good noise
and oscillation immunity and low EMI. The short circuit duration rating of 10μs make these IGBT's
suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy
ruggedness. Combi versions are packaged with a high speed, soft recovery DQ series diode.
D 3 PAK
APT30GS60BRDQ2(G)
Features
Typical Applications
• Fast Switching with low EMI
• ZVS Phase Shifted and other Full Bridge
• Very Low EOFF for Maximum Efficiency
• Half Bridge
• Short circuit rated
• High Power PFC Boost
• Low Gate Charge
• Welding
• Tight parameter distribution
• Induction heating
• Easy paralleling
• High Frequency SMPS
APT30GS60SRDQ2(G)
Single die
IGBT with
separate DQ
diode die
• RoHS Compliant
Absolute Maximum Ratings
Symbol
Parameter
Rating
I C1
Continuous Collector Current TC = @ 25°C
54
I C2
Continuous Collector Current TC = @ 100°C
30
I CM
Pulsed Collector Current 1
113
VGE
Gate-Emitter Voltage
SSOA
Unit
A
±30V
V
Switching Safe Operating Area
113
EAS
Single Pulse Avalanche Energy 2
20
mJ
tSC
Short Circut Withstand Time 2
10
μs
IF
Diode Continuous Forward Current
I FRM
TC = 25°C
90
TC = 100°C
55
Diode Max. Repetitive Forward Current
A
113
Thermal and Mechanical Characteristics
Min
Junction to Case Thermal Resistance
RθCS
Case to Sink Thermal Resistance, Flat Greased Surface
Soldering Temperature for 10 Seconds (1.6mm from case)
WT
Package Weight
Torque
Unit
250
W
IGBT
0.50
Diode
0.67
Operating and Storage Junction Temperature Range
TL
Max
Mounting Torque (TO-247), 6-32 M3 Screw
0.11
-55
150
300
°C
0.22
oz
5.9
g
10
in·lbf
1.1
N·m
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed.
Microsemi Website - http://www.microsemi.com
°C/W
3-2012
RθJC
Typ
Rev B
Total Power Dissipation TC = @ 25°C
TJ, TSTG
Parameter
052-6302
Symbol
PD
Static Characteristics
Symbol
VBR(CES)
∆VBR(CES)/∆TJ
VCE(ON)
VEC
Parameter
Collector-Emitter Breakdown Voltage
Breakdown Voltage Temperature Coeff
Collector-Emitter On Voltage 3
Diode Forward Voltage 3
Gate-Emitter Threshold Voltage
∆VGE(th)/∆TJ
Threshold Voltage Temp Coeff
ICES
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Symbol
gfs
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Co(cr)
Reverse Transfer Capacitance
Charge Related 4
Co(er)
Reverse Transfer Capacitance
Current Related 5
Gate-Emitter Charge
Ggc
Gate-Collector Charge
td(on)
Turn-On Delay Time
tr
td(off)
tf
3-2012
Rise Time
0.60
2.8
TJ = 25°C
1.85
TJ = 125°C
VCE = 600V,
VGE = 0V
Unit
V
3.25
V/°C
3.15
V
1.5
3
4
5
6.7
mV/°C
TJ = 25°C
50
TJ = 125°C
1000
VGE = ±20V
VGE = 0V, VCE = 25V
f = 1MHz
VGE = 0V
VCE = 0 to 400V
Inductive Switching IGBT and
Diode:
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
Eon2
Turn-On Switching Energy
8
Eoff
Turn-Off Switching Energy
9
td(on)
Turn-On Delay Time
tf
600
TJ = 125°C
VGE = VCE, IC = 1mA
Max
μA
±100
nA
Min
Typ
Max
Unit
18
S
1600
140
90
130
pF
95
145
12
nC
65
16
7
td(off)
VGE = 15V
IC = 30A
Typ
TJ = 25°C
VGE = 0 to 15V
IC = 30A, VCE = 300V
Eon1
tr
Rev B
Forward Transconductance
Total Gate Charge
Min
Reference to 25°C, IC = 250μA
Test Conditions
VCE = 50V, IC = 30A
Cies
Qg
APT30GS60B_SRDQ2(G)
TJ = 25°C unless otherwise specified
Parameter
Qge
Test Conditions
VGE = 0V, IC = 250μA
IC = 30A
VGE(th)
Dynamic Characteristics
052-6302
TJ = 25°C unless otherwise specified
TJ = 25°C, VCC = 400V,
IC = 30A
RG = 9.1Ω 6, VGG = 15V
29
360
ns
27
TBD
800
μJ
570
16
Inductive Switching IGBT and
Diode:
Rise Time
Turn-Off Delay Time
Fall Time
Eon1
Turn-On Switching Energy
7
Eon2
Turn-On Switching Energy
8
Eoff
Turn-Off Switching Energy
9
trr
Diode Reverse Recovery Time
Qrr
Diode Reverse Recovery Charge
Irrm
Peak Reverse Recovery Current
TJ = 125°C, VCC = 400V,
IC = 30A
RG = 9.1Ω 6, VGG = 15V
29
390
ns
22
TBD
1185
μJ
695
IF = 40A
VR = 400V
diF/dt = 200A/μs
25
ns
35
nC
3
A
TYPICAL PERFORMANCE CURVES
APT30GS60B_SRDQ2(G)
120
VGE = 15V
T = 125°C
J
100
80
TJ = 25°C
60
40
TJ = 125°C
20
TJ = 150°C
IC, COLLECTOR CURRENT (A)
0
0
1
2
3
4
5
6
7
8
VCE(ON), COLLECTER-TO-EMITTER VOLTAGE (V)
11V
80
10V
60
9V
40
8V
20
6V
0
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
100
TJ = 125°C
TJ = 25°C
80
TJ = -55°C
60
40
20
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC = 60A
IC = 30A
3
IC = 15A
2
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
4
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
14
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
0
0
100
200
300
400
500
600
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 7, Capacitance vs Collector-To-Emitter Voltage
IC, DC COLLECTOR CURRENT(A)
Coes
Cres
10
C
20
40
60 80 100 120 140 160
GATE CHARGE (nC)
FIGURE 6, Gate Charge
60
Cies
P
100
IC = 25A
I = 15A
2
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Junction Temperature
1000
50A
IICC== 30A
3
0
2000
C, CAPACITANCE ( F)
IC = 100A
16
4
0
5
FIGURE 4, On State Voltage vs Gate-to- Emitter Voltage
5
VGE, GATE-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
IC = 60A
50
40
30
20
3-2012
0
6
10
0
25
50
75
100
125
150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev B
IC, COLLECTOR CURRENT (A)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
FIGURE 2, Output Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics
120
VGE = 13 & 15V
12V
100
052-6302
IC, COLLECTOR CURRENT (A)
120
TYPICAL PERFORMANCE CURVES
20
VGE = 15V
15
10
5 VCE = 400V
TJ = 25°C, TJ =125°C
RG = 9.1Ω
L = 100μH
0
tf, FALL TIME (ns)
tr, RISE TIME (ns)
40
30
20
RG = 9.1Ω, L = 100μH, VCE = 400V
30
TJ = 125°C, VGE = 15V
20
TJ = 25°C, VGE = 15V
10
0
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1600
V
= 400V
CE
V
= +15V
GE
R = 9.1Ω
EOFF, TURN OFF ENERGY LOSS (μJ)
EON2, TURN ON ENERGY LOSS (μJ)
VCE = 400V
RG = 9.1Ω
L = 100μH
40
10
G
3000
TJ = 125°C,VGE =15V
2000
1000
TJ = 25°C,VGE =15V
0
J
4
Eon2,60A
Eoff,60A
2
Eon2,30A
1
Eoff,30A
Eoff,15A
Eon2 15A
,
0
G
1200
TJ = 125°C, VGE = 15V
1000
800
600
400
200
TJ = 25°C, VGE = 15V
4
V
= 400V
CE
V
= +15V
GE
T = 125°C
3
1400
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (mJ)
5
V
= 400V
CE
V
= +15V
GE
R = 9.1Ω
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (mJ)
100
50
4000
3-2012
200
TJ = 25 or 125°C,VGE = 15V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Rev B
VGE =15V,TJ=25°C
60
RG = 9.1Ω, L = 100μH, VCE = 400V
50
0
VGE =15V,TJ=125°C
300
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
60
052-6302
400
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
70
APT30GS60B_SRDQ2(G)
500
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
V
= 400V
CE
V
= +15V
GE
R = 9.1Ω
G
3
Eon2,60A
2
Eoff,60A
Eon2,30A
1
Eoff,30A
Eon2,15A
0
Eoff,15A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT30GS60B_SRDQ2(G)
200
200
100
ICM
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
100
10
VCE(on)
13μs
100μs
1ms
1
10ms
100ms
DC line
0.1
TJ = 125°C
TC = 75°C
ICM
10
13μs
100μs
1ms
1
0.1
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
Figure 17, Forward Safe Operating Area
VCE(on)
10ms
100ms
TJ = 150°C
TC = 25°C
DC line
Scaling for Different Case & Junction
Temperatures:
IC = IC(T = 25°C)*(TJ - TC)/125
C
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
Figure 18, Maximum Forward Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
0.20
Note:
P DM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
0.3
t1
t2
0.10
0
SINGLE PULSE
0.1
0.05
10-5
10-4
t
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
T = 75°C
C
T = 100°C
C
10
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 9.1Ω
G
1
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
10
20
30
40
50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Rev B
3-2012
0
052-6302
FMAX, OPERATING FREQUENCY (kHz)
120
APT30GS60B_SRDQ2(G)
APT40DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
Collector Current
IC
V CC
90%
V CE
tr
5%
5%
10%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
Gate Voltage
TJ = 125°C
90%
td(off)
Collector Voltage
90%
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
052-6302
Rev B
3-2012
FOOT NOTE:
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Starting at TJ = 25°C, L = 224μH, RG = 25Ω, IC = 30A
3 Short circuit time: VGE = 15V, VCC ≤ 600V, TJ ≤ 150°C
4 Pulse test: Pulse width < 380μs, duty cycle < 2%
5 Co(cr) is defined as a fixed capacitance with the same stored charge as Coes with VCE = 67% of V(BR)CES.
6 Co(er) is defined as a fixed capacitance with the same stored energy as Coes with VCE = 67% of V(BR)CES. To calculate Co(er) for any value of
VCE less than V(BR)CES, use this equation: Co(er) = -1.40E-7/VDS^2 + 1.47E-8/VDS + 5.95E-11.
7 RG is external gate resistance, not including internal gate resistance or gate driver impedance (MIC4452).
8 Eon1 is the inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the
IGBT turn-on switching loss. It is measured by clamping the inductance with a Silicon Carbide Schottky diode.
9 Eon2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on energy.
10 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
All Ratings: TC = 25°C unless otherwise specified.
MAXIMUM RATINGS
Symbol Characteristic / Test Conditions
IF(AV)
IF(RMS)
IFSM
APT30GS60B_SRDQ2(G)
Maximum Average Forward Current (TC = 103°C, Duty Cycle = 0.5)
30
RMS Forward Current (Square wave, 50% duty)
43
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3 ms)
210
Unit
Amps
STATIC ELECTRICAL CHARACTERISTICS
Symbol Characteristic / Test Conditions
VF
Min
Forward Voltage
Type
Max
IF = 30A
2.8
3.3
IF = 60A
3.4
IF = 30A, TJ = 125°C
2.1
Unit
Volts
DYNAMIC CHARACTERISTICS
Symbol Characteristic
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Maximum Reverse Recovery Current
Typ
Max
IF = 1A, diF/dt = -100A/μs,
VR = 30V, TJ = 25°C
-
26
-
-
320
-
-
545
-
nC
-
4
-
Amps
-
435
-
ns
-
2100
-
nC
-
9
-
Amps
-
180
-
ns
-
2975
-
nC
-
28
-
Amps
IF = 30A, diF/dt = -200A/μs
VR = 667V, TC = 25°C
IF = 30A, diF/dt = -200A/μs
VR = 667V, TC = 125°C
IF = 30A, diF/dt = -1000A/μs
VR = 800V, TC = 125°C
Unit
ns
0.80
D = 0.9
0.70
0.60
0.7
0.50
0.5
0.40
0.30
Note:
P DM
0.3
t2
0.20`
t
SINGLE PULSE
0.1
0.10
0
t1
0.05
10-5
Duty Factor D = 1 /t2
Peak T J = P DM x Z θJC + T C
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
3-2012
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.90
Rev B
IRRM
Min
052-6302
IRRM
Test Conditions
TYPICAL PERFORMANCE CURVES
APT30GS60B_SRDQ2(G)
200
160
140
TJ = 175°C
120
100
80
TJ = 25°C
TJ = 125°C
60
40
TJ = -55°C
20
0
0
1
2
3
4
5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
Qrr, REVERSE RECOVERY CHARGE
(nC)
5000
T = 125°C
J
V = 800V
R
60A
4000
3000
30A
2000
15A
1000
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/μs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
trr
1.0
trr
0.8
R
60A
500
400
30A
300
15A
200
100
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/μs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
35
T = 125°C
J
V = 800V
R
30
60A
25
30A
20
15
15A
10
5
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/μs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
50
Qrr
Duty cycle = 0.5
T = 175°C
45
J
40
IRRM
35
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/μs)
1.2
T = 125°C
J
V = 800V
0
IRRM, REVERSE RECOVERY CURRENT
(A)
IF, FORWARD CURRENT
(A)
180
trr, REVERSE RECOVERY TIME
(ns)
600
0.6
30
25
20
0.4
Qrr
15
10
0.2
5
0.0
0
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
200
052-6302
Rev B
CJ, JUNCTION CAPACITANCE
(pF)
3-2012
180
160
140
120
100
80
60
40
20
0
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT30GS60B_SRDQ2(G)
Vr
diF /dt Adjus t
+18V
APT10078BLL
0V
D.U.T.
30μH
trr/Q rr
Wavefor m
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circui
1
I F - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
I RRM - Maximum Reverse Recovery Current
4
e diode
trr - Revers e R ecovery Time, measured from zero crossing wher
current goes from positive to negative, to the point at which the straight
line through I RRM and 0.25 I RRM passes through zero .
5
t
1
Q rr - Area Under the Curve Defined by I
4
Zer o
.
RRM
5
0.25 I RRM
3
2
and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
D3 Pak Package Outline
TO-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
6.15 (.242) BSC
Drai n
(Heat Sink)
e1 SAC: Tin, Silver, Copper
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
13.41 (.528)
13.51(.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
0.40 (.016)
0.79 (.031)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
Gate
Collector (Cathode)
Emitter (Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches
)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs. }
Emitter (Anode)
Collector (Cathode)
Gate
Dimensions in Millimeters (Inches)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads (Cathode)
are Plated
Rev B
2.87 (.113)
3.12 (.123)
4.50 (.177) Max.
052-6302
0.46 (.018)
0.56 (.022) {3 Plcs}
3-2012
3.50 (.138)
3.81 (.150)
Similar pages