PD - 94230 SMPS MOSFET IRFP23N50L HEXFET® Power MOSFET Applications VDSS RDS(on) typ. l Switch Mode Power Supply (SMPS) 500V 0.190Ω l UninterruptIble Power Supply l High Speed Power Switching l Motor Drive Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current l Enhanced Body Diode dv/dt Capability Trr typ. ID 170ns 23A TO-247AC Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Max. Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting torqe, 6-32 or M3 screw 23 15 92 370 2.9 ± 30 14 -55 to + 150 300 Units A W W/°C V V/ns °C 10 lbf•in (1.1N•m) Diode Characteristics Symbol IS VSD Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge ISM IRRM ton Reverse Recovery Current Forward Turn-On Time Min. Typ. Max. Units Conditions D ––– ––– 23 MOSFET symbol showing the A G ––– ––– 92 integral reverse S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 14A, VGS = 0V ––– 170 250 TJ = 25°C IF = 23A ns ––– 220 330 TJ = 125°C di/dt = 100A/µs ––– 560 840 nC TJ = 25°C ––– 980 1500 nC TJ = 125°C ––– 7.6 11 A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Typical SMPS Topologies l Bridge Converters www.irf.com l All Zero Voltage Switching 1 11/28/01 IRFP23N50L Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS RDS(on) VGS(th) Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ∆V(BR)DSS/∆TJ Min. Typ. Max. Units Conditions 500 ––– ––– V VGS = 0V, ID = 250µA ––– 0.27 ––– V/°C Reference to 25°C, ID = 1mA ––– 0.190 0.235 Ω VGS = 10V, ID = 14A 3.0 ––– 5.0 V VDS = V GS, ID = 250µA ––– ––– 50 VDS = 500V, VGS = 0V µA ––– ––– 2 VDS = 400V, VGS = 0V, TJ = 125°C ––– ––– 100 VGS = 30V nA ––– ––– -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 12 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 26 94 53 45 3600 380 37 4800 100 220 Max. Units Conditions ––– S VDS = 50V, ID = 14A 150 ID = 23A 44 nC VDS = 400V 72 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 23A ns ––– RG = 6.0Ω ––– VGS = 10V,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V Avalanche Characteristics Symbol EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 410 23 37 mJ A mJ Typ. Max. Units ––– 0.24 ––– 0.34 ––– 40 °C/W Thermal Resistance Symbol RθJC RθCS RθJA Parameter Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11) Starting TJ = 25°C, L = 1.5mH, RG = 25Ω, IAS = 23A, dv/dt = 14V/ns (See Figure 12a) Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 23A, di/dt ≤ 430A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C 2 www.irf.com IRFP23N50L 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 10 1 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 0.1 4.5V 0.01 20µs PULSE WIDTH Tj = 25°C 10 1 4.5V 20µs PULSE WIDTH Tj = 150°C 0.001 0.1 0.1 1 10 100 1 10 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000.00 3.0 I D = 23A 2.5 T J = 25°C T J = 150°C 10.00 VDS = 15V 20µs PULSE WIDTH 1.00 1.0 6.0 11.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 16.0 2.0 (Normalized) 100.00 R DS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (Α ) 100 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 160 ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFP23N50L 100000 1000 Coss 100 V DS = 250V 10 VGS, Gate-to-Source Voltage (V) Ciss ID = 23 V DS = 400V Coss = Cds + Cgd 10000 C, Capacitance(pF) 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd V DS = 100V 7 5 2 Crss 10 0 1 10 100 0 1000 24 48 72 96 120 Q G, Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 100.00 OPERATION IN THIS AREA LIMITED BY R TJ = 150°C I D , Drain Current (A) ISD, Reverse Drain Current (A) DS(on) 100 10.00 T J = 25°C 1.00 100us 10 1ms VGS = 0V 0.10 1 0.0 0.5 1.0 1.5 VSD , Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 2.0 10us TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFP23N50L 25 RD VDS VGS 20 D.U.T. RG + ID , Drain Current (A) -VDD 10V 15 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 10 Fig 10a. Switching Time Test Circuit VDS 5 90% 0 25 50 75 100 TC , Case Temperature 125 150 ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJC) 10 1 Thermal Response D = 0.50 0.1 0.20 0.10 P DM 0.05 0.01 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 J t1/ t 2 = P DM x Z thJC +TC 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP23N50L 750 5.0 TOP 10A 15A EAS , Single Pulse Avalanche Energy (mJ) 600 BOTTOM 23A 450 300 150 VGS(th) Gate threshold Voltage (V) ID 4.5 4.0 ID = 250µA 3.5 3.0 2.5 2.0 1.5 1.0 0 25 50 75 100 125 150 -75 -50 -25 ( °C) Starting T , Junction Temperature J 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 12a. Maximum Avalanche Energy Vs. Drain Current Fig 14. Threshold Voltage Vs. Temperature 1 5V V (B R )D SS D R IV E R L VDS D .U .T RG + - VD D IA S 20V tp A 0 .0 1 Ω tp IAS Fig 12c. Unclamped Inductive Test Circuit Fig 12d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V .2µF VGS V .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 13a. Gate Charge Test Circuit 6 Charge Fig 13b. Basic Gate Charge Waveform www.irf.com IRFP23N50L Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFP23N50L TO-247AC Package Outline Dimensions are shown in millimeters (inches) -D- 3 .65 (.1 43 ) 3 .55 (.1 40 ) 15 .90 (.6 26 ) 15 .30 (.6 02 ) -B - 0.25 (.0 1 0) M D B M -A 5 .50 (. 217 ) 2 0 .3 0 (.80 0) 1 9 .7 0 (.77 5) 2X 1 2 5 .3 0 (.2 09 ) 4 .7 0 (.1 85 ) 2 .5 0 (.08 9) 1 .5 0 (.05 9) 4 NO TES : 5.5 0 (.2 17) 4.5 0 (.1 77) 1 D IME N SION ING & TO LE R AN CING P E R A NS I Y14.5M, 1982. 2 C ON TR OLLIN G D IME N SIO N : IN CH . 3 C ON F OR MS TO JED E C OU TLIN E T O-247-A C . 3 -C- 14 .8 0 (.5 83 ) 14 .2 0 (.5 59 ) 2 .40 (. 094 ) 2 .00 (. 079 ) 2X 5.45 (.21 5) 2X 4.3 0 (.1 70) 3.7 0 (.1 45) 0 .80 (.03 1) 3 X 0 .40 (.01 6) 1 .40 (.0 56 ) 3X 1 .00 (.0 39 ) 0 .2 5 (.0 10 ) M 3 .40 (.13 3) 3 .00 (.11 8) 2 .60 (.1 0 2) 2 .20 (.0 8 7) C A S LE AD A S SIG N MEN TS 1 2 3 4 - GA TE DR AIN SO UR C E DR AIN TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H" PART NUMBER INTERNATIONAL RECTIFIER LOGO IRFPE30 56 ASSEMBLY LOT CODE 035H 57 DATE CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/01 8 www.irf.com