IRF IRFP31N50L

PD - 94081
SMPS MOSFET
IRFP31N50L
Applications
HEXFET® Power MOSFET
l Switch Mode Power Supply (SMPS)
l UninterruptIble Power Supply
VDSS
RDS(on) typ.
ID
l High Speed Power Switching
500V
0.15Ω
31A
l ZVS and High Frequency Circuit
l PWM Inverters
Benefits
l Low Gate Charge Qg results in Simple Drive Requirement
l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
l Fully Characterized Capacitance and Avalanche Voltage
and Current
l Low Trr and Soft Diode Recovery
TO-247AC
l High Performance Optimised Anti-parallel Diode
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case )
Mounting torqe, 6-32 or M3 screw
31
20
124
460
3.7
± 30
19
-55 to + 150
300
Units
A
W
W/°C
V
V/ns
°C
10 lbf•in (1.1N•m)
Diode Characteristics
Symbol
IS
VSD
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
ISM
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
––– ––– 31
MOSFET symbol
showing the
A
G
––– ––– 124
integral reverse
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 31A, VGS = 0V „
––– 170 250
TJ = 25°C
IF = 31A
ns
––– 220 330
TJ = 125°C
di/dt = 100A/µs „
––– 570 860
nC
TJ = 25°C
––– 1.2 1.8
µC
TJ = 125°C
––– 7.9
12
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Typical SMPS Topologies
l
Bridge Converters
www.irf.com
l
All Zero Voltage Switching
1
05/23/01
IRFP31N50L
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS
RDS(on)
VGS(th)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
∆V(BR)DSS/∆TJ
Min. Typ. Max. Units
Conditions
500 ––– –––
V
VGS = 0V, ID = 250µA
––– 0.28 ––– V/°C Reference to 25°C, ID = 1mA†
––– 0.15 0.18
Ω
VGS = 10V, ID = 19A „
3.0
––– 5.0
V
VDS = V GS, ID = 250µA
––– ––– 50
µA
VDS = 500V, VGS = 0V
––– ––– 2.0
mA VDS = 400V, VGS = 0V, TJ = 125°C
––– ––– 100
VGS = 30V
nA
––– ––– -100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
15
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
28
115
54
53
5000
553
59
6630
155
276
Max. Units
Conditions
–––
S
VDS = 50V, ID = 19A „
210
ID = 31A
58
nC
VDS = 400V
100
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 250V
–––
ID = 31A
ns
–––
RG = 4.3Ω
–––
VGS = 10V,See Fig. 10 „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 400V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 400V …
Avalanche Characteristics
Symbol
EAS
IAR
EAR
Parameter
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
460
31
46
mJ
A
mJ
Typ.
Max.
Units
–––
0.24
–––
0.26
–––
40
°C/W
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
Parameter
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See Fig. 11)
‚ Starting TJ = 25°C, L = 1mH, RG = 25Ω,
IAS = 31A (See Figure 12a).
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
ƒ ISD = 31A, di/dt ≤ 422A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C.
2
www.irf.com
IRFP31N50L
1000
100
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
100
10
1
5.0V
0.1
20µs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
10
5.0V
1
100
100
TJ = 150 ° C
10
TJ = 25 ° C
1
V DS = 50V
20µs PULSE WIDTH
6
7
8
9
10
Fig 3. Typical Transfer Characteristics
www.irf.com
11
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
VGS , Gate-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000
5
°
J
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
0.1
20µs PULSE WIDTH
T = 150 C
0.1
0.1
VDS , Drain-to-Source Voltage (V)
4
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
ID = 31A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFP31N50L
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
100000
C, Capacitance(pF)
Coss = Cds + Cgd
10000
Ciss
1000
Coss
100
Crss
16
VGS , Gate-to-Source Voltage (V)
1000000
ID = 31A
V DS = 400V
V DS = 250V
V DS = 100V
12
8
4
10
1
10
100
1000
0
0
40
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
ISD , Reverse Drain Current (A)
120
160
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
ID , Drain Current (A)
100
TJ = 150 ° C
100
10
TJ = 25 ° C
10us
100us
10
1
0.1
0.2
4
80
QG , Total Gate Charge (nC)
V GS = 0 V
0.6
1.0
1.4
1.8
1
TC = 25 °C
TJ = 150 °C
Single Pulse
10
1ms
10ms
100
1000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFP31N50L
35
VGS
30
ID , Drain Current (A)
RD
VDS
D.U.T.
RG
+
-VDD
25
10V
20
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
15
Fig 10a. Switching Time Test Circuit
10
VDS
5
90%
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x ZthJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
EAS , Single Pulse Avalanche Energy (mJ)
IRFP31N50L
1000
TOP
800
BOTTOM
ID
14A
20A
31A
1 5V
600
400
D R IV E R
L
VDS
D .U .T
RG
+
- VD D
IA S
20V
tp
200
A
0 .0 1 Ω
Fig 12c. Unclamped Inductive Test Circuit
0
25
50
75
100
125
150
Starting TJ , Junction Temperature( ° C)
Fig 12a. Maximum Avalanche Energy
Vs. Drain Current
V (B R )D SS
tp
IAS
Fig 12d. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
VGS
.2µF
.3µF
D.U.T.
QGS
+
V
- DS
QGD
VG
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 13a. Gate Charge Test Circuit
6
Charge
Fig 13b. Basic Gate Charge Waveform
www.irf.com
IRFP31N50L
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D=
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
www.irf.com
7
IRFP31N50L
TO - 247 Package Outline
Dimensions are shown in millimeters (inches)
-D -
3.65 (.1 43)
3.55 (.1 40)
1 5.90 (.62 6)
1 5.30 (.60 2)
-B-
0.25 (.0 10) M
-A 5 .50 (.217)
20 .30 (.800)
19 .70 (.775)
2X
1
2
5.50 (.21 7)
4.50 (.17 7)
3
-C -
14.8 0 (.5 83)
14.2 0 (.5 59)
2.40 (.09 4)
2.00 (.07 9)
2X
5.45 (.2 15)
2X
D B M
5 .30 (.209 )
4 .70 (.185 )
2.5 0 (.08 9)
1.5 0 (.05 9)
4
N O TES :
1 DIM EN S IO N IN G & TO LE R AN C IN G
P ER AN S I Y1 4.5M , 1 98 2.
2 CO N TR O LL IN G DIM EN S IO N : IN CH .
3 CO N F O RM S TO JED E C O U TLINE
TO -2 47 -A C .
4.3 0 (.1 70)
3.7 0 (.1 45)
0.80 (.03 1)
3X 0.40 (.01 6)
1.4 0 (.0 56)
3 X 1.0 0 (.0 39)
0.2 5 (.0 10) M
3 .40 (.133 )
3 .00 (.118 )
C A S
L EA D A S SIG N M E N TS
2.60 (.1 02)
2.20 (.0 87)
1
2
3
4
-
G A TE
D R AIN
S O UR C E
D R AIN
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
… Coss eff. is a fixed capacitance that gives the same charging time
‚ Starting TJ = 25°C, L = 4.3mH
as Coss while VDS is rising from 0 to 80% VDSS
R G = 25Ω, IAS = 24A.
ƒ ISD = 24A, di/dt ≤ TBD A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
† Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 90A
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/01
8
www.irf.com