TOSHIBA SSM6N15FU

SSM6N15FU
TOSHIBA Field Effect Transistor Silicon N Channel MOS Type
SSM6N15FU
High Speed Switching Applications
Analog Switching Applications
Unit: mm
·
Small package
·
Low ON resistance : Ron = 4.0 Ω (max) (@VGS = 4 V)
: Ron = 7.0 Ω (max) (@VGS = 2.5 V)
Maximum Ratings (Ta = 25°C) (Q1, Q2 Common)
Characteristics
Symbol
Rating
Unit
Drain-Source voltage
VDS
30
V
Gate-Source voltage
VGSS
±20
V
DC
ID
100
Pulse
IDP
200
Drain current
Drain power dissipation (Ta = 25°C)
PD (Note)
mA
200
mW
Channel temperature
Tch
150
°C
Storage temperature range
Tstg
-55~150
°C
Note:
Total rating
Marking
6
Equivalent Circuit (top view)
5
4
6
2
4
―
JEITA
―
TOSHIBA
2-2J1C
Weight: 6.8 mg (typ.)
Q1
DP
1
5
JEDEC
Q2
3
1
2
3
Handling Precaution
When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment
is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other
objects that come into direct contact with devices should be made of anti-static materials.
1
2001-12-05
SSM6N15FU
Electrical Characteristics (Ta = 25°C) (Q1, Q2 Common)
Characteristics
Symbol
Gate leakage current
Drain-Source breakdown voltage
Drain cut-off current
Test Condition
Min
Typ.
Max
Unit
IGSS
VGS = ±16 V, VDS = 0
¾
¾
±1
mA
V (BR) DSS
ID = 0.1 mA, VGS = 0
30
¾
¾
V
IDSS
VDS = 30 V, VGS = 0
¾
¾
1
mA
Vth
VDS = 3 V, ID = 0.1 mA
0.8
¾
1.5
V
Forward transfer admittance
ïYfsï
VDS = 3 V, ID = 10 mA
25
¾
¾
mS
Drain-Source ON resistance
RDS (ON)
ID = 10 mA, VGS = 4 V
¾
2.2
4.0
ID = 10 mA, VGS = 2.5 V
¾
4.0
7.0
¾
7.8
¾
pF
¾
3.6
¾
pF
¾
8.8
¾
pF
Gate threshold voltage
Input capacitance
Ciss
Reverse transfer capacitance
Crss
Output capacitance
Coss
Switching time
VDS = 3 V, VGS = 0, f = 1 MHz
Turn-on time
ton
VDD = 5 V, ID = 10 mA,
¾
50
¾
Turn-off time
toff
VGS = 0~5 V
¾
180
¾
W
ns
Switching Time Test Circuit
(b) VIN
(a) Test circuit
5V
OUT
5V
90%
0
10 ms
RL
50 9
IN
VDD
0V
(c) VOUT
VDD = 5 V
Duty <
= 1%
VIN: tr, tf < 5 ns
(Zout = 50 W)
Common Source
Ta = 25°C
10%
VDD
VDS (ON)
10%
90%
tr
ton
tf
toff
Precaution
Vth can be expressed as voltage between gate and source when low operating current value is ID = 100 mA for this
product. For normal switching operation, VGS (on) requires higher voltage than Vth and VGS (off) requires lower
voltage than Vth. (Relationship can be established as follows: VGS (off) < Vth < VGS (on) )
Please take this into consideration for using the device. VGS recommended voltage of 2.5 V or higher to turn on
this product.
2
2001-12-05
SSM6N15FU
(Q1, Q2 Common)
ID – VDS
ID – VGS
250
1000
Common Source
4
3
100
2.7
ID
150
Drain current
ID
Drain current
Common
Source
VDS = 3 V
(mA)
10
(mA)
200
Ta = 25°C
2.5
100
2.3
50
Ta = 100°C
10
-25°C
25°C
1
0.1
VGS = 2.1 V
0
0
0.5
1
1.5
Drain-source voltage
VDS
0.01
0
2
1
(V)
2
3
Gate-source voltage
RDS (ON) – ID
VGS
6
Common Source
Common Source
ID = 10 mA
5
8
Drain-source on resistance
RDS (ON) (W)
Drain-source on resistance
RDS (ON) (W)
Ta = 25°C
VGS = 2.5 V
4
4V
2
4
Ta = 100°C
3
25°C
2
-25°C
1
0
0
40
80
120
Drain current
ID
160
0
0
200
2
(mA)
4
1.8
6
5
VGS = 2.5 V
4
3
4V
2
1
0
-25
8
VGS
10
(V)
Vth – Ta
2
Common Source
ID = 10 mA
Gate threshold voltage Vth (V)
Drain-source on resistance
RDS (ON) (W)
7
6
Gate-source voltage
RDS (ON) – Ta
8
(V)
RDS (ON) – VGS
10
6
4
1.6
Common Source
ID = 0.1 mA
VDS = 3 V
1.4
1.2
1
0.8
0.6
0.4
0.2
0
25
50
75
100
125
0
-25
150
Ambient temperature Ta (°C)
0
25
50
75
100
125
150
Ambient temperature Ta (°C)
3
2001-12-05
SSM6N15FU
(Q1, Q2 Common)
ïYfsï – ID
IDR – VDS
250
(mA)
Common Source
500 V
DS = 3 V
300 Ta = 25°C
Drain reverse current IDR
Forward transfer admittance
½Yfs½ (mS)
1000
100
50
30
10
5
3
1
0
10
100
Drain current
ID
200
Common Source
VGS = 0 V
Ta = 25°C
D
150
S
100
50
0
0
1000
IDR
G
-0.2
(mA)
-0.4
-0.6
Drain-source voltage
t – ID
3000
(ns)
toff
-1.4
(V)
toff
1000
t
tf
500
Switching time
Switching time
-1.2
Common Source
VDD = 3 V
VGS = 0~2.5 V
Ta = 25°C
5000
t
(ns)
3000
300
100
50
30
10
0.1
ton
500
tf
300
ton
100
tr
50
30
tr
1
10
Drain current
ID
10
0.1
100
1
(mA)
10
Drain current
(mW)
30
P D*
10
Power dissipation
Ciss
Coss
5
3
Crss
1
0.5
0.3
1
Drain-source voltage
(mA)
250
Common Source
VGS = 0 V
f = 1 MHz
Ta = 25°C
50
0.1
0.1
ID
100
PD* – Ta
C – VDS
100
(pF)
VDS
10000
Common Source
VDD = 5 V
VGS = 0~5 V
Ta = 25°C
5000
Capacitance C
-1
t – ID
10000
1000
-0.8
10
VDS
200
150
100
50
0
0
100
20
(V)
40
60
80
100
120
140
160
Ambient temperature Ta (°C)
*: Total rating
4
2001-12-05
SSM6N15FU
RESTRICTIONS ON PRODUCT USE
000707EAA
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
· The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
· The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
· The information contained herein is subject to change without notice.
5
2001-12-05