IRF IRG4PH40UD

PD- 91621B
IRG4PH40UD
UltraFast CoPack IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
C
• UltraFast: Optimized for high operating
frequencies up to 40 kHz in hard switching,
>200 kHz in resonant mode
• New IGBT design provides tighter
parameter distribution and higher efficiency than
previous generations
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-247AC package
VCES = 1200V
VCE(on) typ. = 2.43V
G
@VGE = 15V, IC = 21A
E
n-ch an nel
Benefits
• Higher switching frequency capability than
competitive IGBTs
• Highest efficiency available
• HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Max.
Units
1200
41
21
82
82
8.0
130
± 20
160
65
-55 to + 150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6 (0.21)
0.77
1.7
–––
40
–––
Units
°C/W
g (oz)
1
7/7/2000
IRG4PH40UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown VoltageS 1200 —
Temperature Coeff. of Breakdown Voltage — 0.43
Collector-to-Emitter Saturation Voltage
— 2.43
— 2.97
— 2.47
Gate Threshold Voltage
3.0
—
Temperature Coeff. of Threshold Voltage
—
-11
Forward Transconductance T
16
24
Zero Gate Voltage Collector Current
—
—
—
—
Diode Forward Voltage Drop
—
2.6
—
2.4
Gate-to-Emitter Leakage Current
—
—
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
— V/°C VGE = 0V, IC = 1.0mA
3.1
IC = 21A
VGE = 15V
—
V
IC = 41A
See Fig. 2, 5
—
IC = 21A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC = 21A
250
µA
VGE = 0V, VCE = 600V
5000
VGE = 0V, VCE = 600V, TJ = 150°C
3.3
V
IC = 8.0A
See Fig. 13
3.1
IC = 8.0A, TJ = 125°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di (rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
86
13
29
46
35
97
240
1.80
1.93
3.73
42
32
240
510
7.04
13
1800
120
18
63
106
4.5
6.2
140
335
133
85
Max. Units
Conditions
130
IC = 21A
20
nC
VCC = 400V
See Fig. 8
44
VGE = 15V
—
TJ = 25°C
—
ns
IC = 21A, VCC = 800V
150
VGE = 15V, R G = 10Ω
360
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ See Fig. 9, 10, 18
4.6
—
TJ = 150°C, See Fig. 11, 18
—
ns
IC = 21A, VCC = 800V
—
VGE = 15V, R G = 10Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery.
—
nH Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
95
ns
TJ = 25°C See Fig.
160
TJ = 125°C
14
IF = 8.0A
8.0
A
TJ = 25°C See Fig.
15
VR = 200V
11
TJ = 125°C
380
nC
TJ = 25°C See Fig.
880
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
www.irf.com
IRG4PH40UD
25
For both:
D uty cy cle: 50%
TJ = 125°C
T s ink = 90°C
G ate drive as specified
P ow e r Dis sip ation = 35 W
LOAD CURRENT (A)
20
15
S q u a re w a v e :
6 0% of rate d
volta ge
10
I
5
Id e a l d io d e s
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 150 o C
10
TJ =
25 o C
V
= 15V
20µs PULSE WIDTH
GE
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 o C
10
TJ = 25 o C
V
= 50V
5µs PULSE WIDTH
CC
1
5
6
7
8
9
10
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH40UD
50
4.0
V
= 15V
80 us PULSE WIDTH
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
GE
40
30
20
10
0
25
50
75
100
125
150
I C = 42 A
3.0
I C = 21 A
I C =10.5 A
2.0
1.0
-60 -40 -20
TC , Case Temperature ( ° C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
P DM
0.05
t1
0.02
0.01
0.01
0.00001
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH40UD
C, Capacitance (pF)
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
3000
Cies
2000
C
oes
1000
C
res
20
VGE , Gate-to-Emitter Voltage (V)
4000
10
12
8
4
0
100
0
VCE , Collector-to-Emitter Voltage (V)
100
VCC = 800V
VGE = 15V
TJ = 25 ° C
I C = 21A
4.0
3.5
3.0
0
10
20
30
40
RG
RG,, Gate
Gate Resistance
Resistance ( (Ohm)
Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
60
80
100
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
4.5
20
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
5.0
VCC = 400V
I C = 21A
16
0
1
50
Ω
RG = 10
Ohm
VGE = 15V
VCC = 800V
IC = 42 A
10
IC = 21 A
IC = 10.5 A
1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH40UD
12
1000
Ω
= 10
Ohm
= 150° C
= 800V
= 15V
I C , Collector-to-Emitter Current (A)
RG
TJ
VCC
VGE
VGE = 20V
T J = 125 oC
100
8
4
10
SAFE OPERATING AREA
0
0
10
20
30
40
1
50
1
I C , Collector-to-emitter Current (A)
10
100
1000
10000
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Insta ntaneo us F orw ard Cu rrent - I F (A )
Total Switching Losses (mJ)
16
10
TJ = 15 0°C
TJ = 12 5°C
TJ = 2 5°C
1
0
2
4
6
8
10
Fo rwa rd V oltage D rop - V F M (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH40UD
100
200
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
160
I F = 8 .0 A
I F = 4 .0A
I IR R M - (A )
t rr - (ns)
I F = 16A
120
I F = 1 6A
I F = 8.0A
10
I F = 4 .0 A
80
40
0
100
d i f /d t - (A /µ s)
1
100
1000
1000
di f /dt - (A /µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
600
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
500
d i(re c)M /d t - (A /µs)
I F = 4 .0A
Q R R - (nC )
400
I F = 16 A
300
200
I F = 8 .0A
I F = 4 .0A
I F = 8.0 A
100
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
100
0
100
d i f /d t - (A /µ s)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
I F = 1 6A
1000
10
100
1000
di f /dt - (A /µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PH40UD
90% Vge
+Vge
Same ty pe
device as
D .U.T.
Vce
430µF
80%
of Vce
Ic
D .U .T.
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t1 + 5 µ S
V c e ic d t
t1
∫ Vce Ic dt
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
trr
id d t
tx
∫ Ic dt
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIcd t dt
E o n = VVce
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
t4
V d id d t
t3
∫ Vd Ic dt
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH40UD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
800V
4 X IC @25°C
0 - 800V
50V
6000µ F
100 V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH40UD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
(figure 20)
R VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19)
S Pulse width ≤ 80µs; duty factor ≤ 0.1%.
T Pulse width 5.0µs, single shot.
Case Outline — TO-247AC
3 .6 5 (.1 4 3 )
3 .5 5 (.1 4 0 )
0 .2 5 ( .0 1 0 )
1 5 .9 0 (.6 2 6 )
1 5 .3 0 (.6 0 2 )
-B-
-D-
M
D B M
-A5 .5 0 (.2 17 )
2 0 .3 0 (.8 0 0 )
1 9 .7 0 (.7 7 5 )
2X
1
2
5 .3 0 (.2 0 9 )
4 .7 0 (.1 8 5 )
2.5 0 ( .0 8 9)
1.5 0 ( .0 5 9)
4
5.5 0 (.2 1 7)
4.5 0 (.1 7 7)
LEAD
1234-
3
-C-
*
1 4 .8 0 (.5 8 3 )
1 4 .2 0 (.5 5 9 )
2 .4 0 (.0 9 4 )
2 .0 0 (.0 7 9 )
2X
5 .4 5 (.2 1 5 )
2X
4 .3 0 (.1 7 0 )
3 .7 0 (.1 4 5 )
3X
1 .4 0 ( .0 56 )
1 .0 0 ( .0 39 )
0.2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 )
3 .0 0 (.1 1 8 )
NOTE S:
1 D IM E N S IO N S & T O LE R A N C IN G
P E R A N S I Y 14 .5M , 1 98 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M IL LIM E T E R S (IN C H E S ).
4 C O N F O R M S T O J E D E C O U T L IN E
T O -2 4 7A C .
*
A S S IG N M E N T S
GAT E
COLLECTO R
E M IT T E R
COLLECTO R
LO N G E R LE A D E D (2 0m m )
V E R S IO N A V A IL A B L E (T O -2 47 A D )
T O O R D E R A D D "-E " S U F F IX
TO PAR T NUM BER
0 .8 0 (.0 3 1 )
0 .4 0 (.0 1 6 )
2 .6 0 ( .1 0 2 )
2 .2 0 ( .0 8 7 )
3X
C A S
CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P)
D im e n s io n s in M illim e te rs a n d (In c h e s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 7/00
10
www.irf.com