PD- 91621B IRG4PH40UD UltraFast CoPack IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features C • UltraFast: Optimized for high operating frequencies up to 40 kHz in hard switching, >200 kHz in resonant mode • New IGBT design provides tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations • Industry standard TO-247AC package VCES = 1200V VCE(on) typ. = 2.43V G @VGE = 15V, IC = 21A E n-ch an nel Benefits • Higher switching frequency capability than competitive IGBTs • Highest efficiency available • HEXFRED diodes optimized for performance with IGBT's . Minimized recovery characteristics require less/no snubbing TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. Max. Units 1200 41 21 82 82 8.0 130 ± 20 160 65 -55 to + 150 V A V W °C 300 (0.063 in. (1.6mm) from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.24 ––– 6 (0.21) 0.77 1.7 ––– 40 ––– Units °C/W g (oz) 1 7/7/2000 IRG4PH40UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown VoltageS 1200 — Temperature Coeff. of Breakdown Voltage — 0.43 Collector-to-Emitter Saturation Voltage — 2.43 — 2.97 — 2.47 Gate Threshold Voltage 3.0 — Temperature Coeff. of Threshold Voltage — -11 Forward Transconductance T 16 24 Zero Gate Voltage Collector Current — — — — Diode Forward Voltage Drop — 2.6 — 2.4 Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 1.0mA 3.1 IC = 21A VGE = 15V — V IC = 41A See Fig. 2, 5 — IC = 21A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100V, IC = 21A 250 µA VGE = 0V, VCE = 600V 5000 VGE = 0V, VCE = 600V, TJ = 150°C 3.3 V IC = 8.0A See Fig. 13 3.1 IC = 8.0A, TJ = 125°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres trr Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di (rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — — — — — — — — — — — — — — — — — — Typ. 86 13 29 46 35 97 240 1.80 1.93 3.73 42 32 240 510 7.04 13 1800 120 18 63 106 4.5 6.2 140 335 133 85 Max. Units Conditions 130 IC = 21A 20 nC VCC = 400V See Fig. 8 44 VGE = 15V — TJ = 25°C — ns IC = 21A, VCC = 800V 150 VGE = 15V, R G = 10Ω 360 Energy losses include "tail" and — diode reverse recovery. — mJ See Fig. 9, 10, 18 4.6 — TJ = 150°C, See Fig. 11, 18 — ns IC = 21A, VCC = 800V — VGE = 15V, R G = 10Ω — Energy losses include "tail" and — mJ diode reverse recovery. — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 95 ns TJ = 25°C See Fig. 160 TJ = 125°C 14 IF = 8.0A 8.0 A TJ = 25°C See Fig. 15 VR = 200V 11 TJ = 125°C 380 nC TJ = 25°C See Fig. 880 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 www.irf.com IRG4PH40UD 25 For both: D uty cy cle: 50% TJ = 125°C T s ink = 90°C G ate drive as specified P ow e r Dis sip ation = 35 W LOAD CURRENT (A) 20 15 S q u a re w a v e : 6 0% of rate d volta ge 10 I 5 Id e a l d io d e s 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 150 o C 10 TJ = 25 o C V = 15V 20µs PULSE WIDTH GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 o C 10 TJ = 25 o C V = 50V 5µs PULSE WIDTH CC 1 5 6 7 8 9 10 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH40UD 50 4.0 V = 15V 80 us PULSE WIDTH VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 40 30 20 10 0 25 50 75 100 125 150 I C = 42 A 3.0 I C = 21 A I C =10.5 A 2.0 1.0 -60 -40 -20 TC , Case Temperature ( ° C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 P DM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH40UD C, Capacitance (pF) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 3000 Cies 2000 C oes 1000 C res 20 VGE , Gate-to-Emitter Voltage (V) 4000 10 12 8 4 0 100 0 VCE , Collector-to-Emitter Voltage (V) 100 VCC = 800V VGE = 15V TJ = 25 ° C I C = 21A 4.0 3.5 3.0 0 10 20 30 40 RG RG,, Gate Gate Resistance Resistance ( (Ohm) Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 40 60 80 100 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 4.5 20 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 5.0 VCC = 400V I C = 21A 16 0 1 50 Ω RG = 10 Ohm VGE = 15V VCC = 800V IC = 42 A 10 IC = 21 A IC = 10.5 A 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH40UD 12 1000 Ω = 10 Ohm = 150° C = 800V = 15V I C , Collector-to-Emitter Current (A) RG TJ VCC VGE VGE = 20V T J = 125 oC 100 8 4 10 SAFE OPERATING AREA 0 0 10 20 30 40 1 50 1 I C , Collector-to-emitter Current (A) 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Insta ntaneo us F orw ard Cu rrent - I F (A ) Total Switching Losses (mJ) 16 10 TJ = 15 0°C TJ = 12 5°C TJ = 2 5°C 1 0 2 4 6 8 10 Fo rwa rd V oltage D rop - V F M (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PH40UD 100 200 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 160 I F = 8 .0 A I F = 4 .0A I IR R M - (A ) t rr - (ns) I F = 16A 120 I F = 1 6A I F = 8.0A 10 I F = 4 .0 A 80 40 0 100 d i f /d t - (A /µ s) 1 100 1000 1000 di f /dt - (A /µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 1000 600 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 500 d i(re c)M /d t - (A /µs) I F = 4 .0A Q R R - (nC ) 400 I F = 16 A 300 200 I F = 8 .0A I F = 4 .0A I F = 8.0 A 100 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 100 0 100 d i f /d t - (A /µ s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com I F = 1 6A 1000 10 100 1000 di f /dt - (A /µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PH40UD 90% Vge +Vge Same ty pe device as D .U.T. Vce 430µF 80% of Vce Ic D .U .T. 9 0 % Ic 10% Vce Ic 5 % Ic td (o ff) tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t1 + 5 µ S V c e ic d t t1 ∫ Vce Ic dt t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic trr id d t tx ∫ Ic dt +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt E o n = VVce t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 t4 V d id d t t3 ∫ Vd Ic dt t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PH40UD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 800V 4 X IC @25°C 0 - 800V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PH40UD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. Case Outline TO-247AC 3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 ) 1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B- -D- M D B M -A5 .5 0 (.2 17 ) 2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 2X 1 2 5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4 5.5 0 (.2 1 7) 4.5 0 (.1 7 7) LEAD 1234- 3 -C- * 1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 ) 2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X 4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 3X 1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M 3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 ) NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C . * A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 ) 3X C A S CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P) D im e n s io n s in M illim e te rs a n d (In c h e s ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 7/00 10 www.irf.com