IRF CPV363M4K

PD-5.043A
CPV363M4K
Short Circuit Rated UltraFast IGBT
IGBT SIP MODULE
Features
1
• Short Circuit Rated UltraFast: Optimized for high
operating frequencies >5.0 kHz , and Short Circuit
Rated to 10µs @ 125°C, VGE = 15V
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
• HEXFREDTM soft ultrafast diodes
• Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
3
D1
Q1
9
D3
Q3
4
6
D2
Q2
12
D5
Q5
15
10
D4
Q4
7
18
16
D6
Q6
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive
6.7 ARMS per phase (1.94 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-2
Absolute Maximum Ratings
Parameter
VCES
I C @ TC = 25°C
I C @ TC = 100°C
ICM
ILM
I F @ TC = 100°C
IFM
t sc
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current, each IGBT
Continuous Collector Current, each IGBT
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 minute
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
11
6.0
22
22
6.1
22
10
± 20
2500
36
14
-40 to +150
V
A
µs
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in (0.55 - 0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC(DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
Typ.
Max.
–––
–––
0.1
20 (0.7)
3.5
5.5
–––
–––
Units
°C/W
g (oz)
2/24/98
CPV363M4K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Collector-to-Emitter Breakdown Voltageƒ 600 ––– –––
V
VGE = 0V, IC = 250µA
∆V(BR)CES/∆T J Temp. Coeff. of Breakdown Voltage
––– 0.45 ––– V/°C VGE = 0V, IC = 1.0mA
Collector-to-Emitter Saturation Voltage ––– 1.72 2.10
IC = 6.0A
VGE = 15V
VCE(on)
See Fig. 2, 5
––– 2.00 –––
V
IC = 11A
––– 1.60 –––
IC = 6.0A, TJ = 150°C
Gate Threshold Voltage
3.0 ––– 6.0
VCE = VGE, IC = 250µA
VGE(th)
––– -13 ––– mV/°C VCE = VGE, IC = 250µA
∆VGE(th) /∆TJ Temp. Coeff. of Threshold Voltage
Forward Transconductance „
3.0 6.0 –––
S
VCE = 100V, IC = 12A
gfe
Zero Gate Voltage Collector Current
––– ––– 250
µA
VGE = 0V, VCE = 600V
ICES
––– ––– 2500
VGE = 0V, VCE = 600V, TJ = 150°C
Diode Forward Voltage Drop
––– 1.4 1.7
V
IC = 12A
See Fig. 13
V FM
––– 1.3 1.6
IC = 12A, TJ = 150°C
Gate-to-Emitter Leakage Current
––– ––– ±100 nA
VGE = ±20V
IGES
V(BR)CES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
10
td(on)
tr
td(off)
tf
Ets
Cies
Coes
Cres
t rr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Q rr
Diode Reverse Recovery Charge
––– 54
––– 24
––– 161
––– 244
––– 0.60
––– 740
––– 100
––– 9.3
––– 42
––– 80
––– 3.5
––– 5.6
––– 80
––– 220
––– 180
––– 120
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
d i(rec)M / dt
Diode Peak Rate of Fall of Recovery
During tb
Typ.
61
7.4
27
55
24
107
92
0.28
0.10
0.39
–––
Max. Units
Conditions
91
IC = 6A
11
nC
VCC = 400V
40
See Fig. 8
–––
TJ = 25°C
–––
ns
IC = 6.0A, VCC = 480V
160
VGE = 15V, RG = 23Ω
140
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ
See Fig. 9, 10, 18
0.50
–––
µs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 23Ω, VCPK < 500V
–––
TJ = 150°C,
See Fig.10, 11, 18
–––
ns
IC = 6.0A, VCC = 480V
–––
VGE = 15V, RG = 23Ω
–––
Energy losses include "tail" and
–––
mJ
diode reverse recovery.
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
60
ns
TJ = 25°C See Fig.
120
TJ = 125°C
14
IF = 12A
6.0
A
TJ = 25°C See Fig.
15
VR = 200V
10
TJ = 125°C
180
nC TJ = 25°C See Fig.
600
TJ = 125°C
16
di/dt=200A/µs
––– A/µs TJ = 25°C See Fig.
–––
TJ = 125°C
17
Notes:
 Repetitive rating; VGE=20V, pulse width limited
by max. junction temperature. ( See fig. 20)
‚ VCC =80%(VCES), VGE =20V, L=10µH,
RG= 23Ω, ( See fig. 19 )
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs,
single shot.
CPV363M4K
3.50
T c = 9 0° C
T j = 1 25 ° C
P ow er F ac tor = 0 .8
M o d ula tio n D ep th = 1 .15
V c c = 50 % o f R a ted V o lta g e
LOAD CURRENT (A)
10
2.92
8
2.33
6
1.75
4
1.17
2
0.58
0.00
100
0
0.1
1
Total Output Power (kW)
12
10
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 oC
TJ = 150 oC
10
1
V GE = 15V
20µs PULSE WIDTH
0.1
1
10
V CE, Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
I C, Collector-to-Emitter Current (A)
I C, Collector-to-Emitter Current (A)
100
TJ = 150 oC
10
TJ = 25 oC
1
VCC = 50V
5µs PULSE WIDTH
0.1
5
10
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
15
CPV363M4K
3.0
V GE = 1 5 V
VCE , Collector-to-Emitter Voltage(V)
M axim um D C C o llec tor C urr ent ( A )
12
9
6
3
A
0
25
50
75
100
125
IC = 12A
2.0
1.0
-60 -40 -20
150
0
20
40
60
IC =
6A
IC =
3A
80 100 120 140 160
T J , Junction Temperature ( °C)
T C , C ase T em pera ture (° C )
Fig. 4 - Maximum Collector Current vs.
Case Temperature
VGE = 15V
80 us PULSE WIDTH
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
T herm al R espo nse (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
PD M
0.02
0.01
0 .1
t
SINGLE PULSE
( THE RMAL RES PO NSE)
t2
Note s:
1. Du ty fac tor D = t
0.01
0.0000 1
1
1
/t
2
2. Pe ak TJ = P D M x Z th JC + T C
0.0001
0.001
0.0 1
0.1
1
t 1 , R e ct an gu la r P ulse D ura tion (s ec )
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
10
CPV363M4K
1500
VGE, Gate-to-Emitter Voltage (V)
1200
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
900
600
Coes
300
VCC = 400V
I C = 6.0A
16
12
8
4
Cres
0
1
10
0
100
0
VCE , Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
10
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 480V
V GE = 15V
TJ = 25 °C
0.8 I C = 6.0A
0.6
0.4
0.2
0.0
10
20
30
40
RG
RG, ,Gate
GateResistance
Resistance(Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
40
60
80
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
1.0
0
20
Q G, Total Gate Charge (nC)
50
RG =10Ω
23Ohm
Ω
VGE = 15V
VCC = 480V
I C = 12A
1
0.1
-60 -40 -20
0
20
40
60
IC =
6A
IC =
3A
80 100 120 140 160
T J, Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
CPV363M4K
100
10Ω
I C , C ollector-to-E m itter C urrent (A )
Ω
RG = 23Ohm
T J = 150 °C
480V
VCC = 0V
1.2 VGE = 15V
0.9
0.6
0.3
0.0
0
3
6
9
12
VG E = 2 0 V
T J = 12 5 °C
S AF E O P ER A TIN G AR EA
10
A
1
15
1
I C , Collector-to-emitter Current (A)
10
100
VC E , C ollector-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Instantaneous F orward C urrent - I F (A)
Total Switching Losses (mJ)
1.5
TJ = 1 50°C
TJ = 1 25°C
10
TJ = 25°C
1
0.4
0.8
1.2
1.6
2.0
2.4
F orward V oltage D rop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
CPV363M4K
160
100
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
TJ = 1 2 5 ° C
T J = 2 5 °C
120
I IR RM - (A )
t rr - (n s)
I F = 24A
I F = 12 A
80
I F = 6.0 A
I F = 24 A
I F = 12 A
10
IF = 6 .0A
40
0
100
di f /d t - (A /µ s)
1
100
1000
1000
di f /d t - (A /µs)
Fig. 15 - Typical Recovery Current vs. dif /dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
10000
600
VR = 2 0 0 V
TJ = 1 2 5 ° C
TJ = 2 5 ° C
di(rec) M/ dt - (A /µ s)
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
Q RR - (nC )
400
I F = 24 A
I F = 12A
200
1000
IF = 6 .0 A
IF = 12 A
100
I F = 24 A
IF = 6.0A
0
100
di f /d t - (A /µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
10
100
1000
di f /dt - (A /µ s)
Fig. 17 - Typical di(rec)M /dt vs. dif /dt
CPV363M4K
9 0% V ge
Same t ype
device as
D.U.T.
+ Vg e
Vce
430µF
80%
of Vce
D.U.T.
Ic
90 % Ic
1 0% V ce
Ic
5% Ic
td (off)
tf
E off =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1 +5µ S
Vce
V ce icIcd tdt
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G ATE VO LTA G E D .U .T.
1 0% +V g
trr
Q rr =
Ic
∫
trr
id
Ic dtdt
tx
+V g
tx
10% V cc
10 % Ir r
V cc
DUT V O LTA G E
AN D C URR E NT
V ce
Vcc
V pk
Irr
10% Ic
9 0% Ic
tr
td( on)
Ipk
Ic
DIO DE RE CO V E RY
W AV E FO RM S
5% Vc e
t1
∫
t2
c e ieIc
dt dt
E on = VVce
t1
t2
Er ec =
DIO D E RE V E RS E
RE C O V ER Y EN ER G Y
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
VVd
d idIc
d t dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
CPV363M4K
V g G ATE S IG N AL
DE VICE UNDE R TE S T
CURR EN T D .U .T.
VO L TA G E IN D.U.T.
CURR EN T IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
10 00V
V c*
RL =
480V
4 X I C @25°C
0 - 480V
50V
60 00µ F
100 V
Figure 19. Clamped Inductive Load Test
Circuit
Figure 20. Pulsed Collector Current
Test Circuit
CPV363M4K
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 10Ω (Figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Case Outline — IMS-2
3.91 ( .154)
2X
62.43 (2.458)
7.87 (.310)
53.85 ( 2.120)
5.46 ( .215)
21.97 (.865)
1
2
3
4
5
6
7
8
9 10 1 1 1 2 13 14 1 5 1 6 17 18 19
0.38 (.015)
NO TE S:
1. Tolerance unless otherwis e
spec ified ± 0.254 (.010) .
2. Controlling D imension: Inch.
3. Dimens ions ar e shown in
Millimeter ( Inc hes) .
4. Term inal numbers are shown
for refer enc e only.
3.94 (.155)
1.27 ( .050)
4.06 ± 0.51
(.160 ± .020)
5.08 (.200)
6X
1.27 (.050)
13X
2.54 (.100)
6X
3.05 ± 0.38
(.120 ± .015)
0.76 (.030)
13X
0.51 (.020)
6.10 (.240)
IMS-2 Package Outline (13 Pins)
D im e n s io n s in M illim e te rs a n d (In c h e s)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
2/98