SHARP LH168R

LH168R
384-output TFT-LCD Source Driver IC
LH168R
DESCRIPTION
PIN CONNECTIONS
The LH168R is a 384-output TFT-LCD source
driver IC which can simultaneously display 16.7
million colors in 256 gray scales.
TOP VIEW
464-PIN TCP
XO1 1
YO1 2
ZO1 3
FEATURES
• Number of LCD drive outputs : 384
• Built-in 8-bit digital input DAC
• Dot-inversion drive : Outputs the inverted gray
scale voltages between LCD drive pins next to
each other
• 2-port input for each circuit of data inputs R, G
and B, and it is possible to sample and hold
display data of two pixels at the same time
• Possible to display 16.7 million colors in 256 gray
scales with reference voltage input of 18 gray
scales : This reference voltage input corresponds
to ‹ correction and intermediate reference voltage
input can be abbreviated
• Cascade connection
• Sampling sequence :
Output shift direction can be selected
XO1, YO1, ZO1/XO128, YO128, ZO128 or
ZO128, YO128, XO128/ZO1, YO1, XO1
• Shift clock frequency : 65 MHz (MAX.)
• Supply voltages
– VCC (for logic system) : +2.5 to +3.6 V
– VLS (for LCD drive) : +13 V (MAX.)
• Package : 464-pin TCP (Tape Carrier Package)
464
463
462
461
GND
VLS
GND
XB7
454 XB0
453 XA7
CHIP SURFACE
446 XA0
445 YA7
438
437
436
435
434
433
432
431
430
429
428
427
426
425
424
423
422
421
420
419
418
417
416
415
414
413
412
YA0
SPOI
VH0
VH32
VH64
VH96
VH128
VH160
VH192
VH224
VH256
VL256
VL224
VL192
VL160
VL128
VL96
VL64
VL32
VL0
POLB
POLA
CK
SPIO
LS
REV
YB7
405 YB0
404 ZB7
397 ZB0
396 ZA7
389
388
387
386
385
ZA0
LBR
VCC
VLS
GND
XO128 382
YO128 383
ZO128 384
NOTE :
Doesn't prescribe TCP outline.
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in
catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
1
LH168R
PIN DESCRIPTION
PIN NO.
1 to 384
SYMBOL
XO1-ZO128
I/O
O
LCD drive output pins
DESCRIPTION
385, 462, 464
386
GND
VLS
–
Ground pins
–
Power supply pin for analog circuit
387
VCC
388
LBR
–
I
Power supply pin for digital circuit
Shift direction selection input pin
389 to 396
397 to 404
ZA0-ZA7
ZB0-ZB7
I
I
Data input pins
Data input pins
405 to 412
YB0-YB7
I
Data input pins
413
414
REV
LS
I
I
LCD drive output polarity exchange input pin
Latch input pin
415
416
SPIO
CK
I/O
I
Start pulse input/cascade output pin
Shift clock input pin
417, 418
POLA, POLB
I
Input data polarity exchange input pins
419 to 427
VL0-VL256
428 to 436
VH256-VH0
I
I
Reference voltage input pins
Reference voltage input pins
437
438 to 445
SPOI
I/O
YA0-YA7
I
Data input pins
446 to 453
XA0-XA7
I
Data input pins
454 to 461
463
XB0-XB7
VLS
I
–
Data input pins
Power supply pin for analog circuit
Start pulse input/cascade output pin
2
LH168R
BLOCK DIAGRAM
VCC GND
387
GND GND
385
462
464
LBR 388
SPOI 437
SHIFT REGISTER
CK 416
415 SPIO
POLA 417
PLOB 418
1 2
XA0 446 454
XB0
XA7 453 461
XB7
YA0 438 405
YB0
YA7 445 412
YB7
ZA0 389 397
ZB0
ZA7 396 404
ZB7
128
8x2
DATA
LATCH
8x2
SAMPLING MEMORY
8x2
8
8
8
LS 414
HOLD MEMORY
8
8
8
463 VLS
LEVEL SHIFTER
8
8
8
VH0 436
VH256 428
VL256 427
18
REFERENCE
VOLTAGE
GENERATION
CIRCUIT
256 x 2
DA CONVERTER
VL0 419
REV 413
OUTPUT CIRCUIT
1
2
3
XO1 YO1 ZO1
3
382 383 384
XO128 YO128 ZO128
386 VLS
LH168R
FUNCTIONAL OPERATIONS OF EACH BLOCK
BLOCK
Shift Register
FUNCTION
Used as a bi-directional shift register which performs the shifting operation by CK and
Data Latch
selects bits for data sampling.
Used to temporary latch the input data which is sent to the sampling memory.
Sampling Memory
Hold memory
Used to sample the data to be entered by time sharing.
Used for latch processing of data in the sampling memory by LS input.
Level Shifter
Used to shift the data in the hold memory to the power supply level of the analog circuit
unit and sends the shifted data to DA converter.
Reference Voltage
Generation Circuit
DA Converter
Output Circuit
Used to generate a gamma-corrected 256 x 2-level voltage by the resistor dividing circuit.
Used to generate an analog signal according to the display data and sends the signal to
the output circuit.
Used as a voltage follower, configured with an operational amplifier and an output buffer,
which outputs analog signals of 256 x 2 gray scales to LCD drive output pin.
INPUT/OUTPUT CIRCUITS
VCC
I
To Internal Circuit
GND
¿Applicable pins¡
CK, LS, REV, LBR,
XA0-XA7, XB0-XB7,
YA0-YA7, YB0-YB7,
ZA0-ZA7, ZB0-ZB7
Fig. 1 Input Circuit (1)
VCC
I
To Internal Circuit
GND
¿Applicable pins¡
POLA, POLB
GND
Fig. 2 Input Circuit (2)
4
LH168R
Pch Tr
I
VCC
Output Signal
O
Output Control Signal
Nch Tr
GND
VCC
To Internal Circuit
¿Applicable pins¡
SPIO, SPOI
GND
Fig. 3 Input/Output Circuit
VLS
Operational Amplifier
O
+
From Internal Circuit
¿Applicable pins¡
XO1-XO128,
YO1-YO128,
ZO1-ZO128
–
GND
Fig. 4 Output Circuit
5
LH168R
FUNCTIONAL DESCRIPTION
Pin Functions
SYMBOL
VCC
VLS
FUNCTION
Used as power supply pin for digital circuit, connected to +2.5 to +3.6 V.
GND
Used as power supply pin for analog circuit, connected to +8.0 to +13.0 V.
Used as ground pin, connected to 0 V.
SPIO
Used as input pins of start pulse and also used as output pins for cascade connection.
When "H" is input into start pulse input pin, data sampling is started. On completion of
SPOI
sampling, "H" pulse is output to output pin for cascade connection. Pin functions are
LBR
LS
CK
VH0-VH256
VL0-VL256
XA0-XA7, YA0-YA7
ZA0-ZA7, XB0-XB7
YB0-YB7, ZB0-ZB7
selected by LBR. For selecting , refer to "Functional Operations".
Used as input pin for selecting the shift register direction. For selecting, refer to
"Functional Operations".
Used as input pin for parallel transfer from sampling memory to hold memory. Data is
transferred at the rising edge and output from LCD drive output pin.
Used as shift clock input pin. Data is latched into sampling memory from data input pin at
the rising edge.
Used as reference voltage input pins. Hold the reference voltage fixed during the period of
LCD drive output. For relation between input data and output voltage values, refer to
"Output Voltage Value". For internal gamma correction, refer to "Gamma Correction
Value". Observe the following relation for input voltage.
VLS > VH0 ≥ VH32 ≥ π ≥ VH256 ≥ VL256 ≥ π ≥ VL32 ≥ VL0 > GND.
Used as data input pins of R, G, and B colors. 8-bit x 2-pixel data are input from data pins
at the rising edge of CK. For relation between input data and output voltage values, refer
to "Functional Operations" and "Output Voltage Value". Select the data to be entered
into X, Y, and Z according to picture element arrays of the panel.
Used as LCD drive output pins which output the voltage corresponding to the input of data
XO1-XO128
YO1-YO128
ZO1-ZO128
input pins (XA0 to XA7, YA0 to YA7, ZA0 to ZA7, XB0 to XB7, YB0 to YB7, ZB0 to ZB7).
Data of XO1 to XO128 correspond to XA0 to XA7 and XB0 to XB7. Data of YO1 to YO128
correspond to YA0 to YA7 and YB0 to YB7, and data of ZO1 to ZO128 correspond to ZA0 to
ZA7 and ZB0 to ZB7. For relation between input data and output voltage values, refer to
"Functional Operations" and "Output Voltage Value".
POLA
POLB
Used as input pins for input data polarity exchange, POLA corresponds to XA0 to XA7, YA0
to YA7 and ZA0 to ZA7, and POLB corresponds to XB0 to XB7, YB0 to YB7 and ZB0 to ZB7.
When "L" is entered, display data becomes normal mode. When "H" is entered, input data
becomes polarity exchange mode. For relation between input data and output voltage
values, refer to "Output Voltage Value". These pins are pulled down at the inside.
REV
Used as polarity exchange pin of LCD drive output. Date is taken at the term when LS is
"H" and the output polarity of the LCD drive output pin is determined. For exchanging, refer
to "Output Characteristics".
6
LH168R
Functional Operations
The following describes the relation between data
input pin and output direction.
Data input pin XA0-XA7 YA0-YA7 ZA0-ZA7 XB0-XB7 YB0-YB7 ZB0-ZB7
Output
XO1
YO1
ZO1
XO2
YO2
ZO2
direction
πππ
πππ
XB0-XB7 YB0-YB7 ZB0-ZB7
XO128
YO128
ZO128
The following describes the relation between LBR
pin, SPOI pin, SPIO pin and output direction.
OUTPUT DIRECTION
RIGHT SHIFT (XO1, YO1, ZO1/XO128, YO128, ZO128) LEFT SHIFT (ZO128, YO128, XO128/ZO1, YO1, XO1)
H
L
Input
Output
Output
Input
PIN
LBR
SPOI
SPIO
NOTE :
Color data corresponding to X, Y, and Z vary depending on the output direction.
Output Characteristics
The following describes the relation between REV
pin and output polarity of LCD drive pin.
REV
XO1
"H"
+
"L"
–
YO1
–
+
+
–
YO2
–
+
+
–
ZO2
–
+
XO3
YO3
+
–
–
+
:
XO126
:
:
–
+
+
–
–
+
XO127
+
–
YO127
–
+
+
–
YO128
–
+
+
–
ZO128
–
+
ZO1
XO2
YO126
ZO126
ZO127
XO128
NOTES :
+ : The gray scale voltages corresponding to reference voltage VH0 to VH256 are output.
– : The gray scale voltages corresponding to reference voltage VL0 to VL256 are output.
7
LH168R
Output Voltage Value
Two voltages are selected from all of the reference
voltages (V0-V256) by the upper 3-bit data (D7, D6
and D5) of the 8-bit input data (D7, D6, D5, D4, D3,
D2, D1 and D0) taken by time sharing, and
intermediate value is determined by the lower 5-bit
data (D4, D3, D2, D1 and D0).
INPUT
The Vi is a reference voltage (VHi or VLi) that is
determined by the polarity exchange input (REV).
Relation between input data and output voltage
values is shown below.
(i = 0, 32, 64, 96, 128, 160, 192, 224, 256)
OUTPUT VOLTAGE
DATA
0
POLA (POLB) = "L"
V0
POLA (POLB) = "H"
V256 + (V224 – V256) x (0.99 – 0.99 x 6.61/8.96)/2.13
1
V32 + (V0 – V32) x 31/32
V32 + (V0 – V32) x 30/32
V256 + (V224 – V256) x (0.99 – 0.99 x 5.74/8.96)/2.13
V256 + (V224 – V256) x (0.99 – 0.99 x 4.87/8.96)/2.13
V32 + (V0 – V32) x 29/32
V32 + (V0 – V32) x 28/32
V256 + (V224 – V256) x (0.99 – 0.99 x 4/8.96)/2.13
V256 + (V224 – V256) x (0.99 – 0.99 x 3/8.96)/2.13
6
V32 + (V0 – V32) x 27/32
V32 + (V0 – V32) x 26/32
V256 + (V224 – V256) x (0.99 – 0.99 x 2/8.96)/2.13
V256 + (V224 – V256) x (0.99 – 0.99 x 1/8.96)/2.13
7
V32 + (V0 – V32) x 25/32
V256 + (V224 – V256) x (1.44 – 0.45 x 8/8)/2.13
8
V32 + (V0 – V32) x 24/32
V32 + (V0 – V32) x 23/32
V256 + (V224 – V256) x (1.44 – 0.45 x 7/8)/2.13
V256 + (V224 – V256) x (1.44 – 0.45 x 5/8)/2.13
B
V32 + (V0 – V32) x 22/32
V32 + (V0 – V32) x 21/32
C
V32 + (V0 – V32) x 20/32
V256 + (V224 – V256) x (1.44 – 0.45 x 3/8)/2.13
D
V32 + (V0 – V32) x 19/32
V32 + (V0 – V32) x 18/32
V256 + (V224 – V256) x (1.44 – 0.45 x 2/8)/2.13
V256 + (V224 – V256) x (1.44 – 0.45 x 1/8)/2.13
10
V32 + (V0 – V32) x 17/32
V32 + (V0 – V32) x 16/32
V256 + (V224 – V256) x (1.8 – 0.36 x 8/8)/2.13
V256 + (V224 – V256) x (1.8 – 0.36 x 7/8)/2.13
11
V32 + (V0 – V32) x 15/32
V256 + (V224 – V256) x (1.8 – 0.36 x 6/8)/2.13
12
V32 + (V0 – V32) x 14/32
V32 + (V0 – V32) x 13/32
V256 + (V224 – V256) x (1.8 – 0.36 x 5/8)/2.13
V256 + (V224 – V256) x (1.8 – 0.36 x 4/8)/2.13
15
V32 + (V0 – V32) x 12/32
V32 + (V0 – V32) x 11/32
V256 + (V224 – V256) x (1.8 – 0.36 x 3/8)/2.13
V256 + (V224 – V256) x (1.8 – 0.36 x 2/8)/2.13
16
V32 + (V0 – V32) x 10/32
V256 + (V224 – V256) x (1.8 – 0.36 x 1/8)/2.13
17
V32 + (V0 – V32) x 9/32
V32 + (V0 – V32) x 8/32
V256 + (V224 – V256) x (2.13 – 0.33 x 8/8)/2.13
V32 + (V0 – V32) x 7/32
V32 + (V0 – V32) x 6/32
V256 + (V224 – V256) x (2.13 – 0.33 x 6/8)/2.13
V256 + (V224 – V256) x (2.13 – 0.33 x 5/8)/2.13
V32 + (V0 – V32) x 5/32
V32 + (V0 – V32) x 4/32
V256 + (V224 – V256) x (2.13 – 0.33 x 4/8)/2.13
V256 + (V224 – V256) x (2.13 – 0.33 x 3/8)/2.13
1D
V32 + (V0 – V32) x 3/32
V256 + (V224 – V256) x (2.13 – 0.33 x 2/8)/2.13
1E
V32 + (V0 – V32) x 2/32
V32 + (V0 – V32) x 1/32
V256 + (V224 – V256) x (2.13 – 0.33 x 1/8)/2.13
V224
2
3
4
5
9
A
E
F
13
14
18
19
1A
1B
1C
1F
V256 + (V224 – V256) x (1.44 – 0.45 x 6/8)/2.13
V256 + (V224 – V256) x (1.44 – 0.45 x 4/8)/2.13
V256 + (V224 – V256) x (2.13 – 0.33 x 7/8)/2.13
8
LH168R
INPUT
OUTPUT VOLTAGE
DATA
20
POLA (POLB) = "L"
V32
POLA (POLB) = "H"
V224 + (V192 – V224) x 1/32
21
V64 + (V32 – V64) x 31/32
V64 + (V32 – V64) x 30/32
V224 + (V192 – V224) x 2/32
22
:
3D
V224 + (V192 – V224) x 3/32
:
:
V64 + (V32 – V64) x 3/32
V224 + (V192 – V224) x 30/32
V64 + (V32 – V64) x 2/32
V64 + (V32 – V64) x 1/32
V224 + (V192 – V224) x 31/32
V192
40
V64
V192 + (V160 – V192) x 1/32
41
42
V96 + (V64 – V96) x 31/32
V96 + (V64 – V96) x 30/32
V192 + (V160 – V192) x 2/32
V192 + (V160 – V192) x 3/32
:
5D
:
V96 + (V64 – V96) x 3/32
V192 + (V160 – V192) x 30/32
5E
V96 + (V64 – V96) x 2/32
V192 + (V160 – V192) x 31/32
5F
V96 + (V64 – V96) x 1/32
V96
V160
V160 + (V128 – V160) x 1/32
V128 + (V96 – V128) x 31/32
V128 + (V96 – V128) x 30/32
V160 + (V128 – V160) x 2/32
V160 + (V128 – V160) x 3/32
3E
3F
60
61
62
:
:
:
:
7D
V128 + (V96 – V128) x 3/32
V128 + (V96 – V128) x 2/32
V160 + (V128 – V160) x 30/32
V160 + (V128 – V160) x 31/32
80
V128 + (V96 – V128) x 1/32
V128
V128
V128 + (V96 – V128) x 1/32
81
V160 + (V128 – V160) x 31/32
V128 + (V96 – V128) x 2/32
82
V160 + (V128 – V160) x 30/32
:
V128 + (V96 – V128) x 3/32
:
V160 + (V128 – V160) x 3/32
V160 + (V128 – V160) x 2/32
V128 + (V96 – V128) x 30/32
V128 + (V96 – V128) x 31/32
7E
7F
:
9D
9E
9F
A0
V160 + (V128 – V160) x 1/32
V160
V96
A1
V192 + (V160 – V192) x 31/32
V96 + (V64 – V96) x 2/32
A2
V192 + (V160 – V192) x 30/32
:
V96 + (V64 – V96) x 3/32
:
BE
V192 + (V160 – V192) x 3/32
V192 + (V160 – V192) x 2/32
V96 + (V64 – V96) x 30/32
V96 + (V64 – V96) x 31/32
BF
V192 + (V160 – V192) x 1/32
C0
C1
V192
+ (V192 – V224) x 31/32
V64 + (V32 – V64) x 1/32
V64 + (V32 – V64) x 2/32
:
V224 + (V192 – V224) x 30/32
:
V64 + (V32 – V64) x 3/32
:
DD
V224 + (V192 – V224) x 3/32
V64 + (V32 – V64) x 30/32
DE
V224 + (V192 – V224) x 2/32
V224 + (V192 – V224) x 1/32
V64 + (V32 – V64) x 31/32
V32
:
BD
C2
DF
V224
V96
+ (V64 – V96) x 1/32
V64
9
LH168R
INPUT
OUTPUT VOLTAGE
DATA
E0
POLA (POLB) = "L"
V224
POLA (POLB) = "H"
V32 + (V0 – V32) x 1/32
E1
V256 + (V224 – V256) x (2.13 – 0.33 x 1/8)/2.13
V256 + (V224 – V256) x (2.13 – 0.33 x 2/8)/2.13
V32 + (V0 – V32) x 2/32
V256 + (V224 – V256) x (2.13 – 0.33 x 3/8)/2.13
V256 + (V224 – V256) x (2.13 – 0.33 x 4/8)/2.13
V32 + (V0 – V32) x 4/32
E6
V256 + (V224 – V256) x (2.13 – 0.33 x 5/8)/2.13
V256 + (V224 – V256) x (2.13 – 0.33 x 6/8)/2.13
V32 + (V0 – V32) x 6/32
V32 + (V0 – V32) x 7/32
E7
V256 + (V224 – V256) x (2.13 – 0.33 x 7/8)/2.13
V32 + (V0 – V32) x 8/32
E8
V256 + (V224 – V256) x (2.13 – 0.33 x 8/8)/2.13
V256 + (V224 – V256) x (1.8 – 0.36 x 1/8)/2.13
V32 + (V0 – V32) x 9/32
V32 + (V0 – V32) x 10/32
EB
V256 + (V224 – V256) x (1.8 – 0.36 x 2/8)/2.13
V256 + (V224 – V256) x (1.8 – 0.36 x 3/8)/2.13
V32 + (V0 – V32) x 11/32
V32 + (V0 – V32) x 12/32
EC
V256 + (V224 – V256) x (1.8 – 0.36 x 4/8)/2.13
V32 + (V0 – V32) x 13/32
ED
V256 + (V224 – V256) x (1.8 – 0.36 x 5/8)/2.13
V256 + (V224 – V256) x (1.8 – 0.36 x 6/8)/2.13
V32 + (V0 – V32) x 14/32
V32 + (V0 – V32) x 15/32
F0
V256 + (V224 – V256) x (1.8 – 0.36 x 7/8)/2.13
V256 + (V224 – V256) x (1.8 – 0.36 x 8/8)/2.13
V32 + (V0 – V32) x 16/32
V32 + (V0 – V32) x 17/32
F1
V256 + (V224 – V256) x (1.44 – 0.45 x 1/8)/2.13
V32 + (V0 – V32) x 18/32
F2
V256 + (V224 – V256) x (1.44 – 0.45 x 2/8)/2.13
V256 + (V224 – V256) x (1.44 – 0.45 x 3/8)/2.13
V32 + (V0 – V32) x 19/32
V32 + (V0 – V32) x 20/32
F5
V256 + (V224 – V256) x (1.44 – 0.45 x 4/8)/2.13
V256 + (V224 – V256) x (1.44 – 0.45 x 5/8)/2.13
V32 + (V0 – V32) x 21/32
V32 + (V0 – V32) x 22/32
F6
V256 + (V224 – V256) x (1.44 – 0.45 x 6/8)/2.13
V32 + (V0 – V32) x 23/32
F7
V256 + (V224 – V256) x (1.44 – 0.45 x 7/8)/2.13
V256 + (V224 – V256) x (1.44 – 0.45 x 8/8)/2.13
V32 + (V0 – V32) x 24/32
V32 + (V0 – V32) x 25/32
V256 + (V224 – V256) x (0.99 – 0.99 x 1/8.96)/2.13
V256 + (V224 – V256) x (0.99 – 0.99 x 2/8.96)/2.13
V32 + (V0 – V32) x 26/32
V32 + (V0 – V32) x 27/32
V256 + (V224 – V256) x (0.99 – 0.99 x 3/8.96)/2.13
V256 + (V224 – V256) x (0.99 – 0.99 x 4/8.96)/2.13
V32 + (V0 – V32) x 28/32
V32 + (V0 – V32) x 29/32
FD
V256 + (V224 – V256) x (0.99 – 0.99 x 4.87/8.96)/2.13
V32 + (V0 – V32) x 30/32
FE
V256 + (V224 – V256) x (0.99 – 0.99 x 5.74/8.96)/2.13
V256 + (V224 – V256) x (0.99 – 0.99 x 6.61/8.96)/2.13
V32 + (V0 – V32) x 31/32
V0
E2
E3
E4
E5
E9
EA
EE
EF
F3
F4
F8
F9
FA
FB
FC
FF
10
V32 + (V0 – V32) x 3/32
V32 + (V0 – V32) x 5/32
LH168R
‹ (Gamma) Correction Value
Between reference voltage input pins VH0 and
VH256, 256 resistors are connected in series. And
between reference voltage input pins VL0 and
VL256, 256 resistors are connected in series. No
resistor is connected between reference voltage
input pins VH256 and VL256.
The ‹ correction curve is a broken line connected
between intermediate voltage inputs (VH32, VH64,
VH96, VH128, VH160, VH192, VH224, VL32, VL64,
VL96, VL128, VL160, VL192 and VL224). Each ‹
correction value between the intermediate voltage
inputs is divided into 32 parts by resistor.
LH168R
External Reference Voltage
VH0
VH32
R0
32 equal parts
VH64
R1
32 equal parts
VH96
R2
32 equal parts
VH128
R3
32 equal parts
VH160
R4
32 equal parts
VH192
R5
32 equal parts
VH224
R6
32 equal parts
R70
8 equal parts
R71
8 equal parts
R72
8 equal parts
R73
8 parts
R83
8 parts
R82
8 equal parts
R81
8 equal parts
VL224
R80
8 equal parts
VL192
R9
32 equal parts
VL160
R10
32 equal parts
VL128
R11
32 equal parts
VL96
R12
32 equal parts
VL64
R13
32 equal parts
VL32
R14
32 equal parts
VL0
R15
32 equal parts
VH256
VL256
11
LH168R
The following shows the ratio of ‹ correction resistance, when R0 equals 1.
R0
1.00
R83
0.99
R1
R2
0.60
0.49
R82
0.45
0.36
R3
R80
R4
0.52
0.60
R9
0.33
1.00
R5
R6
0.74
1.00
R10
R11
0.74
0.60
R70
0.33
R12
0.52
R71
R13
R72
0.36
0.45
R14
0.49
0.60
R73
0.99
R15
1.00
R81
The following shows the ratio of ‹ correction resistance of R73 and R83, when R730 equals 1.
R73
R730
R731
1.00
1.00
R837 (VL256 side)
R836
2.35
0.87
R732
R733
1.00
1.00
R835
R834
0.87
0.87
R734
0.87
R833
1.00
R735
R736
0.87
0.87
R832
R831
1.00
1.00
R737 (VH256 side)
2.35
R830
1.00
R83
PRECAUTIONS
Reference voltage input
The relation of the reference voltage input is shown
here.
Precautions when connecting or disconnecting
the power supply
This IC has some power supply pins, so it may be
permanently damaged by a high current which may
flow if voltage is supplied to the LCD drive power
supply while the logic system power supply is
floating. Therefore, when connecting the power
supply, observe the following sequence.
VLS > VH0 ≥ VH32 ≥ π ≥ VH224 ≥ VH256 ≥ 0.5VLS
≥ VL256 ≥ VL224 ≥ π ≥ VL32 ≥ VL0 > GND
Maximum ratings
When connecting or disconnecting the power
supply, this IC must be used within the range of the
absolute maximum ratings.
VCC / logic input / VLS, VH0-VH256, VL0-VL256
When disconnecting the power supply, follow the
reverse sequence.
Target output load
This IC is designed for a 200 pF output load
capacity. When using this IC for other than 200 pF
panels, confirm the device is having no problem
before using it.
12
LH168R
ABSOLUTE MAXIMUM RATINGS
PARAMETER
Supply voltage
SYMBOL
VCC
APPLICABLE PINS
VCC
RATING
–0.3 to +6.0
UNIT
V
VLS
VLS
–0.3 to +14.0
V
VH0-VL0
–0.3 to VLS + 0.3
V
–0.3 to VCC + 0.3
V
VI
Input voltage
VI
SPIO, SPOI, CK, LS, REV,
LBR, POLA, POLB, XA0-XA7,
XB0-XB7, YA0-YA7, YB0-YB7,
ZA0-ZA7, ZB0-ZB7
Output voltage
Storage temperature
VO
SPIO, SPOI
–0.3 to VCC + 0.3
V
VO
XO1-ZO128
–0.3 to VLS + 0.3
–45 to +125
V
˚C
TSTG
NOTES :
1. TA = +25 ˚C
2. The maximum applicable voltage on any pin with respect to GND (0 V).
RECOMMENDED OPERATING CONDITIONS
PARAMETER
Supply voltage
Reference voltage input
SYMBOL
VCC
MIN.
+2.5
VLS
+8.0
TYP.
VH0-VH256 0.5VCC
VL0-VL256 +0.2
MAX.
+3.6
UNIT
V
+13.0
V
VLS – 0.2
0.5VCC
V
V
Clock frequency
fCK
65
MHz
LCD drive output load capacity
CL
200
pF
+75
˚C
Operating temperature
TOPR
–20
NOTE :
1. The applicable voltage on any pin with respect to GND (0 V).
13
NOTE
1
NOTE
1, 2
LH168R
ELECTRICAL CHARACTERISTICS
DC Characteristics
PARAMETER
(VCC = +2.5 to +3.6 V, VLS = +8.0 to +13.0 V, TOPR = –20 to +75 ˚C)
SYMBOL CONDITIONS
Input "Low" voltage
VIL
Input "High" voltage
VIH
Output "Low" voltage
VOL
IOL = 0.3 mA
Output "H" voltage
VOH
IOH = –0.3 mA
Input "Low" current
APPLICABLE PINS
XA0-XA7, YA0-YA7, ZA0-ZA7,
MAX.
UNIT.
GND
0.3VCC
V
0.7VCC
VCC
V
GND
GND + 0.4
V
VCC – 0.4
VCC
V
10
µA
10
µA
POLA, POLB
400
µA
VCC-GND
14
mA
VCC-GND
1.5
mA
VLS-GND
5
mA
VLS-GND
4
mA
GND + 0.2
VLS – 0.2
V
–10
+10
mV
XB0-XB7, YB0-YB7, ZB0-ZB7,
SPIO, SPOI, CK, LS, LBR,
REV, POLA, POLB
SPIO, SPOI
MIN.
TYP.
XA0-XA7, YA0-YA7, ZA0-ZA7,
XB0-XB7, YB0-YB7, ZB0-ZB7,
IILL1
SPIO, SPOI, CK, LS, LBR,
REV, POLA, POLB
NOTE
XA0-XA7, YA0-YA7, ZA0-ZA7,
Input "High" current
XB0-XB7, YB0-YB7, ZB0-ZB7,
IILH1
SPIO, SPOI, CK, LS, LBR,
REV
IILH2
Supply current
(In operation mode)
Supply current
(In standby mode)
Supply current
(In operation mode)
Supply current
(In standby mode)
fCK = 65 MHz
ICC1
ICC2
fLS = 50 kHz
(Data sampling state)
fCK = 65 MHz
fLS = 50 kHz
SPI = GND is fixed.
(Standby state)
fCK = 65 MHz
ILS1
ILS2
fLS = 50 kHz
(Data sampling state)
fCK = 65 MHz
fLS = 50 kHz
SPI = GND is fixed.
(Standby state)
Output voltage range
VOUT
Deviations between
output voltage pins
VOD
Output current
IO1-IO4
Resistance between
reference voltage input pins
RGMAH
RGMAL
XO1-ZO128
VH0-VH256
VL0-VL256
14
200
µA
20
20
k$
k$
1
2
LH168R
NOTES :
1. Criterion of evaluating voltage deviations.
(a) Between output voltage pins
Measuring values : Output voltage value at the time after
10 µs at the rising edge of LS.
(Average of several times)
(Conditions) Output load capacity is 200 pF.
In a state when the reference voltage is fixed.
Expecting values : Calculated following these specifications.
(Conditions) In a state when the reference voltage is fixed.
(b) Between LCD drivers
Measuring values : Applicable to (a).
(Conditions) Applicable to (a).
Expecting values : Applicable to (a).
(Conditions) Applicable to (a).
Each input voltage between the LCD drivers must be
made perfectly equal by connecting corresponding
reference voltage input pins.
2. IO1 : Applied voltage = 8.0 V for output pins XO1 to ZO128.
Output voltage = 7.5 V for output pins XO1 to ZO128.
VLS = 10.0 V
IO2 : Applied voltage = 7.0 V for output pins XO1 to ZO128.
Output voltage = 7.5 V for output pins XO1 to ZO128.
VLS = 10.0 V
IO3 : Applied voltage = 3.0 V for output pins XO1 to ZO128.
Output voltage = 2.5 V for output pins XO1 to ZO128.
VLS = 10.0 V
IO4 : Applied voltage = 2.0 V for output pins XO1 to ZO128.
Output voltage = 2.5 V for output pins XO1 to ZO128.
VLS = 10.0 V
15
LH168R
AC Characteristics
PARAMETER
Clock frequency
"H" level pulse width
"L" level pulse width
(VCC = +2.5 to +2.7 V, VLS = +8.0 to +13.0 V, TOPR = –20 to +75 ˚C)
SYMBOL CONDITIONS
fCK
tCR
Input fall time
tCF
CK
Data setup time
tSUD
XA0-XA7, YA0-YA7, ZA0-ZA7,
XB0-XB7, YB0-YB7, ZB0-ZB7,
Data hold time
tHD
POLA, POLB
Start pulse setup time
tSUSP
Start pulse hold time
tHSP
Start pulse width
tWSP
Start pulse output
delay time
LCD drive output
delay time 1
LCD drive output
delay time 2
CL = 15 pF
tDO1
CL = 200 pF
tDO2
LS signal-CK signal
hold time
tHLS
setup time
REV signal-LS signal
hold time
MAX.
40
UNIT
MHz
ns
ns
10
ns
10
ns
6
ns
6
ns
6
6
ns
ns
1
-------fCK
ns
19
ns
3
µs
10
µs
XO1-ZO128
tLSSP
width
REV signal-LS signal
TYP.
8
SPIO, SPOI
tDSP
LS signal-SPI signal
setup time
LS signal "H" level
MIN.
8
tCWH
tCWL
Input rise time
APPLICABLE PINS
CL = 200 pF
1
-------fCK
ns
7
ns
tWLS
1
-------fCK
ns
tSURV
14
ns
10
ns
LS
REV
tHRV
16
LH168R
(VCC = +2.7 to +3.6 V, VLS = +8.0 to +13.0 V, TOPR = –20 to +75 ˚C)
PARAMETER
Clock frequency
"H" level pulse width
"L" level pulse width
SYMBOL CONDITIONS
fCK
tCR
Input fall time
tCF
CK
Data setup time
tSUD
XA0-XA7, YA0-YA7, ZA0-ZA7,
XB0-XB7, YB0-YB7, ZB0-ZB7,
Data hold time
tHD
POLA, POLB
Start pulse setup time
tSUSP
Start pulse hold time
tHSP
Start pulse width
tWSP
Start pulse output
delay time
LCD drive output
delay time 1
LCD drive output
delay time 2
CL = 15 pF
tDO1
CL = 200 pF
tDO2
LS signal-CK signal
hold time
tHLS
setup time
REV signal-LS signal
hold time
MAX.
65
UNIT
MHz
ns
ns
10
ns
10
ns
4
ns
1
ns
3
2
ns
ns
1
-------fCK
ns
11
ns
3
µs
10
µs
XO1-ZO128
tLSSP
width
REV signal-LS signal
TYP.
4
SPIO, SPOI
tDSP
LS signal-SPI signal
setup time
LS signal "H" level
MIN.
4
tCWH
tCWL
Input rise time
APPLICABLE PINS
CL = 200 pF
1
-------fCK
ns
7
ns
tWLS
1
-------fCK
ns
tSURV
14
ns
10
ns
LS
REV
tHRV
17
LH168R
Timing Chart
1
fCK
tcWH
tcWL
1
CK
tSUSP
tHSP
tCR
2
tCF
SPIO Input
(SPOI)
CK
tSUD
tWSP
XA0-XA7
YA0-YA7
ZA0-ZA7
XB0-XB7
YB0-YB7
ZB0-ZB7
POLA
POLB
tHD
1
LAST – 1
2
LAST
tDSP
SPIO Output
(SPOI)
tHLS
tWLS
LS
tLSSP
SPIO Input
(SPOI)
tSURV
tHRV
REV
tDO1
Target voltage ±(VLS x 0.1)
XO1-ZO128
Target voltage (8-bit accuracy)
tDO2
18
0.5 (SL)
0.8 (SL)
4.6 (SL)
8.0 (SL)
4.6 (SL)
25.0±0.05 (Holes)
21.4±0.05 (Holes)
12.7 (SL)
ZO128
8.0 (SL)
13.6±0.2 (SR)
13.5 (SL)
20.4MAX.(Resin area)
P0.065 x (400 – 1) – 0.028 = 25.907±0.035 W0.033±0.015
26.6 (SL)
13.35 (SR)
13.35 (SR)
[27.6 (E.L.)]
28.0
XO1
12.7 (SL)
1.5 (SL)
34.975
31.82
[27.6 (E.L.)]
P0.35 x (77 – 1) = 26.6±0.04 W0.15±0.02
10.5±0.5
4.0 (SL)
(SR)
13.6
13.5 (SL)
0.6 (SL)
±0.2
6.32±0.2 (SR)
7.32 (SL)
[8.32(E.L.)]
[14.5 (E.L.)]
9.32(SL)
9.62±0.5
2.88 (SL)
3.98±0.2 (SR)
5.08±0.05
[6.18 (E.L.)]
UPILEX is a trademark of UBE INDUSTRIES, LTD..
19
ZO1
YO1
XO1
DUMMY
DUMMY
DUMMY
VCOM
VCOM
VCOM
R21
R20
2.9(SL)
1.7(SL)
4.6(SL)
3.5±0.05 (Holes)
4.1±0.05 (Holes)
0.6 (SL)
[2.2TYP.(2.0MIN.)]
0.75
[1.1]
[1.225]
[1.65]
[2.2TYP.(2.0MIN.)]
35 mm
Super wide
4 pitches
Substrate
Adhesive
Cu foil [thickness]
Solder resist
1.0MAX.
Total
0.75MAX.
Backside
1.42±0.05
UPILEX S75
#7100
FQ-VLP 15 µm
Poly urethane SSF
ø Tape Material
0.2
Pattern side
MAX.
Chip center
Sprocket center
0.6(MAX.)
(Backside PI coating)
2-R0.6 (SR)
2-Ø0.6 (Cu hole)
2-Ø1.0 (PI)
2-R0.8 (Cu)
PACKAGE
Tape width
Tape type
Perforation pitch
5.8MAX.
(Resin area)
R10
R11
VCOM
VCOM
VCOM
DUMMY
DUMMY
DUMMY
ZO128
YO128
XO128
ø Tape Specification
1.5 (SL)
0.6 (SL)
2-Ø0.9 (Cu)
2-Ø0.6 (PI)
1.0
0.05
[0.45]
Device center
1.42±0.05
4.75±0.05
[0.1]
Film center
R10
R11
VCOM
GND
VLS
VCC
LBR
ZA0
ZA1
ZA2
ZA3
ZA4
ZA5
ZA6
ZA7
ZB0
ZB1
ZB2
ZB3
ZB4
ZB5
ZB6
ZB7
YB0
YB1
YB2
YB3
YB4
YB5
YB6
YB7
REV
LS
SPIO
CK
VL0
VL64
VL128
VL192
VL256
VH256
VH192
VH128
VH64
VH0
SPOI
YA0
YA1
YA2
YA3
YA4
YA5
YA6
YA7
XA0
XA1
XA2
XA3
XA4
XA5
XA6
XA7
XB0
XB1
XB2
XB3
XB4
XB5
XB6
XB7
DUMMY
GND
VLS
GND
VCOM
R21
R20
Ø1.0
(Good device hole)
LH168R01
PACKAGES FOR LCD DRIVERS
(Unit : mm)
0.4±0.2
(Backside PI coating)
0.6(MAX.)
(Backside PI coating)
0.05
0.1±0.02
[0.3]