STMICROELECTRONICS STPS2150

STPS2150
®
POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
IF(AV)
2A
VRRM
150 V
Tj (max)
175°C
VF(max)
0.67 V
FEATURES AND BENEFITS
■
■
■
■
■
Negligible switching losses
Low forward voltage drop for higher efficiency
and extented battery life
Low thermal resistance
Surface mount miniature package
Avalanche capability specified
DESCRIPTION
150V Power Schottky rectifier are suited for switch
Mode Power Supplies on up to 24V rails and high
frequency converters.
Packaged in SMA and Axial, this device is
intended for use in consumer and computer
applications like TV, STB, PC and DVD where low
drop forward voltage in required to reduce power
dissipation.
SMA
(JEDEC DO-214AC)
STPS2150A
Table 2: Order Codes
Part Number
STPS2150A
STPS2150
STPS2150RL
DO-15
STPS2150
Marking
2150
STPS2150
STPS2150
Table 3: Absolute Ratings (limiting values)
Symbol
Parameter
VRRM Repetitive peak reverse voltage
IF(RMS) RMS forward voltage
IF(AV)
IFSM
PARM
Tstg
Tj
dV/dt
Average forward current
SMA
DO-15
Surge non repetitive forward SMA
current
DO-15
Repetitive peak avalanche power
TL = 145°C δ = 0.5
TL = 130°C δ = 0.5
Half wave, single phase,
50Hz
tp = 1µs Tj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage (rated VR, Tj = 25°C)
Value
150
Unit
V
15
A
2
A
75
150
2400
W
-65 to + 150
°C
175
°C
10000
V/µs
A
1
dPt ot
* : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink
Rth ( j – a )
dTj
August 2004
REV. 4
1/6
STPS2150
Table 4: Thermal Resistance
Symbol
Parameter
Rth(j-l)
Junction to lead
Value
20
30
SMA
DO-15
Lead length = 10 mm
Unit
°C/W
Table 5: Static Electrical Characteristics
Symbol
Parameter
Tests conditions
Tj = 25°C
VR = VRRM
Reverse leakage current
Tj = 125°C
IR *
Tj = 25°C
VF *
Tj = 125°C
Forward voltage drop
Tj = 25°C
Tj = 125°C
Min.
IF = 2A
IF = 4A
Typ
0.5
Max.
1.5
Unit
µA
0.5
1.5
mA
0.78
0.82
0.62
0.67
0.86
0.89
0.70
0.75
V
* tp = 380 µs, δ < 2%
Pulse test:
2
To evaluate the conduction losses use the following equation: P = 0.59 x IF(AV) + 0.04 IF (RMS)
Figure 1: Average forward power dissipation
versus average forward current
Figure 2: Average forward current versus
ambient temperature (δ = 0.5)
PF(AV)(W)
IF(AV)(A)
1.6
δ = 0.2
δ = 0.1
2.2
δ = 0.5
Rth(j-a)=Rth(j-I)
2.0
δ = 0.05
1.4
SMA
1.8
DO-15
1.2
1.6
δ=1
1.4
1.0
Rth(j-a)=100°C/W
1.2
0.8
1.0
0.6
0.8
0.4
0.6
T
T
0.4
0.2
IF(AV)(A)
δ=tp/T
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
Figure 3: Normalized avalanche
derating versus pulse duration
0.2
tp
δ=tp/T
0.0
2.0
0
2.2
power
Tamb(°C)
tp
25
50
75
100
125
150
Figure 4: Normalized avalanche
derating versus junction temperature
PARM(tp)
PARM(1µs)
175
power
PARM(tp)
PARM(25°C)
1
1.2
1
0.1
0.8
0.6
0.4
0.01
0.2
0.01
2/6
Tj(°C)
tp(µs)
0.001
0.1
1
0
10
100
1000
25
50
75
100
125
150
STPS2150
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMA)
Figure 6: Non repetitive surge peak forward
current versus overload duration (maximum
values) (DO-15)
IM(A)
IM(A)
10
10
9
9
8
8
7
7
6
6
5
Ta=25°C
5
Ta=25°C
4
Ta=75°C
4
Ta=75°C
3
2
3
2
IM
Ta=125°C
IM
Ta=125°C
1
t
t(s)
δ=0.5
t
1
0
t(s)
δ=0.5
0
1.E-03
1.E-02
1.E-01
1.E+00
Figure 7: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMA)
1.E-03
Zth(j-c)/Rth(j-c)
0.9
0.9
0.8
0.8
0.7
0.7
0.6
δ = 0.5
0.5
0.5
0.4
0.4
δ = 0.2
0.2
δ = 0.1
1.E+00
Zth(j-c)/Rth(j-c)
1.0
0.3
1.E-01
Figure 8: Relative variation of thermal
impedance junction to ambient versus pulse
duration (DO-15)
1.0
0.6
1.E-02
T
0.1
δ=tp/T
tp(s)
Single pulse
δ = 0.5
0.3
δ = 0.2
0.2
δ = 0.1
T
0.1
tp
δ=tp/T
tp(s)
Single pulse
tp
0.0
0.0
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Figure 9: Reverse leakage current versus
reverse voltage applied (typical values)
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Figure 10: Junction capacitance versus
reverse voltage applied (typical values)
IR(µA)
C(nF)
1.E+04
1000
F=1MHz
VOSC=30mVRMS
Tj=25°C
Tj=150°C
1.E+03
Tj=125°C
1.E+02
Tj=100°C
1.E+01
100
Tj=75°C
Tj=50°C
1.E+00
Tj=25°C
1.E-01
VR(V)
VR(V)
10
1.E-02
0
25
50
75
100
125
150
1
10
100
1000
3/6
STPS2150
Figure 11: Forward voltage drop versus
forward current (maximum values, high level)
(SMA)
Figure 12: Forward voltage drop versus
forward current (maximum values, low level)
(DO-15)
IFM(A)
IFM(A)
2.0
100
Tj=125°C
(maximum values)
1.8
Tj=125°C
(maximum values)
1.6
1.4
Tj=125°C
(typical values)
Tj=125°C
(typical values)
1.2
Tj=25°C
(maximum values)
1.0
10
Tj=25°C
(maximum values)
0.8
0.6
0.4
0.2
VFM(V)
0.0
VFM(V)
1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Figure 13: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35µm) (SMA)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
Figure 14: Thermal resistance versus lead
length (DO-15)
Rth(j-a)(°C/W)
Rth(°C/W)
140
120
Rth(j-a)
120
100
100
80
80
60
60
Rth(j-I)
40
40
20
20
Lleads(mm)
S(cm²)
0
0
0
4/6
1
2
3
4
5
5
10
15
20
25
STPS2150
Figure 15: SMA Package Mechanical Data
DIMENSIONS
REF.
E1
D
E
A1
A2
C
L
b
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.03
0.075
0.080
A2
0.05
0.20
0.002
0.008
b
1.25
1.65
0.049
0.065
c
0.15
0.41
0.006
0.016
E
4.80
5.60
0.189
0.220
E1
3.95
4.60
0.156
0.181
D
2.25
2.95
0.089
0.116
L
0.75
1.60
0.030
0.063
Figure 16: SMA Foot Print Dimensions
(in millimeters)
1.65
1.45
2.40
1.45
5/6
STPS2150
Figure 17: DO-15 Package Mechanical Data
C
C
A
D
B
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
6.05
6.75
0.238
0.266
2.95
3.53
0.116
0.139
26
31
1.024
1.220
0.71
0.88
0.028
0.035
REF.
A
B
C
D
Table 6: Ordering Information
Ordering type
STPS2150A
STPS2150
STPS2150RL
■
Marking
2150
STPS2150
STPS2150
Package
SMA
DO-15
DO-15
Weight
0.068 g
0.4 g
0.4 g
Base qty
5000
2000
5000
Delivery mode
Tape & reel
Ammopack
Tape & reel
Epoxy meets UL94, V0
Table 7: Revision History
Date
Jul-2003
Revision
3A
Aug-2004
4
Description of Changes
Last update.
SMA package dimensions update. Reference A1 max.
changed from 2.70mm (0.106inc.) to 2.03mm (0.080).
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
6/6