PHILIPS TDA8050

INTEGRATED CIRCUITS
DATA SHEET
TDA8050
QPSK transmitter
Product specification
Supersedes data of 1999 Jun 21
File under Integrated Circuits, IC02
1999 Dec 14
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
FEATURES
• PLL for RF frequency control
• Programmable gain
• Gain controlled output amplifier
• PLL controlled carrier frequency
• 3-wire bus and an output buffer.
• 3-wire transmission bus
Two PLLs are incorporated, the first PLL includes:
• 5 V supply voltage.
• Fixed main divider
APPLICATIONS
• Crystal oscillator and its programmable reference
divider
• QPSK modulation.
• Phase/frequency detector combined with a fixed charge
pump.
GENERAL DESCRIPTION
The second PLL includes:
The Quadrature Phase Shift Keying (QPSK) transmitter is
a monolithic bipolar IC dedicated for quadrature
modulation of the I and Q signals. It includes:
• 12-bit programmable divider
• Divide-by-four preamplifier
• Crystal oscillator and its programmable reference
divider
• Two double-balanced mixers
• Phase/frequency detector combined with a ‘clever’
charge pump which drives the tuning amplifier, including
9 V output.
• Symmetrical Voltage Controlled Oscillator (VCO) with
0 to 90 degree signal generation for modulation
• Phase-Locked Loop (PLL) for IF frequency control
• Conversion mixer
QUICK REFERENCE DATA
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC
supply voltage
4.75
5.00
5.25
V
fc
output centre frequency
5
−
40
MHz
Vo(max)
maximum output level
−
55
−
dBmV
fxtal
crystal frequency
1
−
4
MHz
fref(MOD)
reference frequency for modulator synthesizer
−
250
−
kHz
fstep
frequency step size for convertor synthesizer
50
−
500
kHz
Tamb
operating ambient temperature
0
−
70
°C
ORDERING INFORMATION
TYPE
NUMBER
TDA8050T
1999 Dec 14
PACKAGE
NAME
SO32
DESCRIPTION
plastic small outline package; 32 leads; body width 7.5 mm
2
VERSION
SOT287-1
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
13
18
26
IF_FILT
AGND1
9
RF_OUTC
RF_OUT
24 25
RF_INC
RF_IN
SW_CAP
28 27 30 31
MODULATOR
I_IN
I_INC
5
CLK
DATA
EN
3
LOCK
29
4
×
6
1
7
3
×
2
OUTEN
BUF_OUTC
BUF_OUT
×
8
90°
14
15
3-WIRE BUS TRANCEIVER
0°
DAC
1/2
16
TDA8050
23
CHARGE
PUMP
12
DIGITAL
PHASE
COMPARATOR
FIXED
MAIN DIVIDER
PROGRAMMABLE
MAIN DIVIDER
PROGRAMMABLE
REF DIVIDER
PROGRAMMABLE
REF DIVIDER
10
11
17
22
21
DIGITAL
PHASE
COMPARATOR
20
PROGRAMMABLE
CHARGE
PUMP
19
FCE181
CP_MOD
TKAMOD
OSC_IN
TKBMOD
TKBCONV
TUNECONV
CP_CONV
TKACONV
Product specification
Fig.1 Block diagram.
TDA8050
handbook, full pagewidth
Q_INC
32
AGND2
CONVERTER
Σ
Q_IN
AVCC2
Philips Semiconductors
AVCC1
QPSK transmitter
DGND
BLOCK DIAGRAM
1999 Dec 14
IF_FILTC
DVCC
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
PINNING
SYMBOL
PIN
DESCRIPTION
OUTEN
1
output enable
BUF_OUT
2
output amplifier balanced output
BUF_OUTC
3
output amplifier balanced output
AGND2
4
converter analog ground 2
I_IN
5
I balanced input
I_INC
6
I balanced input
Q_IN
7
Q balanced input
Q_INC
8
Q balanced input
AGND1
9
modulator analog ground 1
TKAMOD
10
modulator VCO tank circuit input 2
TKBMOD
11
modulator VCO tank circuit input 1
I_IN 5
CP_MOD
12
modulator charge pump output for
PLL loop filter
I_INC 6
27 RF_OUTC
Q_IN 7
26 AVCC1
DVCC
13
digital supply voltage
CLK
14
3-wire bus serial control clock
DATA
15
3-wire bus serial control data input
EN
16
3-wire bus serial control enable
TKAMOD 10
23 LOCK
OSC_IN
17
crystal oscillator input
TKBMOD 11
22 TKACONV
DGND
18
digital ground
CP_MOD 12
21 TKBCONV
CP_CONV
19
converter charge pump output for
PLL loop filter
TUNECONV
20
tuning voltage output for converter
VCO
DATA 15
EN 16
TKBCONV
21
converter VCO tank circuit input 1
TKACONV
22
converter VCO tank circuit input 2
LOCK
23
lock detect signal
IF_FILT
24
IF balanced output to filter
IF_FILTC
25
IF balanced output to filter
AVCC1
26
modulator analog supply voltage
RF_OUTC
27
RF balanced output to filter
RF_OUT
28
RF balanced output to filter
AVCC2
29
converter analog supply voltage
RF_IN
30
RF balanced input to programmable
amplifier
RF_INC
31
RF balanced input to programmable
amplifier
SW_CAP
32
switch capacitor
1999 Dec 14
handbook, halfpage
OUTEN 1
32 SW_CAP
BUF_OUT 2
31 RF_INC
BUF_OUTC 3
30 RF_IN
AGND2 4
29 AVCC2
28 RF_OUT
Q_INC 8
25 IF_FILTC
TDA8050
AGND1 9
24 IF_FILT
DVCC 13
20 TUNECONV
CLK 14
19 CP_CONV
18 DGND
17 OSC_IN
FCE182
Fig.2 Pin configuration.
4
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
FUNCTIONAL DESCRIPTION
The frequency of the second local oscillator operates in the
bandwidth 145 to 180 MHz and programmable due to a
PLL implemented in the circuit.
The I and Q are balanced analog signals at a level of
400 mV (p-p). These are mixed by two double balanced
mixers with the output signal generated by a first local
oscillator providing the modulated signal.
The VCO of both first and second local oscillators requires
an external LC tank circuit with two varicap diodes.
The modulated signal is then filtered by an IF filter. This
filtered signal together with a signal generated by a second
local oscillator is converted by a balanced mixer to
produce the QPSK signal.
The data to the PLL is loaded in bursts framed by the
signal EN. Programming rising clock edges and their
appropriate data bits are ignored until EN goes active
(LOW). The internal latches are updated with the latest
programming data when EN returns inactive (HIGH).
The last 14 bits are stored in the programming register.
The QPSK signal is amplified by a gain controlled amplifier
to a level suitable for transmission. The gain of the
controlled amplifier is bus controlled and this amplifier can
be disabled when not transmitting to provide signal
attenuation.
No check is made on the number of clock pulses received
during the time programming is enabled. A wrong active
clock edge will be generated causing a shift of data
bits, if EN goes HIGH while CLK is still LOW. At power
up, EN should be HIGH. The lock detector output LOCK is
HIGH when both PLLs are in lock.
The amplified signal is applied to an on-chip amplifier
having two balanced outputs (open collector) linked to two
chip resistors (values 150 Ω), and 9 V. The balanced
outputs are designed to drive a 2 : 1 transformer
(Siemens V944) with a 75 Ω load giving an output level
of 55 dBmV. The output frequency range of the transmitter
is 5 to 40 MHz.
The main divider ratio and the reference divider ratios are
provided via the serial bus. A control register controls the
Digital-to-Analog Converter (DAC), the output amplifier
and the charge pump currents (Tables 1, 2 and 3).
The frequency of the first local oscillator operates at twice
the frequency (i.e. 280 MHz) fixed by a Phase-Locked
Loop (PLL) implemented in the circuit.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
MIN.
−0.3
MAX.
UNIT
VCC
supply voltage
tsc
short-circuit time (every pin to VCC or GND)
−
10
s
Vmax
voltage on all pins except BUF_OUT, BUF_OUTC and TUNECONV
−0.3
VCC
V
Vo(tune)
output tuning voltage
−0.3
+30
V
Vo(buf)
output buffer voltage on pins BUF_OUT and BUF_OUTC
−
10
V
Ptot
maximum power dissipation
−
800
mW
Tamb
operating ambient temperature
0
70
°C
Tstg
storage temperature
−40
+150
°C
Tj(max)
junction temperature
−
150
°C
1999 Dec 14
5
+6.0
V
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
THERMAL CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
VALUE
UNIT
Rth(j-a)
thermal resistance from junction to ambient
in free air
63
K/W
HANDLING
Human Body Model (HBM): The IC pins withstand 2 kV except pins 27 and 28 (1750 V).
Machine Model (MM): The IC pins withstand 100 V.
CHARACTERISTICS
Measured in application circuit (see Fig.9) with the following conditions: VCC = 5 V; Tamb = 25 °C; all AC units are RMS
values; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
VCCA(mod)
modulator analog supply voltage
4.75
5
5.25
V
ICCA(mod)
modulator analog supply current
−
41
−
mA
VCCA(conv)
converter analog supply voltage
4.75
5
5.25
V
ICCA(conv)
converter analog supply current
−
48
−
mA
ICC(buf)
buffer output supply current
−
44
−
mA
VCCD
digital supply voltage
4.75
5
5.25
V
ICCD
digital supply current
−
22
−
mA
VCC(tune)
tuning supply voltage
−
−
9
V
Quadrature modulator I and Q inputs
VI(DC)
input DC level
over the complete range of
temperature
−
0.5VCC −
V
Vi(p-p)
signal input level (balanced)
(peak-to-peak value)
indicative
−
400
500
mV
fi(max)
I and Q maximum input frequency
indicative
−
10
−
MHz
Zi(dif)
differential input impedance
B(1dB)
1 dB amplifier bandwidth
−
4.4
−
kΩ
indicative
−
10
−
MHz
−
−
140
MHz
see Fig.3
−
−
±1
dB
−
−
±2
deg
−
−28
−
dBc
−
1.8
−
kΩ
−
−
280
MHz
MODULATOR
fc
output centre frequency
∆A
amplitude imbalance
∆Φ
phase imbalance
LO(sup)
LO suppression
Zo(dif)
differential output impedance
see Fig.3
MODULATOR VOLTAGE CONTROLLED OSCILLATOR
fosc(mod)
1999 Dec 14
oscillation frequency VCO
6
Philips Semiconductors
Product specification
QPSK transmitter
SYMBOL
PARAMETER
TDA8050
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Converter output
Vo
output level
fi = 30 MHz; Vi(dif) = 100 mV
at I and Q inputs
37.5
40
42.5
dBmV
∆Vo
output flatness
fi = 5 to 40 MHz;
Vi(dif) = 100 mV at I and Q
inputs
−
−
2
dB
fc
output centre frequency
5
−
40
MHz
Zo(dif)
differential output impedance
−
150
−
Ω
IM3
3rd-order intermodulation distortion see Fig.4
−
−
−35
dBc
H2
2nd-order harmonic of 5 to 40 MHz fi = 10 to 80 MHz;
signal
Vi(dif) = 100 mV at I and Q
inputs
−
−
−45
dBc
H3
3rd-order harmonic of 5 to 40 MHz
signal
fi = 15 to 120 MHz;
Vi(dif) = 100 mV at I and Q
inputs
−
−
−45
dBc
So
mixer spurious outputs of
5 to 40 MHz signal
fi = 5 to 40 MHz;
Vi(dif) = 100 mV at I and Q
inputs
−
−
−50
dBc
Converter voltage controlled oscillator
fosc(min)
minimum oscillation frequency
−
−
145
MHz
fosc(max)
maximum oscillation frequency
180
−
−
MHz
−
5.6
−
kΩ
−
−
2
dB
32
−
−
dB
−
55
−
dBmV
Programmable gain and output buffer; note 1
Zi(dif)
differential input impedance
∆G
output level step size
∆Bufo
output level adjust range
Vo
output level
∆Vo
output flatness
fi = 5 to 40 MHz;
Vi = 30 dBmV sine wave;
DAC = 28
−
−
2
dB
VO(ENL)
output controlled enable LOW
output buffer on
−
−
0.8
V
Vi = 30 dBmV sine wave;
40 MHz at pin
RF_IN and RF_INC;
DAC = 0 to 31
VO(ENH)
output controlled enable HIGH
output buffer off
2.4
−
−
V
ISO
disable isolation
Vi(dif) = 100 mV;
Vo = 55 dBmV; DAC = 28;
fi = 40 MHz; OE = 0.5
−35
−
−
dBc
G(max)
maximum gain
see Fig.5
−
22
−
dB
Vo(1dB)
1 dB compression point
see Fig.5
60
−
−
dBmV
H2
2nd-order harmonic of 5 to 40 MHz see Fig.6
signal
fi = 10 to 40 MHz
−
−
−45
dBc
fi= 54 to 120 MHz
−
−
−35
dBc
1999 Dec 14
7
Philips Semiconductors
Product specification
QPSK transmitter
SYMBOL
H3
TDA8050
PARAMETER
3rd-order harmonic of 5 to 40 MHz
signal
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Fig.6
fi = 15 to 40 MHz
−
−
−45
dBc
fi = 54 to 120 MHz
−
−
−35
dBc
at 10 kHz
−
−70
−
dBc/Hz
at 100 kHz
−
−90
−
dBc/Hz
Overall; note 1
Φosc
phase noise
note 2;
So
spurious signals of 5 to 40 MHz
signal
fi = 5 to 40 MHz;
Vi(dif) = 100 mV at I and Q
inputs; Vo = 30 to 55 dBmV
−
−
−50
dBc
ISOtot
total isolation at I/Q mid-range
see Fig.7
−
−
−65
dBc
C/N
carrier to noise ratio at final output
at 2 MHz from carrier
Vi(dif) = 100 mV
Vo = 35 to 55 dBmV;
fi = 26.5 MHz
−
113
−
dBc/Hz
4
MHz
Crystal oscillator
fxtal
crystal frequency
note 3
1
−
Zi
input impedance
fxtal = 4 MHz
600
1200
−
Ω
VI(DC)
DC input level
−
2.9
−
V
kHz
Modulator synthesizer
fref(mod)
reference frequency
−
250
−
RDR1
reference divider ratio
programmable
4
−
16
ND1
fixed main divider ratio
−
1120
−
Icp
charge-pump current
−
0.30
−
mA
kHz
fixed
Converter synthesizer
fstep
frequency step size
50
−
500
RD2
fixed reference divider ratio
−
2
−
RDR2
reference divider ratio
programmable
4
−
160
ND2
fixed main divider ratio
−
4
−
NDR2
programmable main divider ratio
290
−
3600
see Table 4
see Table 4
Three wire bus
VIL
LOW-level input voltage
−
−
0.8
V
VIH
HIGH-level input voltage
2.4
−
−
V
Lock detect pin
Vo(lock)
output voltage (lock)
−
5
−
V
Vo(unlock)
output voltage (unlock)
−
0.02
−
V
1999 Dec 14
8
Philips Semiconductors
Product specification
QPSK transmitter
SYMBOL
TDA8050
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Serial control clock
fclk
clock frequency
−
330
−
kHz
tsu
input data to CLK set-up time
see Fig.3
−
2
−
µs
th(CLK)
input data to CLK hold time
see Fig.3
−
1
−
µs
td(strt)
delay to rising clock edge
see Fig.3
−
3
−
µs
td(stp)
delay from last clock edge
see Fig.3
−
3
−
µs
Notes
1. All specification points of the output section and the overall circuit are measured after the 2 : 1 transformer
(siemens V944) connected with a load of 75 Ω.
2. Overall phase noise converter: Icp = 0.36 mA; fref = 12.5 kHz; VI(diff) = 100 mV; VO(diff) = 100 mV; VO = 55 dBmV;
DAC = 28; fi = 26.5 MHz.
3. Crystal oscillator; the crystal oscillator uses a 4, 2 or 1 MHz crystal in series with a capacitor. The crystal is serial
resonant with load a capacitance of 18 to 20 pF. The connection to VCC is preferred but can also be to GND.
Notes to the characteristics
FCE183
handbook, full pagewidth
IF_FILT
imbalance
LO(sup)
measure 2 f i(Q)
measure 1 f i(I)
frequency
The amplitude imbalance and the LO suppression are measured in the spectrum of the signal measured at the output IF_FILT and are defined in the
following conditions:
Measure 1: I input frequency = 500 kHz. I input level = 400 mV (p-p) sine wave. Unused input as 0 V differential.
Measure 2: Q input frequency = 500 kHz. Q input level = 400 mV (p-p) sine wave. Unused input as 0 V differential.
Fig.3 Imbalance and LO suppression.
1999 Dec 14
9
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
handbook, full pagewidth
I_IN
50 Ω
I_INC
50 Ω
500 kHz
39.1
39.7
RF_OUTC
Q_IN
Q_INC
300 kHz
39.5
RF_OUT
39.9
40
40.1
40.3
40.5
40.7
f (MHz)
FCE184
3rd-order intermodulation distortion;
Two tones of 260 mV (p-p) at each I and Q input:
–4
-----400
20
V ( av ) = ---------- × 10 = 128 mV ( RMS )
2
2 sine waves with a total RMS values of 128 mV give:
2
2 × x = 128
128
x = ---------- = 90 mV (RMS) = 260 mV (p-p) and f1 = 300 kHz,
2
f2 = 500 kHz and fRF = 40 MHz.
Fig.4 3rd-order intermodulation distortion in I and Q channels (IM3).
1999 Dec 14
10
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Siemens V944
handbook, full pagewidth
Vo2
50 Ω
RF_IN
BUF_OUT
150 Ω
75 Ω
9V
RF_INC
BUF_OUTC
150 Ω
gain
(dB)
Gmax
Gmax − 1
Vo(−1 dB)
Vo
FCE185
DAC = 31.
f = 26.5 MHz.
Vi is variable to have a variable output voltage.
Fig.5 Maximum gain and compression point.
Siemens V944
handbook, full pagewidth
RF_IN
BUF_OUT
150 Ω
BUF_OUTC
150 Ω
9V
RF_INC
75 Ω
FCE186
DAC = 28.
fi = 5 to 40 MHz.
Vi = 200 mV sine wave.
Vo = 55 dBmV (RMS value).
Fig.6 Harmonics of output section H2 and H3.
1999 Dec 14
11
Philips Semiconductors
Product specification
QPSK transmitter
handbook, full pagewidth
TDA8050
OUTEN = 0 V
Siemens V944
Vo1
I_IN
Vi(dif) = 100 mV
BUF_OUT
150 Ω
9V
I_INC
BUF_OUTC
75 Ω
150 Ω
Q_IN
Vi(dif) = 100 mV
Q_INC
DAC = 28
OUTEN = 5 V
Siemens V944
Vo2
I_IN
BUF_OUT
150 Ω
BUF_OUTC
150 Ω
0V
9V
I_INC
75 Ω
Q_IN
0V
Q_INC
DAC = 28
FCE187
ISOtot = Vo1 (dB) − Vo2 (dB).
Fig.7 Isolation total.
1999 Dec 14
12
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
APPLICATION INFORMATION
t h(CLK)
t su
handbook, full pagewidth
T cy
CLK
DATA
EN
t d(strt)
t d(stp)
MBL113
Fig.8 3-wire bus timing.
Table 1
Data format; note 1
DATA
D11
first in
D10
D9
D8
Modulator reference divider
ratio
X
X
MP1(2) MP0(2)
D7
D6
ADDRESS
D5
D4
D3
D2
D1
D0
AD1
AD0
last in
R3
R2
R1
R0
0
1
DAC2
DAC1
DAC0
1
0
P2
P1
P0
1
1
Converter reference divider ratio
R7
R6
R5
R4
Control register
X
X
X
OEN(3) CR2(4)
CR1
CR0(4) DAC4(5) DAC3
Main divider ratio
P11
P10
P9
P8
P7
P6
P5
P4
P3
Notes
1. X = don’t care.
2. MP1 and MP0: modulator reference divider ratio (see Table 2).
3. When OEN (output enable) is at logic 0, output is disabled, at logic 1 output is enabled.
4. CR2 to CR0: converter synthesizer charge pump current (see Table 3).
5. When DAC4 to DAC0 is at logic 0 minimum gain is programmed, at logic 1 maximum gain is programmed.
1999 Dec 14
13
Philips Semiconductors
Product specification
QPSK transmitter
Table 2
Table 3
TDA8050
Modulator reference divider ratio
MP1
MP0
PROGRAMMED RATIO
1
1
4
1
0
8
0
1
16
Converter synthesizer charge pump current
CR2
CR1
CR0
LOCK_CONV(1)
0
0
0
0
1.2
0
0
0
1
0.36
0
0
1
0
0.36
0
0
1
1
0.1
0
1
0
−
0.1
0
1
1
−
0.36
1
0
0
−
1.2
Icp (mA)
Note
1. LOCK_CONV is an internal signal.
When at logic 0 converter PLL is out-of-lock. When at logic 1 converter PLL is in-lock.
Table 4
Converter synthesizer: fcomp = fosc/RD
fosc\fcomp
12.5 kHz
25 kHz
50 kHz
125 kHz
1 MHz
80
40
20
8
4 MHz
320
160
80
32
Table 5
Converter synthesizer; ND = 4; flo = ND × NDR × fcomp = NDR × step
flo\step
50 kHz
100 kHz
200 kHz
500 kHz
145 MHz
2900
1450
725
290
180 MHz
3600
1800
900
360
1999 Dec 14
14
Philips Semiconductors
Product specification
QPSK transmitter
handbook, full pagewidth
TDA8050
+5 V
OUTEN
32
1
SW_CAP
100 pF
Siemens
V944
150 Ω
BUF_OUT
31
2
RF_INC
100 nF
+9 V
150 Ω
BUF_OUTC
30
3
680 Ω
RF_IN
100 nF
AGND2
100 nF
I_IN
4
29
5
28
AVCC2
47 pF
+5 V
390 nH
RF_OUT
100 nF
100 Ω
100 nF
I_INC
27
6
390 nH
27 pF
RF_OUTC
100 nF
100 nF
Q_IN
7
26
8
25
AVCC1
+5 V
100 Ω
100 nF
Q_INC
IF_FILTC
68 nH
TDA8050
AGND1
24
9
BB133
(2×)
10 kΩ
140 MHz
15 pF
22 kΩ
10
pF
TKAMOD
22 nH
TKBMOD
10 kΩ
23
10
LOCK
BB132
10 kΩ
(2×)
22
11
TKACONV
22 kΩ
370
pF
39 pF
CP_MOD
12
21
13
20
22 kΩ
8.2
pF
56 nH
15 pF
330
pF
18 pF
IF_FILT
TKBCONV
39 pF
10 kΩ
22 kΩ
18 kΩ
8.2 nF
DVCC
10 kΩ
TUNECONV
330 pF
CLK
DATA
EN
14
19
15
18
17
16
+9 V
100
nF
DGND
OSC_IN
4 MHz
MBK982
Fig.9 Application diagram.
15
27 kΩ
10 nF
CP_CONV
18 pF
1999 Dec 14
820 pF
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
INTERNAL PIN CONFIGURATION
SYMBOL
PIN
DESCRIPTION
DC VOLTAGE
OUTEN
1
−
SW_CAP
32
1.7 V
1
32
FCE004
BUF_OUT
2
BUF_OUTC
3
5.8 V
2
5.8 V
3
FCE005
AGND2
4
0
4
FCE023
I_IN
5
2.5 V
I_INC
6
2.5 V
5
6
FCE006
1999 Dec 14
16
Philips Semiconductors
Product specification
QPSK transmitter
SYMBOL
TDA8050
PIN
DESCRIPTION
DC VOLTAGE
Q_IN
7
2.5 V
Q_INC
8
2.5 V
7
8
FCE007
AGND1
9
0V
9
FCE008
TKAMOD
10
3.1 V
TKBMOD
11
3.1 V
10
CP_MOD
FCE009
12
11
2.1 V
12
FCE010
DVCC
1999 Dec 14
13
supply voltage
5V
17
Philips Semiconductors
Product specification
QPSK transmitter
SYMBOL
CLK
TDA8050
PIN
DESCRIPTION
DC VOLTAGE
−
14
14
FCE011
DATA
−
15
15
FCE012
EN
−
16
16
FCE013
OSC_IN
17
2.9 V
VCC
17
FCE014
DGND
18
0
18
FCE015
1999 Dec 14
18
Philips Semiconductors
Product specification
QPSK transmitter
SYMBOL
CP_CONV
TDA8050
PIN
DESCRIPTION
DC VOLTAGE
19
2.1 V
down
VCC
19
up
FCE016
TUNECONV
20
VVT
20
FCE017
TKBCONV
21
3.1 V
TKACONV
22
3.1 V
21
LOCK
FCE018
23
0V
5V
23
FCE019
1999 Dec 14
22
19
Philips Semiconductors
Product specification
QPSK transmitter
SYMBOL
TDA8050
PIN
DESCRIPTION
DC VOLTAGE
IF_FILT
24
2.1 V
IF_FILTC
25
2.1 V
25
24
FCE020
AVCC1
26
RF_OUTC
27
supply voltage
3.7 V
5V
RF_OUT
28
3.7 V
28
27
FCE021
AVCC2
29
supply voltage
5V
RF_IN
30
2.1 V
RF_INC
31
2.1 V
30
31
FCE022
1999 Dec 14
20
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
PACKAGE OUTLINE
SO32: plastic small outline package; 32 leads; body width 7.5 mm
SOT287-1
D
E
A
X
c
y
HE
v M A
Z
17
32
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
16
1
0
detail X
w M
bp
e
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
2.65
0.3
0.1
2.45
2.25
0.25
0.49
0.36
0.27
0.18
20.7
20.3
7.6
7.4
1.27
10.65
10.00
1.4
1.1
0.4
1.2
1.0
0.25
0.25
0.1
0.95
0.55
inches
0.10
0.012 0.096
0.004 0.086
0.01
0.02
0.01
0.011
0.007
0.81
0.80
0.30
0.29
0.050
0.419
0.394
0.055
0.043
0.016
0.047
0.039
0.01
0.01
0.004
0.037
0.022
θ
8o
0o
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
95-01-25
97-05-22
SOT287-1
1999 Dec 14
EUROPEAN
PROJECTION
21
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
SOLDERING
Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
1999 Dec 14
22
Philips Semiconductors
Product specification
QPSK transmitter
TDA8050
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
BGA, SQFP
not suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS not
PLCC(3), SO, SOJ
suitable
suitable(2)
suitable
suitable
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1999 Dec 14
23
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 68
© Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
545004/25/04/pp24
Date of release: 1999
Dec 14
Document order number:
9397 750 06555