PD - 96084A IRF7904UPbF HEXFET® Power MOSFET Applications l Dual SO-8 MOSFET for POL Converters in Notebook Computers, Servers, Graphics Cards, Game Consoles and Set-Top Box Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l Improved Body Diode Reverse Recovery l 100% Tested for RG l Lead-Free VDSS 30V ID RDS(on) max Q1 16.2m:@VGS = 10V Q2 10.8m:@VGS = 10V G1 1 8 D1 S2 2 7 S1 / D2 S2 3 6 S1 / D2 G2 4 5 S1 / D2 7.6A 11A SO-8 Absolute Maximum Ratings Parameter Q1 Max. Q2 Max. Units VDS Drain-to-Source Voltage VGS Gate-to-Source Voltage ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 7.6 11 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 6.1 8.9 IDM Pulsed Drain Current 61 89 PD @TA = 25°C Power Dissipation 1.4 2.0 PD @TA = 70°C Power Dissipation 0.9 1.3 Linear Derating Factor Operating Junction and 0.011 0.016 TJ W/°C °C TSTG Storage Temperature Range Q1 Max. Q2 Max. Units 20 20 °C/W 90 62.5 c V 30 ± 20 -55 to + 150 A W Thermal Resistance RθJL RθJA www.irf.com Parameter Junction-to-Drain Lead g Junction-to-Ambient fg 1 09/19/06 IRF7904UPbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ∆ΒVDSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance Q1&Q2 Q1 Q2 Q1 Q2 VGS(th) ∆VGS(th)/∆TJ Gate Threshold Voltage Gate Threshold Voltage Coefficient IDSS Drain-to-Source Leakage Current IGSS gfs Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Qg Total Gate Charge Qgs1 Pre-Vth Gate-to-Source Charge Qgs2 Post-Vth Gate-to-Source Charge Qgd Gate-to-Drain Charge Qgodr Gate Charge Overdrive Qsw Switch Charge (Qgs2 + Qgd) Qoss Output Charge RG Gate Resistance td(on) Turn-On Delay Time tr Rise Time td(off) Turn-Off Delay Time tf Fall Time Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Q1&Q2 Q1 Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1&Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. 30 ––– ––– ––– ––– ––– ––– 1.35 ––– ––– ––– ––– ––– ––– 17 23 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.024 0.024 11.4 14.5 8.6 10 ––– -5.0 -5.0 ––– ––– ––– ––– ––– ––– 7.5 14 2.2 3.7 0.6 1.1 2.5 4.8 2.2 4.4 3.1 5.9 4.5 9.1 3.2 2.9 6.9 7.8 7.3 10 10 15 3.2 4.6 910 1780 190 390 94 180 Max. ––– ––– ––– 16.2 20.5 10.8 13 2.25 ––– ––– 1.0 150 100 -100 ––– ––– 11 21 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 4.8 4.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Conditions Units VGS = 0V, ID = 250µA V V/°C Reference to 25°C, ID = 1mA e e e e VGS = 10V, ID = 7.6A VGS = 4.5V, ID = 6.1A VGS = 10V, ID = 11A VGS = 4.5V, ID = 8.8A Q1: VDS = VGS, ID = 25µA V mV/°C Q2: VDS = VGS, ID = 50µA mΩ µA nA S nC VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 6.1A VDS = 15V, ID = 8.8A Q1 VDS = 15V VGS = 4.5V, ID = 6.1A Q2 VDS = 15V VGS = 4.5V, ID = 8.8A nC VDS = 16V, VGS = 0V Ω Q1 VDD = 15V, VGS = 4.5V ID = 6.1A ns Q2 VDD = 15V, VGS = 4.5V ID = 8.8A Clamped Inductive Load pF VGS = 0V VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Q1 Max. 140 6.1 Q2 Max. 250 8.8 Units mJ A Diode Characteristics VSD Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge IS ISM 2 c Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– 11 16 2.6 6.9 Max. 1.8 2.5 61 88 1.0 1.0 17 24 3.9 10 Units Conditions A MOSFET symbol showing the integral reverse A p-n junction diode. TJ = 25°C, IS = 6.1A, VGS = 0V V TJ = 25°C, IS = 8.8A, VGS = 0V Q1 TJ = 25°C, IF = 6.1A, ns VDD = 15V, di/dt = 100A/µs nC Q2 TJ = 25°C, IF = 8.8A, VDD = 15V, di/dt = 100A/µs e e e e www.irf.com IRF7904UPbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 100 100 10 BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 2.5V ≤ 60µs PULSE WIDTH Tj = 25°C 10 TOP 2.5V 1 ≤ 60µs PULSE WIDTH Tj = 25°C 0.1 0.1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 100 100 BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V ID, Drain-to-Source Current (A) TOP ID, Drain-to-Source Current (A) 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 10 2.5V ≤ 60µs PULSE WIDTH Tj = 150°C 1 TOP 10 2.5V BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V ≤ 60µs PULSE WIDTH Tj = 150°C 1 0.1 1 10 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics 100.0 100.0 10.0 ID, Drain-to-Source Current(Α) ID, Drain-to-Source Current(Α) BOTTOM VGS 10V 8.0V 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V TJ = 150°C TJ = 25°C 1.0 VDS = 15V ≤ 60µs PULSE WIDTH 0.1 10.0 TJ = 150°C TJ = 25°C 1.0 VDS = 15V ≤ 60µs PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics Fig 6. Typical Transfer Characteristics www.irf.com 3 IRF7904UPbF Typical Characteristics Q1 - Control FET 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 1000 C, Capacitance (pF) C, Capacitance (pF) 10000 Q2 - Synchronous FET Ciss Coss Crss 100 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 1000 Coss Crss 10 100 1 10 100 1 10 VDS, Drain-to-Source Voltage (V) 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 12 ID= 6.1A VDS = 24V VDS= 15V 10 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) 12 8 6 4 2 0 ID= 8.8A VDS= 15V 10 8 6 4 2 0 0 5 10 15 20 0 5 QG Total Gate Charge (nC) 100 100µsec 10 10msec 1 100msec TA = 25°C Tj = 150°C Single Pulse 0.01 0.01 0.10 1.00 10.00 100.00 VDS , Drain-toSource Voltage (V) Fig 11. Maximum Safe Operating Area ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R DS (on) 1msec 15 20 25 30 35 Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage 1000 1000 4 10 QG Total Gate Charge (nC) Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage 0.1 VDS= 24V OPERATION IN THIS AREA LIMITED BY R DS(on) 100 1msec 100µsec 10 10msec 1 100msec 0.1 TA = 25°C Tj = 150°C Single Pulse 0.01 0.01 0.10 1.00 10.00 100.00 VDS , Drain-toSource Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com IRF7904UPbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 1.5 ID = 7.6A VGS = 10V RDS(on) , Drain-to-Source On Resistance (Normalized) RDS(on) , Drain-to-Source On Resistance (Normalized) 1.5 1.0 0.5 ID = 11A VGS = 10V 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 -60 -40 -20 TJ , Junction Temperature (°C) Fig 13. Normalized On-Resistance vs. Temperature 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 14. Normalized On-Resistance vs. Temperature 100.0 100.0 ISD, Reverse Drain Current (A) ISD, Reverse Drain Current (A) 0 TJ = 150°C 10.0 1.0 TJ = 25°C TJ = 150°C 10.0 TJ = 25°C 1.0 VGS = 0V VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 VSD, Source-to-Drain Voltage (V) 40 ID = 7.6A 35 30 25 TJ = 125°C 20 15 TJ = 25°C 10 2.0 4.0 6.0 8.0 10.0 VGS, Gate-to-Source Voltage (V) Fig 17. Typical On-Resistance vs.Gate Voltage www.irf.com 0.8 1.2 1.6 2.0 2.4 2.8 3.2 VSD, Source-to-Drain Voltage (V) Fig 16. Typical Source-Drain Diode Forward Voltage ( Ω) RDS (on), Drain-to -Source On Resistance m ( Ω) RDS (on), Drain-to -Source On Resistance m Fig 15. Typical Source-Drain Diode Forward Voltage 0.4 25 ID = 11A 20 TJ = 125°C 15 10 TJ = 25°C 5 2.0 4.0 6.0 8.0 10.0 VGS, Gate-to-Source Voltage (V) Fig 18. Typical On-Resistance vs.Gate Voltage 5 IRF7904UPbF Typical Characteristics Q1 - Control FET Q2 - Synchronous FET 8 12 ID , Drain Current (A) ID , Drain Current (A) 10 6 4 2 8 6 4 2 0 0 25 50 75 100 125 150 25 50 TJ , Ambient Temperature (°C) 150 2.2 VGS(th) Gate threshold Voltage (V) VGS(th) Gate threshold Voltage (V) 125 Fig 20. Maximum Drain Current vs. Ambient Temp. 2.6 2.2 1.8 ID = 250µA 1.4 1.8 ID = 250µA 1.4 1.0 1.0 -75 -50 -25 0 25 50 75 100 125 -75 150 -50 -25 Fig 21. Threshold Voltage vs. Temperature 25 50 75 100 125 150 Fig 22. Threshold Voltage vs. Temperature EAS, Single Pulse Avalanche Energy (mJ) 600 I D TOP 0.34A 0.48A BOTTOM 6.1A 500 0 TJ , Temperature ( °C ) TJ , Temperature ( °C ) EAS, Single Pulse Avalanche Energy (mJ) 100 TJ , Ambient Temperature (°C) Fig 19. Maximum Drain Current vs. Ambient Temp. 400 300 200 100 0 1200 I D 0.57A 0.77A BOTTOM 8.8A TOP 1000 800 600 400 200 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 23. Maximum Avalanche Energy vs. Drain Current 6 75 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 24. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF7904UPbF Thermal Response ( ZthJA ) 100 10 D = 0.50 0.20 0.10 1 0.05 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 17.122 0.018925 53.325 0.74555 19.551 Ci= τi/Ri Ci i/Ri 0.01 39.2 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1) 100 Thermal Response ( ZthJA ) D = 0.50 10 0.20 0.10 1 0.05 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci i/Ri 0.01 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 10.908 0.02108 34.35 1.1482 17.15 39.7 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2) Fig 27. Layout Diagram www.irf.com 7 IRF7904UPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 29a. Unclamped Inductive Test Circuit LD Fig 29b. Unclamped Inductive Waveforms VDS VDS + 90% VDD D.U.T VGS 10% VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 30a. Switching Time Test Circuit Current Regulator Same Type as D.U.T. tr td(off) Fig 30b. Switching Time Waveforms Id Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. +VDS Vgs(th) VGS -3mA IG ID Current Sampling Resistors Fig 31a. Gate Charge Test Circuit 8 Qgs1 Qgs2 Qgd Qgodr Fig 31b. Gate Charge Waveform www.irf.com IRF7904UPbF SO-8 Package Outline Dimensions are shown in millimeters (inches) D 5 A 8 6 7 6 6X 2 3 4 e1 1.35 1.75 A1 .0040 0.25 0.10 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BAS IC 1.27 BASIC e1 .025 BAS IC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A A1 MAX .020 A C 0.25 [.010] .0688 .0098 e 8X b MIN .0532 .013 H 1 MAX b 5 0.25 [.010] MILLIMET ERS MIN A E INCHES DIM B y 0.10 [.004] C A B 8X L 8X c 7 F OOT PRINT NOT ES: 1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONF ORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENSION IS T HE LENGT H OF LEAD F OR SOLDERING T O A SUBS T RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking www.irf.com 9 IRF7904UPbF SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, Q1: L = 7.7mH RG = 25Ω, IAS = 6.1A; Q2: L = 6.5mH RG = 25Ω, IAS = 8.8A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2006 10 www.irf.com