PHILIPS UMA1022M

INTEGRATED CIRCUITS
DATA SHEET
UMA1022M
Low cost dual frequency
synthesizer for radio telephones
Product specification
Supersedes data of 1998 May 15
File under Integrated Circuits, IC17
1998 Dec 09
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
The synthesizers operate at RF input frequencies up to
2.1 GHz and 550 MHz. All divider ratios are supplied via a
3-wire serial programming bus. The reference divider uses
a common, fully programmable part and a separate
subdivider section. In this way the comparison frequencies
are related to each other allowing optimum isolation
between charge pump pulses.
FEATURES
• Low phase noise
• Low current from 3 V supply
• Fully programmable dividers
• 3-line serial interface bus
• Input reference buffer configurable as an oscillator with
external crystal resonator
Separate power and ground pins are provided to the
analog (charge pump, prescaler) and digital (CMOS)
circuits. An independent supply for the crystal oscillator
section allows maximum frequency stability. The ground
leads should be externally short-circuited to prevent large
currents flowing across the die and thus causing damage.
VDD and VDDX must be at the same potential. VCCA and
VCCB must be equal to each other and equal to or greater
than VDD (e.g. VDD = 3 V and VCCA = 5.5 V for wider VCO
control voltage range).
• Wide compliance voltage charge pump outputs
• Two power-down input control pins.
APPLICATIONS
• 900 MHz and 2 GHz digital radio telephones
• Portable battery-powered radio equipment.
The charge pump currents (phase detector gain) are fixed
by internal resistances and controlled by the serial
interface. Only passive loop filters are necessary;
the charge pumps function within a wide voltage
compliance range to improve the overall system
performance.
GENERAL DESCRIPTION
The UMA1022M BICMOS device integrates prescalers,
programmable dividers, a crystal oscillator/buffer and
phase comparators to implement two phase-locked loops.
The device is designed to operate from 3 NiCd or a single
LiIon cell in pocket phones, or from an external 3 V supply.
Suitable pin layout is chosen to minimize coupling and
interference between signals entering or leaving the chip.
QUICK REFERENCE DATA
SYMBOL
VDD
PARAMETER
digital supply voltage
VCCA, VCCB analog supply voltages
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCCA = VCCB ≥ VDD
2.7
3.0
5.5
V
VCCA = VCCB ≥ VDD
2.7
3.0
5.5
V
2.7
3.0
5.5
V
XON = 0
−
14.65
−
mA
XON = 1
VDDX
crystal reference supply voltage
VDDX = VDD
Itot
all supply currents
(IDD + ICCA + ICCB + IDDX) in active
mode
E = 1; VCCA = VCCB = 3.0 V;
VDDX = VDD = 3.0 V
−
15.9
−
mA
Itot(pd)
total supply currents in power-down
mode
−
40
−
µA
fRF
RF input frequency
300
−
2100
MHz
fIF
IF input frequency
VCCA = VCCB ≤ 4.0 V
50
−
550
MHz
50
−
400
MHz
fxtal
crystal reference oscillator frequency
3
−
20
MHz
fPCmax
maximum loop comparison frequency
−
2000
−
kHz
Tamb
operating ambient temperature
−30
−
+85
°C
1998 Dec 09
2
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
UMA1022M
DESCRIPTION
SSOP20
VERSION
plastic shrink small outline package; 20 leads; body width 4.4 mm
SOT266-1
BLOCK DIAGRAM
CPA
handbook, full pagewidth
VCCA
17
RFA
16
AGND
14
15
RF CHARGE PUMP
UMA1022M
XOUT
VDDX
XIN
XOUT
13
12
RF PRESCALER AND DIVIDER
RF PHASE DETECTOR
RF DIVIDER LATCH
18
11
19
20
1
XIN
XGND
VDD
ONA
COMMON
REFERENCE
DIVIDER
MUX
REFERENCE
SUBDIVIDER
MUX
REFERENCE
DIVIDER
LATCH
SERIAL
BUS
10
9
2
3
IF PHASE DETECTOR
IF DIVIDER LATCH
IF PRESCALER AND DIVIDER
IF CHARGE PUMP
4
5
6
CPB
VCCB
IFB
7
8
MGE627
ONB
Fig.1 Block diagram.
1998 Dec 09
3
DGND
CLK
DATA
E
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
PINNING
SYMBOL
PIN
DESCRIPTION
XIN
1
inverting crystal reference input
XGND
2
ground for crystal oscillator circuits
XOUT
3
crystal oscillator buffer output
CPB
4
IF synthesizer charge pump output
VCCB
5
analog supply to IF synthesizer
IFB
6
IF VCO main divider input
ONB
7
IF power-on input; ONB = HIGH
means IF synthesizer is active
DGND
8
digital circuits ground
E
9
programming bus enable input
DATA
10
programming bus data input
CLK
11
programming bus clock input
VDD
12
digital circuits supply voltage
ONA
13
RF power-on input; ONA = HIGH
means RF synthesizer is active
AGND
14
analog circuits ground
RFA
15
RF VCO main divider input
VCCA
16
analog supply to RF synthesizer
CPA
17
RF synthesizer charge pump output
XOUT
18
inverting oscillator buffer output
VDDX
19
supply voltage to crystal oscillator
circuits
XIN
20
non-inverting crystal reference input
1998 Dec 09
handbook, halfpage
XIN
1
20 XIN
XGND
2
19 VDDX
XOUT
3
18 XOUT
CPB
4
17 CPA
VCCB
5
IFB
6
15
RFA
ONB
7
14
AGND
DGND
8
13
ONA
E
9
12
VDD
UMA1022M
16 VCCA
11 CLK
DATA 10
MGE626
Fig.2 Pin configuration.
4
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
FUNCTIONAL DESCRIPTION
Phase comparators
Main dividers
The phase detectors are driven by the output edges
selected by the main and reference dividers. Each
generates lead and lag signals to control the appropriate
charge pump. The pumps output current pulses appear at
pins CPA (RF synthesizer) and CPB (IF synthesizer).
The current pulse duration is at least equal to the
difference in time of arrival of the edges from the two
dividers. If the main divider edge arrives first, CPA or CPB
sink current. If the reference divider edge arrives first, CPA
or CPB source current. For correct PLL operation the
VCOs need to have a positive frequency/voltage control
slope.
The main dividers are clocked at pin RFA by the RF
oscillator signal and at pin IFB by the IF oscillator signal.
The inputs are AC coupled through external capacitors.
Input impedances are high, dominated by parasitic
package capacitances, so matching is off-chip.
The sensitive dividers operate with signal levels from
35 to 225 mV (RMS), at frequencies up to 2.1 GHz
(RF part) and up to 550 MHz (IF part). Both include
programmable bipolar prescalers followed by CMOS
counters. The RF main divider allows programmable ratios
from 512 to 65535; the IF blocks accept values between
128 and 16383.
The currents at CPA and CPB are programmed via the
serial bus as multiples of an internally-set reference
current. The passage into power-down mode is
synchronized with respect to the phase detector to prevent
output current pulses being interrupted. Additional circuitry
is included to ensure that the gain of the phase
comparators remains linear even for small phase errors.
Crystal oscillator
A fully differential low-noise amplifier/buffer is integrated
providing outputs to drive other circuits, and to build a
crystal oscillator; only needed are an external resonance
circuit and tuning elements (temperature compensation).
A bus controlled power-down mode disables the low-noise
amplifier to reduce current if not needed.
Serial programming bus
A simple 3-line unidirectional serial bus is used to program
the circuit. The 3 lines are DATA, clock (CLK) and enable
(E). The data sent to the device is loaded in bursts framed
by E. Programming clock edges and their appropriate data
bits are ignored until E goes active LOW. The programmed
information is loaded into the addressed latch when E
returns HIGH. During normal operation, E should be kept
HIGH. Only the last 19 bits serially clocked into the device
are retained within the programming register.
The normal differential input pins drive a clock buffer to
provide edges to the programmable reference divider at
frequencies up to 20 MHz. The inputs are AC coupled
through external capacitors, and operate with signals
down to 35 mV (RMS) and up to 0.5 V (RMS).
Various crystal oscillator structures can be built using the
amplifier. By coupling one output back to the appropriate
input through the resonator, and decoupling the other input
to ground, the second output becomes available to deliver
the reference frequency to other circuits.
Additional leading bits are ignored, and no check is made
on the number of clock pulses. The NMOS-rich design
uses virtually no current when the bus is inactive;
power-up is initiated when enable is taken LOW, and
power-down occurs a short time after enable returns
HIGH. Bus activity is allowed when either synthesizer is
active or in power-down (ONA and ONB inputs LOW)
mode. Fully static CMOS registers retain programmed
data whatever the power-down state, as long as the supply
voltage is present.
Reference dividers
A first common divider circuit produces an output
frequency for RF or IF synthesizer phase comparison,
depending on the P/A bit. It drives a second independent
divider, which delivers the reference edge to the IF or RF
synthesizer phase comparator. When P/A is logic 1, the
output of the subdivider is connected to the RF phase
comparator, whereas the output of the common divider is
connected to the IF phase detector.
The phase comparators run at related frequencies with a
controlled phase difference to avoid interference when
in-lock. The common 10-bit section permits divide ratios
from 8 to 1023; the second subdivider allows phase
comparison frequency ratios between 1 and 16. Table 2
indicates how to program the corresponding bits to get the
wanted ratio.
1998 Dec 09
5
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
Data format
Power-down mode
The leading bits (dt15 to dt0) make up the data field, while
the trailing three bits (ad2 to ad0) comprise an address
field. The UMA1022M uses 4 of the 8 available addresses.
The data format is shown in Table 1. The first bit entered
is dt15, the last bit is ad0. For the divider ratios, the first
bits entered (P0 and R0) are the Least Significant Bits
(LSB). This is different from previous Philips
synthesizers.
The RF and IF synthesizers are on when respectively the
input signal ONA and ONB are HIGH. When turned on, the
dividers and phase detector are synchronized to avoid
random phase errors. When turned off, the phase detector
is synchronized to avoid interrupting charge pump pulses.
The UMA1022M has a very low current consumption in the
power-down mode.
The trailing address bits are decoded on the rising edge of
E. This produces an internal load pulse to store the data in
the addressed latch. To avoid erroneous divider ratios, the
load pulse is not allowed during data reads by the
frequency dividers. This condition is guaranteed by
respecting a minimum E pulse width after data
transfer.The test register bits should not normally be
programmed active (HIGH); normal operation requires
them set LOW. When the supply voltage is established an
internal power-up initialization pulse is generated to
preconfigure the circuit state. Production testing does not
verify that all bits are preconfigured correctly.
Table 1
Bit allocation; note 1
FIRST IN
REGISTER BIT ALLOCATION
LAST IN
DATA FIELD
dt15 dt14 dt13 dt12 dt11 dt10
Test bits(2)
CPI
P0(6)
X
X
S/D
dt9
XON(3)
ADDRESS
dt8 dt7 dt6 dt5
X
X
X
X
dt4
P/A(4)
dt3 dt2 dt1
X
X
X
A0(6)
X
X
X
ad2
ad1
ad0
0
1
1
P15
0
0
0
R9
0
0
1
A13
0
1
0
REFDIV2(5)
RF synthesizer main divider coefficient
R0(6)
dt0
reference divider coefficient
IF synthesizer main divider coefficient
Notes
1. X = don’t care.
2. The test bits (at address 011) should not be programmed with any other value except all zeros for normal operation.
3. Bit XON = power-on of crystal oscillator low-noise amplifier; logic 1 turns on circuit block.
4. Bit P/A = 1 selects the output of the reference subdivider to the RF synthesizer and the output of the common
reference divider to the IF synthesizer.
5. The coefficient REFDIV2 (4 bits) selects the phase comparison ratio (1 to 16) between IF and RF synthesizers
(see Table 2).
6. P0 is the LSB of the RF main divider coefficient; R0 is the LSB of the reference divider coefficient; A0 is the LSB of
the IF main divider.
1998 Dec 09
6
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
Table 2
UMA1022M
Programming the coefficient REFDIV2 for reference subdivider
dt3 (LSB)
dt2
dt1
dt0 (MSB)
REFDIV2
0
0
0
0
1
1
0
0
0
2
0
1
0
0
3
1
1
0
0
4
0
0
1
0
5
1
0
1
0
6
0
1
1
0
7
1
1
1
0
8
0
0
0
1
9
1
0
0
1
10
0
1
0
1
11
1
1
0
1
12
0
0
1
1
13
1
0
1
1
14
0
1
1
1
15
1
1
1
1
16
Table 3
RF and IF synthesizer nominal charge pump currents (gain)
1998 Dec 09
CPI
SINGLE/DOUBLE
ICPA (µA)
ICPB (µA)
0
0
470
470
0
1
840
840
1
0
1410
470
1
1
2480
840
7
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
VDD, VDDX
digital and crystal reference supply voltages
−0.3
+5.5
V
VCCA, VCCB
analog charge pump supply voltages
−0.3
+5.5
V
VC − VD
difference in voltage between analog and digital supplies
−0.3
+5.5
V
Vn
voltage
at pins 7, 9, 10, 11 and 13
−0.3
VDD + 0.3
V
at pins 1, 3, and 20
−0.3
VDDX + 0.3
V
at pins 4 and 6
−0.3
VCCB + 0.3
V
at pins 15 and 17
−0.3
VCCA + 0.3
V
∆VGND
difference in voltage between any of DGND, AGND and
XGND (these pins should be connected together)
−0.3
+0.3
V
Ptot
total power dissipation
−
120
mW
Tstg
IC storage temperature
−55
+125
°C
Tamb
operating ambient temperature
−30
+85
°C
Tj(max)
maximum junction temperature
−
150
°C
HANDLING
All pins withstand class 1 ESD test in accordance with “EIA/JESD22-A114-A” electrostatic discharge (ESD) sensitivity
testing Human Body Model (HBM).
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
1998 Dec 09
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
8
in free air
VALUE
UNIT
120
K/W
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
CHARACTERISTICS
All values refer to the typical measurement circuit; Tamb = 25 °C; VDD = VDDX = 2.7 to 5.5 V; VCCA = VCCB = 2.7 to 5.5 V;
VCCA = VCCB ≥ VDD; unless otherwise specified. Characteristics for which only a typical value is given are not tested.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies; pins 5, 12, 16 and 19
VDD, VDDX
digital and crystal reference supply
voltages
VDD = VDDX;
VCCA = VCCB ≥ VDD
2.7
3.0
5.5
V
VCCA, VCCB charge pump supply voltages
VCCA = VCCB ≥ VDD
2.7
3.0
5.5
V
IDD
synthesizer digital supply current
VDD = 3 V; E = 1;
ONA and ONB = 1
−
1.5
2.1
mA
IDDX1
reference block supply current
VDDX = 3 V; XON = 0
−
0.25
0.4
mA
IDDX2
crystal oscillator and buffer currents
VDDX = 3 V; XON = 1
−
1.5
1.8
mA
ICCA
RF synthesizer charge pump and
prescaler supply currents
VCCA = 3 V;
ONA and ONB = 1
−
8.1
9.8
mA
ICCB
IF synthesizer charge pump and
prescaler supply currents
VCCB = 3 V;
ONA and ONB = 1
−
4.8
5.7
mA
Itot(pd)
total supply currents
E = VDD; CLK and
(ICCA(pd) + IDD(pd) + ICCB(pd) + IDDX(pd)) DATA = 0 V or VDD;
in power-down mode
ONA and ONB = 0;
XON = 0
−
40
80
µA
300
−
2100
MHz
fRF = 600 to 2100 MHz
35
−
225
mV
fRF = 300 to 600 MHz
70
−
225
mV
512
−
65535
−
60
−
Ω
−
2
−
pF
RF main divider input; pin 15
fRF
RF input frequency
VRF(rms)
AC-coupled input signal level (RMS
value)
Rm
main divider ratio
Zi
input impedance (real part)
Ci
pin input capacitance
fRF = 2 GHz
IF main divider input; pin 6
fIF
VIF(rms)
IF input frequency
AC-coupled input signal level
(RMS value)
Rm
main divider ratio
Zi
input impedance (real part)
Ci
pin input capacitance
1998 Dec 09
VCCA = VCCB ≤ 4.0 V
50
−
550
MHz
50
−
400
MHz
35
−
225
mV
fIF = 100 to 150 MHz
50
−
225
mV
fIF = 50 to 100 MHz
100
−
225
mV
128
−
16383
fIF = 150 to 550 MHz
fIF = 400 MHz
9
−
60
−
Ω
−
2
−
pF
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
SYMBOL
PARAMETER
UMA1022M
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Synthesizers reference divider input; pins 1 and 20
fxtal
crystal reference oscillator frequency
Vxtal(rms)
sinusoidal input signal level between
pins 1 and 20 (RMS value)
3
−
20
MHz
fxtal = 6 to 20 MHz
35
−
250
mV
fxtal = 3 to 6 MHz
70
−
250
mV
fxtal = 6 to 20 MHz
70
−
500
mV
fxtal = 3 to 6 MHz
mV
single-ended;
differential;
140
−
500
Rrefc
common reference division ratio
8
−
1023
Rrefa
reference subdivider division ratio
1
−
16
Zi
input impedance (real part) per pin
fxtal = 10 MHz; XON = 1 −
4
−
kΩ
−
2
−
pF
−
4.5
−
dB
−
2000 −
Ci
typical pin input capacitance
NF
small signal differential input noise
figure
matched to a 4 kΩ
source; XON = 1
Phase detectors
fPCmax
maximum loop comparison
frequency
kHz
Charge pump outputs; pins 4 and 17
VCPA
output voltage compliance range;
RF synthesizer
0.4
−
VCCA − 0.4 V
VCPB
output voltage compliance range;
IF synthesizer
0.4
−
VCCB − 0.4 V
Iocp(err)
charge pump output current error
−25
−
+25
%
Imatch
sink-to-source current matching
−
±5
−
%
ILcp
charge pump off leakage current
−5
±1
+5
nA
note 1
VCPA = 1⁄2VCCA;
VCPB = 1⁄2VCCB
Phase noise
N900
RF synthesizer’s contribution to
fxtal = 13 MHz;
close-in phase noise of 0.9 GHz VCO Vxtal = 0 dBm;
signal inside closed-loop bandwidth
fPC = 200 kHz
−
−86
−
dBc/Hz
N1800
RF synthesizer’s contribution to
fxtal = 13 MHz;
close-in phase noise of 1.8 GHz VCO Vxtal = 0 dBm;
signal inside closed-loop bandwidth
fPC = 200 kHz
−
−80
−
dBc/Hz
N180
IF synthesizer’s contribution
180 MHz VCO signal inside
closed-loop bandwidth
−
−104
−
dBc/Hz
1998 Dec 09
fxtal = 13 MHz;
Vxtal = 0 dBm;
fPC = 1000 kHz
10
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
SYMBOL
PARAMETER
UMA1022M
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Interface logic input signal levels; pins 7, 9, 10, 11 and 13
VIH
HIGH-level input voltage
0.7VDD
−
VDD + 0.3
V
VIL
LOW-level input voltage
−0.3
−
0.3VDD
V
Ibias
input bias current
−5
−
+5
µA
Ci
input capacitance
−
2
−
pF
−
2
−
kΩ
−
2.29
−
V
20
22
dB
2
−
V
logic 1 or logic 0
Low noise crystal oscillator amplifier output signals; pins 3 and 18
Zo
differential output impedance
(real part)
fxtal = 10 MHz
VXOUT,
VXOUTN
DC output voltage
Gv(diff)
small signal differential voltage gain
XON = 1; fxtal = 10 MHz 18
Vo(p-p)
limiting differential output voltage
swing (peak-to-peak value)
XON = 1
∆f/f(VDDX)
frequency stability as a function of
VDDX = 3 V ±5%; note 2 −
supply voltage change (referenced to
initial frequency)
−
±0.25 −
ppm
System specification
FTRFIF
RF frequency and close harmonics
feedthrough to IF frequency
note 3
−
70
−
dBc
FTIFRF
IF frequency and close harmonics
feedthrough to RF frequency
note 3
−
50
−
dBc
Notes
1. Conditions: 0.4 < VCPA < (VCCA − 0.4) and 0.4 < VCPB < (VCCB − 0.4).
2. This value is directly dependent on the external resonator quality factor. Only guaranteed for the application circuit
which is given in Fig.5.
3. Only guaranteed on the Philips application board.
1998 Dec 09
11
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
SERIAL BUS TIMING CHARACTERISTICS
VDD = VDDX = VCCA = VCCB = 3 V; Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
Serial programming clock; CLK
tr
input rise time
−
10
40
ns
tf
input fall time
−
10
40
ns
Tcy
clock period
100
−
−
ns
Enable programming; E
tSTART
delay to rising clock edge
100
−
−
ns
tEND
delay from last falling clock edge
20
−
−
ns
tW(min)
minimum inactive pulse width
1500(1)
−
−
ns
tSU;E
enable set-up time to next clock edge
20
−
−
ns
Register serial input data; DATA
tSU;DAT
input data to clock set-up time
20
−
−
ns
tHD;DAT
input data to clock hold time
20
−
−
ns
Note
1. The minimum pulse width (tW(min)) can be smaller than 1.5 µs when the following conditions are fulfilled:
383
a) Main divider input frequency f RF > ---------------t W(min)
3
b) Reference divider input frequency f xtal > ---------------t W(min)
tSU;DAT
handbook, full pagewidth
tHD;DAT
tf
Tcy
tEND tSU;E
tr
CLK
DATA
LSB
MSB
ADDRESS
E
tSTART
tW(min)
MGE628
Fig.3 Serial bus timing diagram.
1998 Dec 09
12
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
AC TIMING CHARACTERISTICS
VDD = VDDX = VCCA = VCCB = 3 V; Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
tPUP
delay for initial power-up
MIN.
−
TYP.
MAX.
−
400
UNIT
µs
tPDWN
time for power-down from E = 0 (ONA/ONB = 0)
−
100
−
µs
tSTART
time to turn-on either the RF or IF synthesizer from
ONA/ONB
−
50
−
µs
tEND
time to turn-off either the RF or IF synthesizer from
ONA/ONB
−
70
−
µs
tSEND
waiting time before sending data on the serial bus
15000
−
−
µs
handbook, full pagewidth
VDD = VCCA = VCCB
tSTART
tPUP
Itot
tEND
tPDWN
ONA = '1'
or
ONB = '1'
E
MGE631
tSEND
Fig.4 AC timing characteristics.
1998 Dec 09
13
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
APPLICATION INFORMATION
analog supply
handbook, full pagewidth
12 Ω
100 nF
VCO supply
XIN
VCO supply
XIN
15 pF
XGND
100 nF
crystal
clock
4.7 µF
XOUT
CPB
2
19
3
18
4
17
VDDX
12 Ω
100 nF
13 MHz
15 pF
XOUT
4.7 µF
CPA
(1)
(1)
(1)
(1)
analog
supply
12 Ω
VCCB
5
100 nF
18 Ω
18 Ω
18 Ω
20
15 pF
12 Ω
IF
VCO
1
16
VCCA
6
digital
supply
15
56 pF
1 kΩ
ONB
7
(1)
14
18 Ω
18 Ω
RFA
56 pF
56 Ω
(1)
analog
supply
100 nF
UMA1022M
IFB
12 Ω
56 Ω
18 Ω
AGND
IF
RF
DGND
E
13
8
9
12
ONA
1 kΩ
VDD
12 Ω
100 nF
DATA
1 kΩ
1 kΩ
10
11
CLK
1 kΩ
3-wire bus
(1) Loop filter values depend on the application.
Fig.5 Typical test and application diagram.
1998 Dec 09
RF
VCO
14
digital
supply
MGE630
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
handbook, full pagewidth
power
amplifier
UMA1022M
transmit
data
RF PLL
VOLTAGE
CONTROLLED
OSCILLATOR
SPLITTER
transmit
mixer
LOW-PASS
FILTER
RF
MAIN DIVIDER
UMA1022M
duplex
filter
OSCILLATOR
crystal
clock
REFERENCE
DIVIDER
IF
MAIN DIVIDER
VOLTAGE
CONTROLLED
OSCILLATOR
SPLITTER
RF
PHASE
COMPARATOR
AND
CHARGE PUMP
3-wire
bus
IF
PHASE
COMPARATOR
AND
CHARGE PUMP
LOW-PASS
FILTER
MGE629
band-pass
filter
IF
filter
IF PLL
to demodulation
low noise
amplifier
first
mixer
second
mixer
Fig.6 Application block diagram.
1998 Dec 09
15
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
PACKAGE OUTLINE
SSOP20: plastic shrink small outline package; 20 leads; body width 4.4 mm
D
SOT266-1
E
A
X
c
y
HE
v M A
Z
11
20
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
1
10
detail X
w M
bp
e
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
1.5
0.15
0
1.4
1.2
0.25
0.32
0.20
0.20
0.13
6.6
6.4
4.5
4.3
0.65
6.6
6.2
1.0
0.75
0.45
0.65
0.45
0.2
0.13
0.1
0.48
0.18
10
0o
Note
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
90-04-05
95-02-25
SOT266-1
1998 Dec 09
EUROPEAN
PROJECTION
16
o
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
SOLDERING
Introduction to soldering surface mount packages
• For packages with leads on two sides and a pitch (e):
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
1998 Dec 09
UMA1022M
17
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
UMA1022M
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
BGA, SQFP
not suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS not
PLCC(3),
SO, SOJ
suitable
suitable(2)
suitable
suitable
suitable
LQFP, QFP, TQFP
not recommended(3)(4)
suitable
SSOP, TSSOP, VSO
not recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1998 Dec 09
18
Philips Semiconductors
Product specification
Low cost dual frequency synthesizer for
radio telephones
NOTES
1998 Dec 09
19
UMA1022M
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1998
SCA60
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
435102/750/04/pp20
Date of release: 1998 Dec 09
Document order number:
9397 750 04825