SITRONIX ST8012

ST
ST8012
Dot Matrix Lcd
120 Output LCD Common/Segment driver IC
Notice: Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.
specification. Some parameters are subject to change.
This is not a final
Low-power liquid crystal display power supply circuit
1. DESCRIPTION
equipped internally.
The ST8012 is a 120-output segment/common driver
IC suitable for driving small/medium scale dot matrix
Booster circuit (with Boost ratio of 2X/3X/4X/5X/6X)
Abundant command functions
LCD panels, and is used in PDA or electronic dictionary.
LCD bias set, electronic volume, VSS voltage
The ST8012 is good as a segment driver or a common
regulation internal resistor ratio and booster
driver or a common/segment driver, and it can create a
frequency.
low power consuming, high-resolution LCD. The
All Functions have initial value, user can use the
ST8012 have eight modes can selected to set common
default value or setting by programmable pin to set.
and segment numbers by select pin.
The ST8012
also have analog DC/DC converter to use.
If select segment mode then except booster circuit
will opened others circuit (follower and regulator
circuit) will automatic closed.
2. FEATURES
When don’t used the serial interface, we can select
Number of LCD drive outputs: 120
one of default modes by serial interface pins please
Supply voltage for LCD drive: Max +16V
see Table5.
Supply voltage for the logic system: +2.5 to +5.5 V
Package: 154-pin COB.
Low power consumption and low output impedance
SEL2,SEL1,SEL0 DUTY
0
0
0
--0
0
1
1/32
0
1
0
1/48
0
1
1
1/64
1
0
0
1/80
1
0
1
1/96
1
1
0
1/112
1
1
1
1/120
BIAS
Segment mode
1/6 or 1/5
1/7 or 1/5
1/9 or 1/7
1/9 or 1/7
1/10 or 1/8
1/11 or 1/9
1/11 or 1/9
(Segment mode)
Displa
Shift clock frequency
y duty
- 20 MHz (MAX.): VDD = +5.0 ± 0.5 V
select
- 15 MHz (MAX.): VDD = +3.0 to + 4.5 V
able
- 12 MHz (MAX.): VDD = +2.5 to + 3.0 V
by
Adopts a data bus system
select
4-bit parallel / serial input modes are selectable with a
pin
mode (P/S) pin
Automatic transfer function of an enable signal
Automatic counting function which, in the chip
selection mode, causes the internal clock to be
stopped by automatically counting 88、72、56 、40、
24、8 or 120 bits of input data
Line latch circuits are reset when XDISPOFF active
(Common mode)
Shift clock frequency: 4 MHz (MAX.)
V1.6
1/ 47
2004/09/08
ST8012
Built-in X-bit shift register
Available in a single mode
Y1->YX Single mode
YX->Y1 Single mode
PS:X=32、48、64、80、96、112、120
The above 4 shift directions are pin-selectable
Shift register circuits are reset when XDISPOFF
active
V1.6
2/ 47
2004/09/08
ST8012
3.
PIN DESCRIPTION
SYMBOL
I/O
COMSEG0-COMSEG119
O
LCD drive output
V0~V4
P
Power supply for LCD drive
5
L/R
I
Display data shift direction selection
1
VDD
P
Power supply for logic system (+2.5 to +5.5 V)
1
EIO2, EIO1
I/O
DI0-DI3
I
Display data input at segment mode
4
XCK
I
Clock input for taking display data at segment mode
1
XDISPOFF
I
Control input for output of non-select level
1
I
Latch pulse input for display data at segment mode/
LP
FR
XRST
DESCRIPTION
No of Num
120
Input/output for chip selection at segment mode and FLM input output
function at com/seg mix mode or common mode
Shift clock input for shift register at common mode
I
AC-converting signal input for LCD drive waveform
I
System Reset pin .When low level active.
The XRST L PULSE timing min value is 200us and max value is 0.5s
2
1
1
1
This is the parallel data input/serial data input switch terminal.
P/S
I
P/S=”H”: Parallel data input.
1
P/S=”L”: Serial data input.
V1.6
VSS
P
CAP1-
O
CAP1+
O
CAP2-
O
CAP2+
O
CAP3+
O
CAP4+
O
CAP5+
O
VOUT
O
XCS
I
Ground (0 V)
1
DC/DC voltage converter. Connect a capacitor between this terminal
and the CAP2- terminal.
DC/DC voltage converter. Connect a capacitor between this terminal
and the CAP1- terminal.
DC/DC voltage converter. Connect a capacitor between this terminal
and the CAP2- terminal.
DC/DC voltage converter. Connect a capacitor between this terminal
and the CAP2- terminal.
DC/DC voltage converter. Connect a capacitor between this terminal
and the CAP1- terminal.
DC/DC voltage converter. Connect a capacitor between this terminal
and the CAP2- terminal.
DC/DC voltage converter. Connect a capacitor between this terminal
and the CAP1- terminal.
DC/DC voltage converter. Connect a capacitor between this terminal
and VSS.
This is the command mode select pin.
When XCS=”L” then write command to the LCD. See Figure1
3/ 47
1
1
1
1
1
1
1
1
1
2004/09/08
ST8012
Don’t toggle SCLK or SID from low level while XCS signal is HIGHT
SID
I
The command data. See Figure1
1
SCLK
I
The serial clock input. See Figure1
1
These pin are Duty selection.
SEL2,SEL1,SEL0 SEL 3, 2, 1
SEL2~SEL0
V1.6
I
DUTY
BIAS
0
0
0
0, 0, 0
---
Segment mode
0
0
1
0, 0, 1
1/32
1/6 or 1/5
0
1
0
0, 1, 0
1/48
1/7 or 1/5
0
1
1
0, 1, 1
1/64
1/9 or 1/7
1
0
0
1, 0, 0
1/80
1/9 or 1/7
1
0
1
1, 0, 1
1/96
1/10 or 1/8
1
1
0
1, 1, 0
1/112
1/11 or 1/9
1
1
1
1, 1, 1
1/120
1/11 or 1/9
4/47
3
2004/09/08
ST8012
4.
BLOCK DIAGRAM
COMSEGX .............. COMSEG 0
COM/SEG
COM/SEG
V0
V1
V3
V3
V4
VSS
COM/SEGMENT DRIVER
Voltage
fallower
circuit
Voltage
Regulator
circuit
XRST
Voltage
booster
circuit
Power Supply Circuit
/DISPOFF
COM/SEG DATA LATCH
Command
decorder
EIO
Control
EIO1
EIO2
SHIFT
Control
XCK
P/S
SEL2~SEL0
DI0~DI3
V1.6
FR
LP
T
UN
OI
DD
CC
Vout
CAP1CAP1+
CAP2CAP2+
CAP3CAP4+
CAP5+
VSS
SCLK
SID
XCS
L/R
LEVEL SHIFTER
SEGMENT DATA LATCH
SHIFT_CONTROL
3
4
DATA IN
Control
DIN
5/47
4
2004/09/08
ST8012
INPUT/OUTPUT CIRCUITS
V DD
I
T o Interna l C irc u it
A p p lic ab le P in s
L/R , D I 3 ~ D I 0 ,
X D IS P O F F , L P , F R , P /S
C S ,S ID ,S E L 2~ S E L0
V s s (0 V )
Input Circuit
V
DD
To Internal
Circuit
I/O
Control Signal
Vss (0V)
Vss (0V)
V DD
Output Signal
Application Pins
EIO
1
, EIO
2
Control Signal
Vss (0V)
Input/Output Circuit
V1.6
6/47
2004/09/08
ST8012
5. FUNCTIONAL DESCRIPTION
5.1
Pin Functions
(Segment mode)
SYMBOL
FUNCTION
VDD
Logic system power supply pin, connected to +2.5 to +5.5 V.
VSS
Ground pin, connected to 0 V.
This is a multi-level power supply for the liquid crystal drive. The voltage Supply applied is determined
by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through
changing the impedance using an op. amp. Voltage levels are determined based on VSS, and must
maintain the relative magnitudes shown below.
V0 ≧V1 ≧V2 ≧V3 ≧V4 ≧Vss
V0 V1
V2 V3
When the power supply turns ON, the internal power supply circuits produce the V1to V4voltages shown below.
The voltage settings are selected using the LCD bias set command.
V4
1/120 Duty
1/112 Duty
1/96Duty
1/80Duty
1/64Duty
1/48 Duty
1/30 Duty
V4
1/11*V0 ,1/9*V0
1/11*V0, 1/9*V0
1/10*V0, 1/8*V0 1/9*V0, 1/7*V0 1/9*V0, 1/7*V0 1/7*V0, 1/5*V0 1/6*V0, 1/5*V0
V3
2/11*V0,1/9*V0
2/11*V0, 2/9*V0
2/10*V0, 2/8*V0 2/9*V0, 2/7*V0 2/9*V0, 2/7*V0 2/7*V0, 2/5*V0 2/6*V0, 2/5*V0
V2
9/11*V0, 7/9*V0
9/11*V0, 7/9*V0
8/10*V0, 6/8*V0 7/9*V0, 5/7*V0 7/9*V0, 5/7*V0 5/7*V0, 3/5*V0 4/6*V0, 3/5*V0
V1
10/11*V0,8/9*V0
10/11*V0,8/9*V0
9/10*V0, 7/8*V0 8/9*V0, 6/7*V0 8/9*V0, 6/7*V0 6/7*V0, 4/5*V0 5/6*V0, 4/5*V0
Input pins for display data
In 4-bit parallel input mode, input data into the 4 pins, DI3-DI0.
DI3-DI0
In serial input mode, input data into the 1 pin,DI0.
Connect DI3-DI1 to VSS .
Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT
PINS" in Functional Operations.
XCK
Clock input pin for taking display data
* Data is read at the falling edge of the clock pulse.
System Reset pin .When low level active.
XRST
If not used the hardware reset, this pin must pull height.
The XRST L PULSE timing min value is 200us and max value is 0.5s
LP
Latch pulse input pin for display data
Data is latched at the falling edge of the clock pulse.
Input pin for selecting the reading direction of display data
When set to VSS level "L", data is read sequentially from COMSEG119 to COMSEG0.
L/R
When set to VDD level "H", data is read sequentially from COMSEG0 to COMSEG119.
Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT
PINS" in Functional Operations.
Control input pin for output of non-select level
XDISPOFF
The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the
LCD drive circuit.
V1.6
7/47
2004/09/08
ST8012
When set to VSS level "L", the LCD drive output pins (COMSEG0-COMSEG119) are set to level Vss.
When set to "L", the contents of the line latch are reset, but the display data are read in the
data latch regardless of the condition of XDISPOFF. When the XDISPOFF function is canceled,
the driver outputs non-select level (V2 or V3), then outputs the contents of the data latch at the next
falling edge of the LP. At that time, if XDISPOFF removal time does not correspond to what is shown
in AC characteristics, it cannot output the reading data correctly.
Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
AC signal input pin for LCD drive waveform
The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the
LCD drive circuit.
FR
Normally it inputs a frame inversion signal.
The LCD drive output pins' output voltage levels can be set using the line latch output signal and the
FR signal.
Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
Interface Mode selection pin
P/S
When P/S is “H” then parallel data input mode.
When P/S is “L” the serial data input mode,
Input/output pins for chip selection.
AT segment mode:
When L/R input is at VSS level "L", ElO1 is set for output, and EIO2 is set for input(connect to Vss).
ElO1, EIO2
When L/R input is at VDD level "H", ElO1 is set for input(connect to Vss), and EIO2 is set for output.
During output, set to "H" while LP • XCK is "H" and after 120 bits of data have been read, set
to "L” for one cycle (from falling edge to failing edge of XCK), after which it returns to "H".
During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is
non-selected after 120 bits of data have been read.
COMSEG0
–COMSEG119
LCD drive output pins
Corresponding directly to each bit of the data latch, one level (V0, V2 ,V3,Vss) is selected and output.
Table of truth values is shown in "TRUTH TABLE" in Functional Operations.
CAP1-
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP1+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
CAP2-
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP2+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP3+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
CAP4+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP5+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
VOUT
DC/DC voltage converter. Connect a capacitor between this terminal and VSS.
XCS
SID
SCLK
V1.6
This is the command mode select pin. When XCS=”L” then write command to the LCD, when not
used the command mode then must fixed to Vdd . See Figure1
The command data, when not used the command mode then must fixed to Vdd. See Figure1
The serial clock input, when not used the command mode then must fixed to Vdd. See Figure1
8/47
2004/09/08
ST8012
(Common mode)
SYMBOL
FUNCTION
VDD
Logic system power supply pin, connected to +2.5 to +5.5 V.
VSS
Ground pin, connected to 0 V.
This is a multi-level power supply for the liquid crystal drive. The voltage Supply applied is determined
by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through
changing the impedance using an op. amp. Voltage levels are determined based on VDD, and must
maintain the relative magnitudes shown below.
V0 ≧V1 ≧V2 ≧V3 ≧V4 ≧Vss
V0, V1
V2, V3
When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages
shown below. The voltage settings are selected using the LCD bias set command.
V4
LP
1/120 Duty
1/112 Duty
1/96Duty
1/80Duty
1/64Duty
1/48 Duty
1/30 Duty
V4
1/11*V0 ,1/9*V0
1/11*V0, 1/9*V0
1/10*V0, 1/8*V0 1/9*V0, 1/7*V0 1/9*V0, 1/7*V0 1/7*V0, 1/5*V0 1/6*V0, 1/5*V0
V3
2/11*V0,1/9*V0
2/11*V0, 2/9*V0
2/10*V0, 2/8*V0 2/9*V0, 2/7*V0 2/9*V0, 2/7*V0 2/7*V0, 2/5*V0 2/6*V0, 2/5*V0
V2
9/11*V0, 7/9*V0
9/11*V0, 7/9*V0
8/10*V0, 6/8*V0 7/9*V0, 5/7*V0 7/9*V0, 5/7*V0 5/7*V0, 3/5*V0 4/6*V0, 3/5*V0
V1
10/11*V0,8/9*V0
10/11*V0,8/9*V0
9/10*V0, 7/8*V0 8/9*V0, 6/7*V0 8/9*V0, 6/7*V0 6/7*V0, 4/5*V0 5/6*V0, 4/5*V0
Shift clock pulse input pin for bi-directional shift register
* Data is shifted at the falling edge of the clock pulse.
System Reset pin .When low level active.
XRST
If not used the hardware reset, this pin must pull height.
The XRST L PULSE timing min value is 200us and max value is 0.5s
Input pin for selecting the shift direction of bi-directional shift register
Data is shifted from COMSEG119 to COMSEG0 when set to VSS level "L", and data is shifted from
COMSEG0 to COMSEG119 when set to VDD level "H".
L/R
Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT PINS" in
Functional Operations.
Control input pin for output of non-select level
The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the
LCD drive circuit.
When set to VSS level "L", the LCD drive output pins (COMSEG0-COMSEGx) are set to level Vss.
XDISPOFF
When set to "L”, the contents of the shift register are reset to not reading data. When the /DISPOFF
function is canceled, the driver outputs non-select level (V1 or V4), and the shift data is read at the
next falling edge of the LP. At that time, if /DISPOFF removal time does not correspond to what is
shown in AC characteristics, the shift data is not read correctly.
Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
AC signal input pin for LCD drive waveform
FR
The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the
LCD drive circuit.
V1.6
9/47
2004/09/08
ST8012
Normally it inputs a frame inversion signal.
The LCD drive output pins' output voltage levels can be set using the shift register output signal and
the FR signal.
Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
DI3-DI0
XCK
Not used
Connect DI3-DI0 to VSS, not floating.
Not used
XCK is pulled down in common mode, so connect to VSS .
LCD drive output pins
COMSEG0
-COMSEG119
Corresponding directly to each bit of the shift register, one level (V0 V1, V4, or VSS) is selected
and output.
Table of truth-values is shown in "TRUTH TABLE" in Functional Operations.
Shift data Input/output pins for shift register
EIO1 is output pin when L/R is at Vss level “L”, EIO1 is input pin when L/R is at Vdd level “H”
When L/R=H, EIO1 is used as input pin, it will be connect to FLM.
When L/R=L, EIO1 is used as output pin, it won’t be connect to FLM.
ElO1, EIO2
EIO2 is input pin when L/R is at Vss level “L”, EIO1 is output pin when L/R is at Vdd level “H”
When L/R=H, EIO2 is used as output pin, it won’t be connect to FLM,
When L/R=L, EIO2 is used as input pin, it will be connect to FLM
Refer to “RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT PINS” in
Functional Operations.
CAP1-
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP1+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
CAP2-
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP2+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP3+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
CAP4+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.
CAP5+
DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.
VOUT
DC/DC voltage converter. Connect a capacitor between this terminal and VSS.
XCS
SID
SCLK
V1.6
This is the command mode select pin. When XCS=”L” then write command to the LCD, when not
used the command mode then must fixed to Vdd . See Figure1
The command data, when not used the command mode then must fixed to Vdd. See Figure1
The serial clock input, when not used the command mode then must fixed to Vdd. See Figure1
10/47
2004/09/08
ST8012
(common /segment mix mode)
Input/output pins for chip selection
AT common/segment mode:
When L/R input is at Vss level “L”, ElO1 is set output, and EIO2 is set for input.
ElO1 : segment chip enable output, as default segment is enabled internally and be non-selected
after 8,24,40,56,72 or 88 bits of data have been read. Depend on select mode.
ElO2 :common shift data input, no sift data output
ElO1, EIO2
When L/R input is at VDD level "H", ElO1 is set for input, and EIO2 is set for output.
ElO1 :common shift data, no shift data output
ElO2 : segment chip enable output, as default segment is enabled internally and be non-selected
after 8,24,40,56,72 or 88 bits of data have been read. Depend on select mode.
During output, set to "H" while LP • XCK is "H" and after 120 bits of data have been read, set
to "L” for one cycle (from falling edge to failing edge of XCK), after which it returns to "H".
During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is
non-selected after 120 bits of data have been read.
V1.6
11/47
2004/09/08
ST8012
5.2 Functional Operations
TRUTH TABLE
(Segment Mode)
FR
LATCH DATA
/DISPOFF
LCD DRIVE OUTPUT VOLTAGE LEVEL
(COMSEG0-COMSEG119)
L
L
H
V3
L
H
H
Vss
H
L
H
V2
H
H
H
V0
X
X
L
Vss
LATCH DATA
/DISPOFF
LCD DRIVE OUTPUT VOLTAGE LEVEL
(Common Mode)
FR
(COMSEG0-COMSEG119)
L
L
H
V4
L
H
H
V0
H
L
H
V1
H
H
H
Vss
X
X
L
Vss
NOTES:
L : VSS (0 V), H : VDD (+2.5 to +5.5 V), X : Don't care
"Don't care" should be fixed to "H" or "L", avoiding floating.
There are two kinds of power supply (logic level voltage and LCD drive voltage) for the LCD driver.
Supply regular voltage that is assigned by specification for each power pin.
V1.6
12/47
2004/09/08
ST8012
RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE
OUTPUT PINS
(Segment Mode)
(A) 4-bit Parallel Input Mode
L/R
L
H
EIO1
EIO2
Output Input
Input Output
DATA
NUMBER OF CLOCKS
INPUT 30 CLOCK 29 CLOCK
28 CLOCK …
3 CLOCK
2 CLOCK
1 CLOCK
DI0
COMSEG0
COMSEG4
COMSEG8 … COMSEG108 COMSEG112 COMSEG116
Dl1
COMSEG1
COMSEG5
COMSEG9 … COMSEG109 COMSEG113 COMSEG117
DI2
COMSEG2
COMSEG6 COMSEG10 … COMSEG110 COMSEG114 COMSEG118
DI3
COMSEG3
COMSEG7 COMSEG11 … COMSEG111 COMSEG115 COMSEG119
DI0
COMSEG119 COMSEG115 COMSEG111 … COMSEG11 COMSEG7
COMSEG3
Dl1
COMSEG118 COMSEG114 COMSEG110 … COMSEG10 COMSEG6
COMSEG2
DI2
COMSEG117 COMSEG113 COMSEG109 … COMSEG9
COMSEG5
COMSEG1
DI3
COMSEG116 COMSEG112 COMSEG108 … COMSEG8
COMSEG4
COMSEG0
2 CLOCK
1 CLOCK
(B) Serial Input Mode
L/R
L
EIO1
EIO2
Output Input
DATA
INPUT 120 CLOCK 119 CLOCK 118 CLOCK …
Input Output
3 CLOCK
DI0
COMSEG0
COMSEG1
Dl1
X
X
X
X
X
X
X
DI2
X
X
X
X
X
X
X
DI3
X
X
X
X
X
X
X
COMSEG1
COMSEG0
DI0
H
NUMBER OF CLOCKS
COMSEG2 … COMSEG117 COMSEG118 COMSEG119
COMSEG119 COMSEG118 COMSEG117 … COMSEG2
Dl1
X
X
X
X
X
X
X
DI2
X
X
X
X
X
X
X
DI3
X
X
X
X
X
X
X
(Common Mode)
V1.6
L/R
DATA TRANSFER DIRECTION
EIO1
EIO2
L
COMSEG119 → COMSEG0
Output
Input
H
COMSEG0 → COMSEG119
Input
Output
13/47
2004/09/08
ST8012
MIX MODE(SEGMENT/ COMMON MODE)
When (SEL2,SEL1,SEL0)=(0,0,1) SELECT THE 32 COM/88 SEGMENT MODE
THEN SEGMENT SIDE OF MIX MODE
(a)
L/R
L
H
(b)
L/R
L
4-bit Parallel Input Mode
EIO1
EIO2
Seg_end Com_FLM
Output
Input
Com_FLM Seg_end
Input
Output
DATA
NUMBER OF CLOCKS
INPUT 22 CLOCK 21 CLOCK
20 CLOCK … 3 CLOCK
1 CLOCK
DI0
COMSEG0
COMSEG4
COMSEG8 … COMSEG76 COMSEG80 COMSEG84
Dl1
COMSEG1
COMSEG5
COMSEG9 … COMSEG77 COMSEG81 COMSEG85
DI2
COMSEG2
COMSEG6 COMSEG10 … COMSEG78 COMSEG82 COMSEG86
DI3
COMSEG3
COMSEG7 COMSEG11 … COMSEG79 COMSEG83 COMSEG87
DI0
COMSEG119 COMSEG115 COMSEG110 … COMSEG43 COMSEG39 COMSEG35
Dl1
COMSEG118 COMSEG114 COMSEG109 … COMSEG42 COMSEG38 COMSEG34
DI2
COMSEG117 COMSEG113 COMSEG108 … COMSEG41 COMSEG37 COMSEG33
DI3
COMSEG116 COMSEG112 COMSEG107 … COMSEG40 COMSEG36 COMSEG32
DATA
NUMBER OF CLOCKS
Serial Input Mode
EIO1
EIO2
Seg_end Com_FLM
Output
Input
INPUT 88 CLOCK
Com_FLM Seg_end
Input
Output
87 CLOCK
86 CLOCK … 3 CLOCK
2 CLOCK
1 CLOCK
COMSEG2 … COMSEG85 COMSEG86 COMSEG87
DI0
COMSEG0
COMSEG1
Dl1
X
X
X
X
X
X
X
DI2
X
X
X
X
X
X
X
DI3
X
X
X
X
X
X
X
DI0
H
2 CLOCK
COMSEG119 COMSEG118 COMSEG117 … COMSEG34 COMSEG33 COMSEG32
Dl1
X
X
X
X
X
X
X
DI2
X
X
X
X
X
X
X
DI3
X
X
X
X
X
X
X
COMMON SIDE OF MIX MODE
L/R
DATA TRANSFER DIRECTION
EIO1
EIO2
L
COMSEG119 → COMSEG88
Seg_end output
Input
H
COMSEG0 → COMSEG31
Input
Seg_end output
NOTES:
L : VSS (0 V), H : VDD (+2.5 to +5.5 V), X : Don't care
"Don't care" should be fixed to "H" or "L", avoiding floating.
V1.6
14/47
2004/09/08
ST8012
Connection examples of plural segment drivers (120 segment)
(c) When L/R = “L”
Top data
Last data
Data flow
COMSEG119
COMSEG119
COMSEG0
EIO2
COMSEG0
COMSEG119
EIO1
EIO2
EIO1
L/R
COMSEG0
EIO2
EIO1
L/R
L/R
FR
DI3-DI0
LP
XCK
DI3-DI0
FR
LP
XCK
FR
DI3-DI0
LP
XCK
XCK
LP
FR
DI3-DI0
4
VSS
(d) When L/R = “H”
VDD
XCK
LP
FR
DI3-DI0
4
EIO2
EIO1
EIO2
COMSEG0
COMSEG0
COMSEG119
Last data
Top data
V1.6
L/R
COMSEG119
Data flow
DI3-DI0
EIO1
FR
EIO2
LP
L/R
XCK
COMSEG0
DI3-DI0
EIO1
FR
Vss
LP
XCK
DI3-DI0
FR
LP
XCK
L/R
15/47
2004/09/08
ST8012
Timing chart of 4-device cascade connection of segment drivers
FR
LP
XCK
TOP DATA
DI3 - DI0
n*
1
2
LAST DATA
n*
device A
1
2
n*
1
2
device B
n*
device C
1
2
n*
1
2
device D
EI
(device A)
EO
(device A)
EO
(device B)
EO
(device C)
*n = 30 in 4-bit parallel input mode
*n = 120 in serial input mode
V1.6
16/47
2004/09/08
ST8012
Connection examples for signal common drivers (120 common)
(e) L/R = ”L”
First
COMSEG119
FLM
COMSEG0
EIO2
EIO1
FR
XDISPOFF
L/R
XCK
LP
LP
Vss
VSS
XDISPOFF
FR
(f)
L/R = “H”
FR
XDISPOFF
VDD
Vss
LP
LP
COMSEG0
XCK
EIO1
L/R
XDISPOFF
FR
FLM
EIO2
COMSEG119
First
V1.6
17/47
2004/09/08
ST8012
Connection examples for plural common/segment (mix mode) drivers
The mix mode is 1/32,1/48,1/64,1/80,1/96,1/112 duty mode
(g) L/R = “L”
FLM
VDD
XCK
LP
FR
DI3-DI0
4
DI3-DI0
FR
LP
XCK
DI3-DI0
FR
LP
XCK
L/R
L/R
Vss
EIO1
EIO2
Y119 YX+1
YX
Com
PS
L/R
EIO1
EIO2
Y0
Y119
Y0
Seg
COMSEG
Vss
Seg
Data flow
(h) L/R=”H”
FLM
VDD
XCK
LP
FR
DI3-DI0
4
DI3-DI0
Y0 YX
COMSEG
FR
L/R
EIO1
PS
LP
XCK
DI3-DI0
FR
LP
XCK
L/R
Com
EIO2
EIO2
EIO1
YX+1 Y119
Seg
Y0
Y119
Seg
Data flow
V1.6
18/47
2004/09/08
ST8012
Connection examples for 120 com &120 seg (for 1/120 duty)
(i)
L/R = “L”
FLM
VDD
XCK
LP
Vss
FR
DI3-DI0
4
DI3-DI0
FR
LP
XCK
DI3-DI0
FR
LP
XCK
L/R
L/R
Vss
EIO1
EIO2
Y119 YX+1
YX
Com
PS
(j)
L/R
EIO1
EIO2
Y0
Vss
Y119
Y0
Com
COMSEG
Vss
Seg
Data flow
L/R = “H”
FLM
VDD
XCK
LP
Vss
FR
DI3-DI0
4
DI3-DI0
Y0 YX
COMSEG
FR
L/R
EIO1
PS
LP
XCK
DI3-DI0
FR
LP
XCK
L/R
Com
EIO2
EIO2
EIO1
YX+1 Y119
Vss
Com
Y0
Y119
Seg
Data flow
V1.6
19/47
2004/09/08
ST8012
PRECAUTIONS
Precautions when connecting or disconnecting the power supply
This IC has a high-voltage LCD driver, so a high current
that may flow if voltage is supplied to the LCD drive
power supply while the logic system power supply is
floating may permanently damage it. The details are as
follows,
When connecting the power supply, connect the LCD
drive power after connecting the logic system power.
Furthermore, when disconnecting the power,
disconnect the logic system power after disconnecting
the LCD drive power
And when connecting the logic power supply, the logic
condition of this IC inside is insecure. Therefore
connect the LCD drive power supply after resetting
logic condition of this IC inside on /DISPOFF function.
After that, cancel the /DISPOFF function after the LCD
drive power supply has become stable. Furthermore,
when disconnecting the power, set the LCD drive
output pins to level Vss on /DISPOFF function. Then
disconnect the logic system power after disconnecting
the LCD drive power.
When connecting the power supply, follow the
recommended sequence shown here
VDD
VDD
VSS
VDD
XDISPOFF
VSS
VDD
V0
VSS
V1.6
20/47
2004/09/08
ST8012
6.
DESCRIPTION FUNCTIONS
The MPU Interface
Selecting the Interface Type
With the ST8012 chips, data transfers are done through
polarity to the “H” or “L” it is possible to select either
an 4-bit parallel data bus (D3 to D0) or through a serial
parallel data input or serial data input as shown in Table
data input (SI). Through selecting the P/S terminal
1.
Table 1
D0
D3~D1
H: Parallel Input
D0
D3~D1
L: Serial Input
SI
VDD
P/S
Command Serial Interface
With the ST8012 chips, command data transfers are
Figure1.
done through a serial data input. And it’s timing show in
Figure1
rite command timing diagram
2
1
4
3
10
5
11
12
13
14
15
1
SCLK
XCS
SID
D
D
D5
D4
D3
D2
D1
D0
D
D
D5
D4
D3
D2
D1
D0
ps :when don’t use the command must set XCS to height level.
The Power Supply Circuits (use serial interface)
The power supply circuits are low-power consumption
circuits ON or OFF independently through the use of
power supply circuits that generate the voltage levels
the Power Control Set command. Consequently, it is
required for the LCD drivers. They are Booster circuits,
possible to make an external power supply and the
voltage regulator circuits, and voltage follower circuits.
internal power supply function somewhat in parallel.
They are only enabled in master operation, when the
Table 3 shows the Power Control Set Command 3-bit
mode is in common mode or common/segment mode.
data control function, and Table 4 shows reference
The power supply circuits can turn the Booster circuits,
combinations.
the voltage regulator circuits, and the voltage follower
Table3
Function
bit
D2
D1
D0
Booster circuit control bit
Status
“111”
“000”
ON
OFF
The Control Details of Each Bit of the Power Control Set Command
V1.6
21/47
2004/09/08
ST8012
Table4
Com
Use Settings
/
D2
Seg
Only the internal power supply
Com
is used
mode
Voltage Voltage
Voltage
booster regulator
follower
1
ON
ON
ON
0
OFF
ON
ON
1
ON
ON
ON
0
OFF
ON
ON
External
voltage
Step-up
voltage
input
VDD
Used
/
Only the voltage regulator
circuit and the voltage
Com/Seg
follower circuit are used
mode
Only the internal power supply
is used
VOUT, VDD
VDD
Open
Used
Seg
Only the voltage regulator
mode
circuit and the voltage
VOUT, VDD
Open
follower circuit are used
Command interface unused mode (use the default value)
When command interface is unused. The CS,SCLK and SID signal can be fixed as the following mode
Table5
XCS
SCLK
SID
Booster
Regulator
Follower
H
X
X
Default register used (All Off)
L
H
H
OFF
ON
ON
L
L
H
ON
ON
ON
THE DEFAULT BIAS,CONTRAST CONTROL,Ra/Rb ratio and Boost Frequency is used when the above mode is
selected.
NOTE :If all of the Cs, SCLK and SID signals are set to low level. The default power control register will be used, the
power control of booster, regulator and follower will always be off.
PROGRAM NOTE: Do not toggle sclk or SID from low level while XCS signal is HIGHT.
Entry Standby mode: Entry standby must closed the AC circuit(BOOSTER) and /XDISPOFF also go to low
level.
V1.6
22/47
2004/09/08
ST8012
The Step-up Voltage Circuits
Using the step-up voltage circuits equipped within the
or 6X step-up of the VDD – VSS voltage levels.
ST8012 chips it is possible to product a 2X, 3X, 4X, 5X
6X step-up:
Connect capacitor C1 between CAP1+ and CAP1–,
voltage level in the negative direction at the VOUT
between CAP2+ and CAP2–, between CAP1+ and
terminal that is 6 times the voltage level between VDD
CAP3–, between CAP2+ and CAP4–,between CAP1+
and VSS.
and CAP5–, and between VDD and VOUT, to produce a
5X step-up:
Connect capacitor C1 between CAP1+ and CAP1–,
and VOUT, to produce a voltage level in the negative
between CAP2+ and CAP2–, between CAP1+ and
direction at the VOUT
CAP3–, between CAP2+ and CAP4–,and between VDD
voltage level between VDD and VSS.
terminal that is 5 times the
4X step-up:
Connect capacitor C1 between CAP1+ and CAP1–,
voltage level in the negative direction at the VOUT
between CAP2+ and CAP2–, between CAP1+ and
terminal that is 4 times the voltage level between VDD
CAP3–, and between VDD and VOUT, to produce a
and VSS.
3X step-up:
Connect capacitor C1 between CAP1+ and CAP1–,
terminal that is 3 times the voltage difference between
between CAP2+ and CAP2– and between VDD and
VDD and VSS. The step-up voltage relationships are
VOUT,and short between CAP3– and VOUT to produce
shown in Figure2.
a voltage level in the negative direction at the VOUT
2X step-up:
Connect capacitor C1 between CAP1+ and CAP1–,
and between VDD and VOUT, leave CAP2+ open, and
short between CAP2–, CAP3– and VOUT to
produce
a voltage in the negative direction at the VOUT terminal
that Is twice the voltage between VDD and VSS.
V1.6
23/47
2004/09/08
ST8012
Figure2
VDD
VDD
VO T
C1
C1
VO
CAP3+
CAP2+
C1
CAP1C1
CAP1+
CAP1+
CAP2+
CAP2+
ST 012
CAP1C1
CAP1+
T
CAP3+
ST 012
CAP1C1
VO
T
CAP3+
ST 012
C1
VDD
C1
C1
CAP2-
CAP2-
CAP4+
CAP4+
CAP4+
CAP5+
CAP5+
CAP5+
4x step-up voltage circuit
VO T 4xVDD 12V
OPEN
3x step-up voltage circuit
VO T 3xVDD V
VDD 3V
2x step-up voltage circuit
VO T 2xVDD V
VDD 3V
VSS 0V
VDD 3V
VSS 0V
4x step-up voltage relations ips
VSS 0V
3x step-up voltage relations ips
VDD
CAP2-
2x step-up voltage relations ips
VDD
C1
C1
VO
VO
T
CAP3+
ST 012
CAP1C1
CAP3+
C1
ST 012
C1
T
CAP1C1
CAP1+
CAP1+
CAP2+
CAP2+
C1
C1
CAP2-
CAP2-
C1
C1
CAP4+
Vout
CAP4+
C1
CAP5+
CAP5+
5x step-up voltage circuit
x step-up voltage circuit
VO
VO
T
5xVDD 15V
VDD 3V
VSS 0V
5x step-up voltage relations ips
T
xVDD 15V
VDD 2.5V
VSS 0V
x step-up voltage relations ips
* The VSS voltage range must be set so that the VOUT terminal voltage does not exceed the absolute maximum rated value.
V1.6
24/47
2004/09/08
ST8012
The Voltage Regulator Circuit
The step-up voltage generated at VOUT outputs the
LCD driver voltage V0 through the voltage regulator
circuit. Because the ST78012 chips have an internal
high-accuracy fixed voltage power supply with a
64-level electronic volume function and internal
resistors for the V0 voltage regulator, systems can be
constructed without having to include high-accuracy
voltage regulator circuit components.(VREG thermal
gradients approximate -0.05%/°C)
(A) When the V0 Voltage Regulator Internal Resistors Are Used
Through the use of the V0 voltage regulator internal
resistors and the electronic volume function the liquid
crystal power supply voltage V0 can be controlled by
commands alone (without adding any external
resistors), making it possible to adjust the liquid
crystal display brightness. The V0 voltage can be
calculated using equation A-1 over the range where
| V0 | < | VOUT|.
Figure 3
V0
1+
Rb
Ra
VEV
1+
Rb
Ra
1-
∵ V EV
1-
α
200
α
200
VREG
VREG
V0
Internal Rb
Internal Ra
VEV constant voltage supply+electronic volume
VSS
V1.6
25/47
2004/09/08
ST8012
VREG is the IC-internal fixed voltage supply, and its voltage at Ta = 25°C is as shown in Table 6.
Table6
Part no.
Equipment Type
ST8012
Internal Power Supply
Thermal Gradient
VREG
–0.05 %/°C
2.1V
α is set to 1 level of 64 possible levels by the electronic volume function depending on the data set in the 6-bit
electronicvolume register. Table 6 shows the value for α depending on the electronic volume register settings.
Rb/Ra is the V0 voltage regulator internal resistor ratio, and can be set to 8 different levels through the V0 voltage
regulator internal resistor ratio set command. The Rb/Ra ratio assumes the values shown in Table 8 depending on
the 3-bit data settings in the VDD voltage regulator internal resistor ratio register.
Table7
D5
0
0
0
D4
0
0
0
D3
D2
D1
D0
α
0
0
0
0
0
0
0
0
1
0
1
0
1
1
1
0
1
1
1
0
1
63
62
61
:
:
2
1
0
:
:
1
1
1
1
1
1
1
1
1
V0 voltage regulator internal resistance ratio register value and (1 + Rb/Ra) ratio (Reference value)
Table8
Register
D2
D1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
ST8012
D0
0
1
0
1
0
1
0
1
(1) –0.05 %/°C
5.0
5.22
5.48
5.76
6.07
6.42
6.81
7.25
1
15
Ta=25 ℃ and booster off, regulator, follower on, out=16V, Vdd=3V
0
14
1
13
2
12
V0
11
3
UNIT
:V
4
10
5
Electronic volume
Resistor ratio set D2, D1,
and D0
1 4
V1.5
10 13 1
1 22 25 2
31 34 3 40 43 4
26/47
4 52 55 5
1 4
2004/04/05
ST8012
The LCD Voltage Generator Circuit
The V0 voltage is produced by a resistive voltage
driving. Moreover, when the voltage follower changes
divider within the IC, and can be produced at the V1, V2,
the impedance, it provides V1, V2, V3 and V4 to the
V3, and V4 voltage levels required for liquid crystal
liquid crystal drive circuit.
Reference Circuit Examples
Figure 5 shows reference circuit examples.
1.When used all of the step-up circuit, voltage
2.When the voltage regulator circuit and V/F circuit
regulating circuit and V/F circuit.
alone are used
(Example with 4x setup-up)
Figure 4
VDD
C1
C1
C1
C1
VDD
VDD
VDD
VO T
CAP3+
CAP4+
CAP1-
CAP5+
Externa
l power
supply
Vout
VO T
CAP3+
CAP4+
CAP1-
CAP5+
CAP1+
CAP1+
CAP2-
CAP2-
CAP2+
CAP2+
V0
C2
V0
C2
V1
C2
V1
C2
V2
C2
V2
C2
V3
C2
V3
V4
C2
V4
C2
VSS
V1.6
ST 012
ST 012
C2
VSS
VSS
27/47
VSS
2004/09/08
ST8012
3.When the built-in power circuit is used to drive a
output from the built-in voltage follower. Examples of
liquid crystal panel heavily loaded with AC or DC, it is
shared reference settings When V0 can vary
recommended to connect an external resistor to
between –8 and 12 V
stabilize potentials of V1, V2, V3 and V4 which are
V0
Item
R4
R4
C2
c1
c2
V1
V3
units
1.0 to 4.7
uF
0.1 to 4.7
uF
ST 012
V2
Set
value
C1 and C2 are determined by the size of
V4
the LCD being driven
R4
VSS
R4
VSS
Reference set value R4:100K Ω
~ 1M Ω
it is
R4 taking the liquid crystal display and the drive
recommended to set an optimum resistance value
wveform
* 1. Because the VR terminal input impedance is high, use short leads and shielded lines.
* 2. C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal
drive voltage.
Example of the Process by which to Determine the Settings:
• Turn the voltage regulator circuit and voltage follower circuit ON and supply a voltage to VOUT from the outside.
• Determine C2 by displaying an LCD pattern with a heavy load (such as horizontal stripes) and selecting a C2 that
stabilizes the liquid crystal drive voltages (V1 to V4). Note that all C2 capacitors must have the same capacitance
value.
• Next turn all the power supplies ON and determine C1.
V1.6
28/47
2004/09/08
ST8012
COMMANDS
The ST8012 identify the data bus signals by a combination of XCS, SDI, and SCLK signals.
<Example of Commands>
LCD Bias Set
This command selects the voltage bias ratio required for the liquid crystal display.
The D3 can select the Frame direction , if select ‘0’ is normal else select ‘1’ is reverse.
Select Status
D7
D6
D5
0
0
0
0
0
0
D4
0
0
1/120duty 1/112duty 1/96duty
1/80duty
1/64duty
1/48duty
1/32duty
0
1/11 bias 1/11 bias 1/10 bias
1/9 bias
1/9 bias
1/7 bias
1/6 bias
1
1/9 bias
1/8 bias
1/7 bias
1/7 bias
1/5 bias
1/5 bias
0
1/11 bias 1/11 bias 1/10 bias
1/9 bias
1/9 bias
1/7 bias
1/6 bias
1
1/9 bias
1/7 bias
1/7 bias
1/5 bias
1/5 bias
D3 D2
D1
D0
0
X
X
1
X
X
1/9 bias
1/9 bias
1/8 bias
Power Controller Set
This command sets the power supply circuit functions. See the function explanation in “The Power Supply Circuit,”
for details
Selected Mode
D7
D6
D5
D4
D3
D2
D1
D0
0
0
1
0
X
0
0
0
Booster circuit: OFF
1
1
1
Booster circuit: ON
V0 Voltage Regulator Internal Resistor Ratio Set
This command sets the V0 voltage regulator internal resistor ratio. For details, see the function explanation is “The
Voltage Regulator circuit " and table 7 .
D7
D6
D5
0
1
0
D4
D3
D2
D1
D0
Rb/Ra Ratio
0
X
0
0
0
Small
0
0
1
0
1
0
↓
↓
1
1
0
1
1
1
Large
The Electronic Volume
This command makes it possible to adjust the brightness of the liquid crystal display by controlling the LCD drive
voltage V0 through the output from the voltage regulator circuits of the internal liquid crystal power supply.
Electronic Volume Register Set
By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V5
assumes one of the 64 voltage levels. When this command is input, the electronic volume mode is released after the
V1.6
29/47
2004/09/08
ST8012
electronic volume register has been set.
D7
D6
D5
D4
D3
D2
D1
D0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
0
1
1
0
0
0
0
1
1
|VSS|
Small
↓
↓
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
Large
Booster Frequency Set
By using this command to set three bits of data to the booster frequency, the liquid crystal drive Booster Frequency
assumes one of the 8 frequencies. When this command is input, the booster frequency register has been set.
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
0
X
0
0
0
0
1
1
0
X
0
0
1
0
1
1
0
X
0
1
0
0
1
1
0
X
0
1
1
0
1
1
0
X
1
0
0
0
1
1
0
X
1
0
1
0
1
1
0
X
1
1
0
0
1
1
0
X
1
1
1
Booster Frequency
Small
Large
The default value of ST8012
When select common mode or common/segment mode the Bias、Contrast control、Ra/Rb Ratio and Booster
Frequency all have the default value, if user don’t not used programmable to setting the status can used the default
value.
V1.6
Contrast control
Ra/Rb
Booster
Ratio
Frequency
---
---
---
1/6
32
4
5k
1/48
1/7
32
4
5k
0, 1, 1
1/64
1/9
32
4
5k
1, 0, 0
1/80
1/9
32
4
5k
1, 0, 1
1/96
1/10
32
4
5k
1, 1, 0
1/112
1/11
32
4
5k
1, 1, 1
1/120
1/11
32
4
5k
SEL 3, 2, 1
DUTY
BIAS
0, 0, 0
---
Segment mode
0, 0, 1
1/32
0, 1, 0
30/47
2004/09/08
ST8012
TABLE OF ST8012 COMMAND
Command
Command Code
Function
D7
D6
D5
D4
D3
D2
D1
0
0
0
0
0
X
X
D0
0
LCD bias set
D0Sets the LCD drive voltage bias ratio.0: 1/6
bias, 1: 1/5 bias (ST8012)
1
1
Power control set
0
0
1
0
X
Power control set
VSS voltage regulator
0
1
0
0
X
Resistor
D3 select frame direction.0:normal,1:reverse
Select internal power supply operating mode
Select internal resistor ratio(Rb/Ra) mode
internal resistor ratio set
ratio
Electronic volume mode set
Set the V0 output voltage
Electronic volume
1
1
Electronic volume value
electronic volume register
register set
Booster Frequency Set
V1.6
0
1
1
0
X
31/47
Booster Frequency Set the LCD booster frequency
2004/09/08
ST8012
7. BSOLUTE MAXIMUM RATINGS
PARAMETER
Supply voltage (1)
Supply voltage (2)
Input voltage
Storage temperature
SYMBOL
APPLICABLE PINS
RATING
UNIT
VDD
VDD
-0.3~+5.5
V
V1
V1
VDD+10~ VDD-0.3
V2
V2
VDD+10~ VDD-0.3
V3
V3
-0.3~V5S+10
V
V4
V4
-0.3~V5S+10
V
-0.3 to VDD+0.3
V
-45 to +125
°C
VI
D14-DI0, XCK, LP, L/R, FR,
EIO1, EIO2,XDISPOFF,
TSTG
NOTE
V
1,2
NOTES:
1. TA = +25 °C
2. The maximum applicable voltage on any pin with respect to VSS (0 V).
8. RECOMMENDED OPERATING Conditions
PARAMETER
SYMBOL
Supply voltage (1)
VDD
Supply voltage (2)
V0
Operating temperature
TOPR
V1.6
APPLICABLE PINS
MIN.
TYP.
MAX.
UNIT
VDD
+2.5
+5.5
V
V0
+6.0
+16.0
V
-20
+85
°C
32/47
NOTE
1, 2
2004/09/08
ST8012
9. ELECTRICAL CHARACTERISTICS
DC Characteristics
(Segment Mode)
PARAMETER
(VSS = 0 V, VDD = +2.5 to +3.6 V, V0 = + 6.0 to +15.0 V, TOPR = -20 to +85°C)
SYMBOL CONDITIONS
Input "Low" voltage
Input "High" voltage
Output "Low" voltage
Output "High" voltage
Input leakage current
VIL
VIH
VOL
VOH
ILIL
APPLICABLE PINS
MIN. TYP. MAX. UNIT NOTE
DI3-DI0, XCK, LP, L/R FR,
EIO1, EIO2,XDISPOFF
0.8VDD
IOL = +0.4 mA
IOH = -0.4 mA
VI = VSS
EIO1, EIO2
0.2VDD
-10
V
V
V
V
µA
+10
µA
2.0
kΩ
+0.4
VDD-0.4
DI3-DI0, XCK, LP, LIR,
FR, EIO1, EIO2,
XDISPOFF
ILIH
VI = VDD
Output resistance
RON
|∆VON|
V0 = 15 V
=0.5V
Standby current
Supply current (1)
(Non-selection)
Supply current (2)
(Selection)
Supply current (3)
ISTB
VSS
5
µA
1
IDD1
VDD
2.0
mA
2
IDD2
VDD
7.0
mA
3
I0
V0, V0
0.9
mA
4
Y1-Y120
1.5
NOTES:
1. VDD = +3.0 V, V0 = +12.0 V
2. VDD = +3.0 V, V0 = +12.0 V, fXCK = 8 MHz, no-load, El = VDD. The input data is turned over by data taking clock (4-bit
parallel input mode).
3. VDD = +3.0 V, V0 = +12.0 V, fXCK = 8 MHz, no-load, El = VSS. The input data is turned over by data taking clock (4-bit
parallel input mode).
4. VDD = +3.0 V, V0 = +12.0 V, fXCK = 8MHz, fLP = 19.2 kHz, fFR = 80 Hz, no-load. The input data is turned over by data
taking clock (4-bit parallel input mode).
(Common Mode)
(VSS = 0 V, VDD = +2.5 to +3.6 V, V0 = +6.0 to +15.0 V, TOPR = -20 to +85 °C)
PARAMETER
Input "Low" voltage
Input "High" voltage
Output "Low" voltage
Output "High" voltage
SYMBOL
VIL
VIH
CONDITIONS
VOL
VOH
IOL = +0.4 mA
IOH = -0.4 mA
ILIL
VI = VSS
ILIH
VI = VDD
Input leakage current
Input pull-down current
IPD
Output resistance
RON
VI = VDD
|∆VON|
=0.5V V0 = 15 V
APPLICABL E PINS MIN. TYP. MAX. UNIT NOTE
DI4-DI0, XCK, LP, L/R
0.2VDD V
FR, P/S, DIX, EIO1,
V
0.8VDD
EIO2, XDISPOFF
+0.4
V
EIO1, EIO2
VDD-0.4
V
DI4-DI0, XCK, LP, L/R
FR, P/S, DIX, EIO1,
-10.0 µA
EIO2, XDISPOFF
DI4-DI0, LP, L/R, FR,
+10.0 µA
P/S, DIX, XDISPOFF
XCK, EIO1, EIO2
100
µA
COMSEG0COMSEG119
Standby current
ISPD
VSS
Supply current (1)
IDD
VDD
Supply current (2)
I0
VO
NOTES:
1. VDD = +3.0 V, V0 = +12.0 V,
2. VDD = +3.0 V, V0 = +12.0 V, fLP =19.2 kHz, fFR = 80 Hz, 1/240 duty operation, no-load.
V1.6
33/47
1.5
2.0
kΩ
5
80
130
µA
µA
µA
1
2
2
2004/09/08
ST8012
AC Characteristics
(Segment Mode 1)
(VSS = 0 V, VDD = +2.5 to +3.6 V, V0 = + 6.0 to +15.0 V, TOPR = -20 10+85 °C)
PARAMETER
SYMBOL
CONDITIONS
MIN
Shift clock period
tWCK
tR,tF ≤ 11ns
125
Shift clock "H" pulse width
tWCKH
51
Shift clock "L" pulse width
tWCKL
51
Data setup time
tDS
30
Data hold time
tDH
40
Latch pulse "H" pulse width
tWLPH
51
Shift clock rise to latch pulse rise time
tLD
0
Shift clock fall to latch pulse fall time
tSL
51
Latch pulse rise to shift clock rise time
tLS
51
Latch pulse fall to shift clock fall time
tLH
51
Latch pulse fall to shift clock rise time
tLSW
50
Enable setup time
tS
36
Input signal rise time
tR
Input signal fall time
tF
DISPOFF removal time
tSD
100
DISPOFF "L" pulse width
tWDL
1.2
Output delay time (1)
tD
CL = 15 pF
Output delay time (2)
tPD1, t PD2
CL = 15 pF
Output delay time (3)
t PD3
CL = 15 pF
NOTES:
1. Takes the cascade connection into consideration.
2. (tWCK - tWCKH - tWCKL)/2 is maximum in the case of high speed operation.
(Segment Mode 2)
MAX.
50
50
78
1.2
1.2
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
µs
ns
µs
µs
NOTE
1
UNIT
NOTE
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
µs
ns
µs
µs
1
2
2
(VSS = 0 V, VDD = +5.0±0.5 V, V0 = + 6.0 to +15.0 V, TOPR = -20 to +85 °C)
PARAMETER
SYMB
OL
CONDITIONS
MIN.
Shift clock period
tWCK
tR,tF ≤ 10ns
66
Shift clock "H" pulse width
tWCKH
23
Shift clock "L” pulse width
tWCKL
23
Data setup time
tDS
15
Data hold time
tDH
23
Latch pulse "H" pulse width
tWLPH
30
Shift clock rise to latch pulse rise time
tLD
0
Shift clock fall to latch pulse fall time
tSL
50
Latch pulse rise to shift clock rise time
tLS
30
Latch pulse fall to shift clock fall time
tLH
30
Latch pulse fall to shift clock rise time
tLSW
50
Enable setup time
tS
15
Input signal rise time
tR
Input signal fall time
tF
DISPOFF removal time
tSD
100
DISPOFF "L" pulse width
tWDL
1.2
Output delay time (1)
tD
CL = 15 pF
Output delay time (2)
tPD1, t PD2
CL = 15 pF
Output delay time (3)
t PD3
CL = 15 pF
NOTES:
1. Takes the cascade connection into consideration.
2. (tWCK - tWCKH - tWCKL)/2 is maximum in the case of high speed operation.
V1.6
TYP.
34/47
TYP.
MAX.
50
50
41
1.2
1.2
2
2
2004/09/08
ST8012
(Segment Mode 3)
(VSS = 0 V, VDD = +3.0 to +3.6 V, V0 = + 6.0 to +15.0 V, TOPR = -20 10+85 °C)
PARAMETER
SYMBOL
Shift clock period
tWCK
Shift clock "H" pulse width
tWCKH
Shift clock "L” pulse width
tWCKL
Data setup time
tDS
Data hold time
tDH
Latch pulse "H" pulse width
tWLPH
Shift clock rise to latch pulse rise time
tLD
Shift clock fall to latch pulse fall time
tSL
Latch pulse rise to shift clock rise time
tLS
Latch pulse fall to shift clock fall time
tLH
Latch pulse fall to shift clock rise time
Enable setup time
Input signal rise time
Input signal fall time
DISPOFF removal time
DISPOFF "L" pulse width
Output delay time (1)
Output delay time (2)
Output delay time (3)
tLSW
tS
tR
tF
tSD
tWDL
tD
tPD1, t PD2
t PD3
CONDITIONS
tR,tF ≤ 10ns
MIN.
82
28
28
20
23
30
0
51
30
30
TYP.
MAX.
50
15
50
50
100
1.2
CL = 15 pF
CL = 15 pF
CL = 15 pF
57
1.2
1.2
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
µs
ns
µs
µs
NOTE
1
2
2
NOTES:
1. Takes the cascade connection into consideration.
2. (tWCK - tWCKH - tWCKL)/2 is maximum in the case of high speed operation.
(Common Mode)
(VSS = 0 V, VDD = +2.5 to +5.5 V, V0 = + 6.0 to +15.0 V, TOPR = -20 10+85 °C)
SYMBOL
CONDITIONS
MIN
Shift clock period
Shift clock “H” pulse width
PARAMETER
tWLP
tWLPH
tR, tF 20ns
VDD=5± 0.5V
VDD=2.5~4.5V
Data setup time
Data hold time
Input signal rise time
Input signal fall time
DISPOFF removal time
DISPOFF “L” pulse width
Output delay time (1)
Output delay time (2)
Output delay time (3)
tSU
tH
tR
tF
tSD
tWDL
tDL
tPD1,tPD2
tPD3
250
15
30
30
50
V1.6
TYP
MAX
ns
ns
50
50
100
1.2
CL=10pF
CL=10pF
CL=10pF
35/47
UNIT
200
1.2
1.2
ns
ns
ns
ns
ns
us
ns
us
us
2004/09/08
ST8012
Timing Chart of Segment Mode
tWLPH
LP
tLD
tSL
tLH
tLS
tWCKH
tWCKL
XCK
tR
tF
tWCK
DI4 - DI0
tDS
LAST DATA
tDH
TOP DATA
tWDL
tSD
XDISPOFF
FR
tPD1
LP
tPD2
XDISPOFF
tPD3
Y1 - Y120
Fig. 8 Timing Characteristics (3)
V1.6
36/47
2004/09/08
ST8012
(Common Mode)
(VSS = 0 V, VDD = +2.5 to +3.6 V, V0 = +6.0 to +15.0 V V, TOPR = -20 to +85° C)
PARAMETER
Shift clock period
SYMBOL
tWLP
Shift clock "H" pulse width
tWLPH
Data setup time
Data hold time
Input signal rise time
Input signal fall time
DISPOFF removal time
DISPOFF "L" pulse width
Output delay time (1)
Output delay time (2)
Output delay time (3)
tSU
tH
tR
tF
tSD
tWDL
tDL
tPD1, t PD2
t PD3
CONDITIONS
tR,tF ≤ 20ns
VDD = +5.0± 0.5V
VDD = +2.5+ 4.5V
MIN.
250
15
30
30
50
TYP.
MAX.
50
50
100
1.2
CL = 15 pF
CL = 15 pF
CL = 15 pF
200
1.2
1.2
UNIT
ns
ns
ns
ns
ns
ns
ns
ns
µs
ns
µs
µs
Timing Chart of Common Mode
tWLP
LP
tR
tWLPH
tSU
tF
tH
EIO2
tDL
EIO1
tWDL
tSD
XDISPOFF
FR
tPD1
LP
tPD2
XDISPOFF
tPD3
Y1 - Y120
V1.6
37/47
2004/09/08
ST8012
The serial interface timing
tCCSS
tCSH
CS1
CS2 1
tSC
C
tSL
SCLK
tSH
tf
tr
tSDS
tSDH
SID
Item
Serial Clock Period
SCL “H” pulse width
SCL “L” pulse width
Data setup time
Data hold time
CS-SCL time
CS-SCL time
Item
Serial Clock Period
SCL “H” pulse width
SCL “L” pulse width
Data setup time
Data hold time
CS-SCL time
CS-SCL time
Item
Serial Clock Period
SCL “H” pulse width
SCL “L” pulse width
Data setup time
Data hold time
CS-SCL time
CS-SCL time
V1.6
Signal
SCLK
SID
CS
Signal
SCLK
SID
CS
Signal
SCLK
SID
CS
Symbol
Condition
tSCYC
tSHW
tSLW
tSDS
tSDH
tCSS
tCSH
Symbol
Condition
tSCYC
tSHW
tSLW
tSDS
tSDH
tCSS
tCSH
Symbol
tSCYC
tSHW
tSLW
tSDS
tSDH
tCSS
tCSH
38/47
Condition
Rating
Min.
Max.
50
—
25
—
25
—
20
—
10
—
20
—
40
—
Rating
Min.
Max.
100
—
50
—
50
—
30
—
20
—
30
—
60
—
Rating
Min.
Max.
200
—
80
—
80
—
60
—
30
—
40
—
100
—
Units
ns
Units
ns
Units
ns
2004/09/08
ST8012
10. APPLICATION CIRCUIT
8051 serial transfer mode example
CLR CS
CLR SCLK
;SID=D.7
MOVBIT SID,D.7
; READ DATA FROM SID
SETB SCLK
CLR SCLK
;SID=D.6
MOVBIT SID,D.6
; READ DATA FROM SID
SETB SCLK
CLR SCLK
;SID=D.5
MOVBIT SID,D.5
; READ DATA FROM SID
SETB SCLK
CLR SCLK
;SID=D.4
MOVBIT SID,D.4
; READ DATA FROM SID
SETB SCLK
CLR SCLK
;SID=D.3
MOVBIT SID,D.3
; READ DATA FROM SID
SETB SCLK
CLR SCLK
;SID=D.2
MOVBIT SID,D.2
; READ DATA FROM SID
SETB SCLK
CLR SCLK
;SID=D.1
MOVBIT SID,D.1
; READ DATA FROM SID
SETB SCLK
CLR SCLK
;SID=D.0
MOVBIT SID,D.0
; READ DATA FROM SID
SETB SCLK
CLR SCLK
SETB CS
RET
V1.6
39/47
2004/09/08
ST8012
Application for Data Writing of segment mode
When ST8012 is as a segment mode driver , you must write ‘0’ data to the part of no display, when segments are not
all used . Example: the second segment have 120 segments ,but only use 100 segments then you must write 100
data that you need and right ,then you still write 20
be having
‘0’ data to fill the part of segments not used .Otherwise there will
errors, when you don’t write the 20 ‘0’ data to fill the part of no display segments.
A summary of ST8012 in segment mode you must write the number of segments data to fill the segments.(EX : use
two ST8012 to show the 64X132, then you must write the 80X160 data to fill the segments, use three ST8012 to
show 120X200 the you must write the 120X240 data to fill the segments……)
EX:
rite 44 Ń0ńdata
The 44 segments is
not use but must write
44 ‘0’ data.
V1.6
40/47
2004/09/08
ST8012
Application1 Circuit for Module of VLCD
No
Duty
Vlcd (v)
1
1/32
6,7
2
1/48
7,8
3
1/64
9,10
4
1/80
10,11
5
1/96
10,11
6
1/112
11,12
7
1/120
11,12
Note : The value of panel’s ITO resistor is 10Ω.
Application Timing Block:
Example 160X80
Frame and Lp falling edge (or rising
edge) must >10ns
Between Lp falling edge and XCK rising edge must >50ns
V1.6
41/47
2004/09/08
ST8012
Parallel vs. Serial Interface Diagram
S1
S2
S3
S4
S5
S6
S7
S8
S1
S1
S1
S1
1
2
3
4
5
6
7
8
15
15
15
16
LP
D3
1
5
9
13
14
14
15
15
1
5
9
D2
2
6
10
14
14
15
15
15
2
6
10
D1
3
7
11
15
14
15
15
15
3
7
11
D0
4
8
12
16
14
15
15
16
4
8
12
D0
1
2
3
4
V1.5
5
6
7
42/47
8
15
15
15
16
2004/04/05
ST8012
Application2 Circuit for Module
1/120 duty, 120 commons and 120 segments
V DD
FR
LP
EIO 1
FLM
V0
V1
V2
V3
V4
COMSEG0~
COMSEG11
EIO 2
XCK
R 100~3.3K
EIO2
V DD
V SS
120 X 120 DOT LCD PANEL
V0
V1
V2
V3
V4
XDISPOFF
Vdd
Vout
Vout
V DD
COMSEG0~
COMSEG11
ST 012
P/S
DI3~DI0
SEL 2
SEL 1
SEL 0
XDISPOFF
L/R
XCK
FR
LP
4
DI3~DI0
EIO1
P/S
DI3~DI0
SEL2
SEL1
SEL0
XDISPOFF
L/R
XCK
FR
LP
ST 012
V DD
V SS
VSS
1/80 duty, 80 commons and 160 segments
VDD
VDD
0 X 1 0 DOT LCD PANEL
V0
V1
V2
V3
V4
COMSEG0~
COMSEG11
EIO2
R 100~3.3K
EIO2
XDISPOFF
Vdd
V0
V1
V2
V3
V4
EIO1
VSS
COMSEG0~
COMSEG11
Vout
FLM
VDD
4
ST 012
XCK
FR
LP
P/S
DI3~DI0
SEL2
SEL1
SEL0
XDISPOFF
L/R
XCK
FR
LP
DI3~DI0
EIO1
P/S
DI3~DI0
SEL2
SEL1
SEL0
XDISPOFF
L/R
XCK
FR
LP
ST 012
VDD
VSS
V1.5
43/47
2004/04/05
ST8012
11.
PAD DIAGRAM
Chip size:5,840(µm) x 2,820(µm)
Pad size:80 µm x 80 µm
Origin: Chip center (0,0)
Pin Pitch:110 ~ 110 µm
Chip Thickness:19 mil (19X25.4µm=482.6µm)
COMSEG111
54
55
COMSEG11
VO T
CAP3P
CAP1N
CAP1P
CAP2P
CAP2N
CAP4P
CAP5P
V0
V1
V2
V3
V4
XRST
DI3
DI2
DI1
DI0
EIO1
EIO2
XCK
XDISPOFF
CS
SID
SCLK
FR
LP
VSS
SEL2
SEL1
SEL0
LR
PS
VDD
COMSEG0
COMSEG
COMSEG10
45 44 43 42 41 40 3 3 3 3 35 34 33 32 31 30 2 2 2 2 25 24 23 22 21 20 1 1 1 1 15 14 13 12 11 10
2
COMSEG110
1
ST 012
COMSEG32
132
131
COMSEG
COMSEG
COMSEG33
Substrate Connect to Vss.
V1.6
44/47
2004/09/08
ST8012
Unit:um
Pin.No
V1.6
Page pin name
X
Y
Pin.No
Page pin name
X
Y
1
COMSEG110
2810
1300
78
COMSEG33
-2810
-1300
2
COMSEG111
2650
1300
79
COMSEG34
-2650
-1300
3
COMSEG112
2510
1300
80
COMSEG35
-2510
-1300
4
COMSEG113
2380
1300
81
COMSEG36
-2380
-1300
5
COMSEG114
2260
1300
82
COMSEG37
-2260
-1300
6
COMSEG115
2150
1300
83
COMSEG38
-2150
-1300
7
COMSEG116
2050
1300
84
COMSEG39
-2050
-1300
8
COMSEG117
1950
1300
85
COMSEG40
-1950
-1300
9
COMSEG118
1850
1300
86
COMSEG41
-1850
-1300
10
COMSEG119
1750
1300
87
COMSEG42
-1750
-1300
11
VOUT
1650
1300
88
COMSEG43
-1650
-1300
12
CAP3P
1550
1300
89
COMSEG44
-1550
-1300
13
CAP1N
1450
1300
90
COMSEG45
-1450
-1300
14
CAP1P
1350
1300
91
COMSEG46
-1350
-1300
15
CAP2P
1250
1300
92
COMSEG47
-1250
-1300
16
CAP2N
1150
1300
93
COMSEG48
-1150
-1300
17
CAP4P
1050
1300
94
COMSEG49
-1050
-1300
18
CAP5P
950
1300
95
COMSEG50
-950
-1300
19
V0
850
1300
96
COMSEG51
-850
-1300
20
V1
750
1300
97
COMSEG52
-750
-1300
21
V2
650
1300
98
COMSEG53
-650
-1300
22
V3
550
1300
99
COMSEG54
-550
-1300
23
V4
450
1300
100
COMSEG55
-450
-1300
24
XRST
350
1300
101
COMSEG56
-350
-1300
25
DI3
250
1300
102
COMSEG57
-250
-1300
26
DI2
150
1300
103
COMSEG58
-150
-1300
27
DI1
50
1300
104
COMSEG59
-50
-1300
28
DI0
-50
1300
105
COMSEG60
50
-1300
29
EIO1
-150
1300
106
COMSEG61
150
-1300
30
EIO2
-250
1300
107
COMSEG62
250
-1300
31
XCK
-350
1300
108
COMSEG63
350
-1300
32
XDISPOFF
-450
1300
109
COMSEG64
450
-1300
33
XCS
-550
1300
110
COMSEG65
550
-1300
34
SID
-650
1300
111
COMSEG66
650
-1300
35
SCLK
-750
1300
112
COMSEG67
750
-1300
36
FR
-850
1300
113
COMSEG68
850
-1300
37
LP
-950
1300
114
COMSEG69
950
-1300
38
VSS
-1050
1300
115
COMSEG70
1050
-1300
39
SEL2
-1150
1300
116
COMSEG71
1150
-1300
40
SEL1
-1250
1300
117
COMSEG72
1250
-1300
41
SEL0
-1350
1300
118
COMSEG73
1350
-1300
42
LR
-1450
1300
119
COMSEG74
1450
-1300
43
PS
-1550
1300
120
COMSEG75
1550
-1300
44
VDD
-1650
1300
121
COMSEG76
1650
-1300
45
COMSEG0
-1750
1300
122
COMSEG77
1750
-1300
46
COMSEG1
-1850
1300
123
COMSEG78
1850
-1300
45/47
2004/09/08
ST8012
V1.6
47
COMSEG2
-1950
1300
124
COMSEG79
1950
-1300
48
COMSEG3
-2050
1300
125
COMSEG80
2050
-1300
49
COMSEG4
-2150
1300
126
COMSEG81
2150
-1300
50
COMSEG5
-2260
1300
127
COMSEG82
2260
-1300
51
COMSEG6
-2380
1300
128
COMSEG83
2380
-1300
52
COMSEG7
-2510
1300
129
COMSEG84
2510
-1300
53
COMSEG8
-2650
1300
130
COMSEG85
2650
-1300
54
COMSEG9
-2810
1300
131
COMSEG86
2810
-1300
55
COMSEG10
-2810
1160
132
COMSEG87
2810
-1160
56
COMSEG11
-2810
1030
133
COMSEG88
2810
-1030
57
COMSEG12
-2810
910
134
COMSEG89
2810
-910
58
COMSEG13
-2810
800
135
COMSEG90
2810
-800
59
COMSEG14
-2810
700
136
COMSEG91
2810
-700
60
COMSEG15
-2810
600
137
COMSEG92
2810
-600
61
COMSEG16
-2810
500
138
COMSEG93
2810
-500
62
COMSEG17
-2810
400
139
COMSEG94
2810
-400
63
COMSEG18
-2810
300
140
COMSEG95
2810
-300
64
COMSEG19
-2810
200
141
COMSEG96
2810
-200
65
COMSEG20
-2810
100
142
COMSEG97
2810
-100
66
COMSEG21
-2810
0
143
COMSEG98
2810
0
67
COMSEG22
-2810
-100
144
COMSEG99
2810
100
68
COMSEG23
-2810
-200
145
COMSEG100
2810
200
69
COMSEG24
-2810
-300
146
COMSEG101
2810
300
70
COMSEG25
-2810
-400
147
COMSEG102
2810
400
71
COMSEG26
-2810
-500
148
COMSEG103
2810
500
72
COMSEG27
-2810
-600
149
COMSEG104
2810
600
73
COMSEG28
-2810
-700
150
COMSEG105
2810
700
74
COMSEG29
-2810
-800
151
COMSEG106
2810
800
75
COMSEG30
-2810
-910
152
COMSEG107
2810
910
76
COMSEG31
-2810
-1030
153
COMSEG108
2810
1030
77
COMSEG32
-2810
-1160
154
COMSEG109
2810
1160
46/47
2004/09/08
ST8012
NOTE
2001.12/19 Modify the booster capacity
2002 1/8 Modify the serial command interface-timing block (p16)
2002 1/14 Modify the Register command code
2002 1/17 Modify the Reset Register command defined
2002 1/23 Modify the pin description defined and command interface unused mode (p17)
2002 2/22 Modify the Booster circuit diagram (p19)
2002 2/22 Modify the Mix Mode table(p10)、add the serial interface timing(p33、p34)、add pad
data(p37)
2002 2/22 Modify the CS SET (p34)
2002/3/20 Modify the serial interface, when in the serial interface the d0data.and add the AC
direction.
2002/4/3 Modify the pad location (P39)
2002/06/04 Modify the XREST ACTIVE (p2)
2002/06/010 Modify the Chip Size (P37)
2002/06/21 Modify common and segment mode pin description (P6~P8)
2002/07/01 Modify booster circuit (P20)
2002/07/09 Command interface unused mode (use the default value)(P18)
2002/10/14 Delete the software reset and cog package , add the regulator liner line , delete some
AC application.
2002/11/22 Modify the booster frequency V1.1A
2003/03/31 Modify booster turns off command (p28)
2003/04/04 Add the XCS used math.
2003/4/17 Modify the Application circuit
2003/6/17 Add Application circuit V1.3
2003/11/12 Add Pin Pitch value V1.4
2004/04/05 Add application timing block V1.5
2004/09/08 Define timing(tLSW) of Segment Mode. P33~P35 V1.6
The above information is the exclusive intellectual property of Sitronix Technology Corp. and shall not be disclosed, distributed or reproduced without
permission from Sitronix.
V1.6
47/47
2004/09/08