IRF IRF8513PBF

PD - 96196
IRF8513PbF
HEXFET® Power MOSFET
Applications
l Dual SO-8 MOSFET for POL
Converters in Notebook Computers, Servers,
Graphics Cards, Game Consoles
and Set-Top Box
Benefits
l Low Gate Charge and Low RDS(on)
l Fully Characterized Avalanche Voltage
and Current
l 20V VGS Max. Gate Rating
l 100% Tested for RG
l Lead-Free (Qualified to 260°C Reflow)
l RoHS Compliant (Halogen Free)
V DSS
R DS(on) max
ID
30V
Q1 15.5m @VGS = 10V
Q2 12.7m @VGS = 10V
8.0A
11A
:
:
* '
6 6'
6 6'
* 6'
SO-8
Description
The IRF8513PbF incorporates the latest HEXFET Power MOSFET Silicon Technology into the industry standard
SO-8 package. The IRF8513PbF has been optimized for parameters that are critical in synchronous buck operation
including Rds(on) and gate charge to reduce both conduction and switching losses. The reduced total losses make
this product ideal for high efficiency DC-DC converters that power the latest generation of processors for notebook
and Netcom applications.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
Power Dissipation
Power Dissipation
TJ
TSTG
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
c
Q1 Max.
Q2 Max.
30
± 20
Units
V
8.0
6.2
64
1.5
1.05
11
9.0
88
2.4
1.68
0.01
0.02
-55 to + 175
A
W
W/°C
°C
Thermal Resistance
RθJL
RθJA
Parameter
Junction-to-Drain Lead
g
Junction-to-Ambient fg
Q1 Max.
Q2 Max.
Units
42
100
42
62.5
°C/W
Notes  through … are on page 11
ORDERING INFORMATION:
See detailed ordering and shipping information on the last page of this data sheet.
www.irf.com
1
11/05/08
IRF8513PbF
Static @ TJ = 25°C (unless otherwise specified)
BVDSS
∆ΒVDSS/∆TJ
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
Q1&Q2
Q1
Q2
Q1
Q2
VGS(th)
∆VGS(th)/∆TJ
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
IDSS
Drain-to-Source Leakage Current
IGSS
gfs
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Qg
Total Gate Charge
Qgs1
Pre-Vth Gate-to-Source Charge
Qgs2
Post-Vth Gate-to-Source Charge
Qgd
Gate-to-Drain Charge
Qgodr
Gate Charge Overdrive
Qsw
Switch Charge (Qgs2 + Qgd)
Qoss
Output Charge
RG
Gate Resistance
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
tf
Fall Time
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Q1&Q2
Q1
Q2
Q1&Q2
Q1&Q2
Q1&Q2
Q1&Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Q1
Q2
Min.
30
–––
–––
–––
–––
–––
–––
1.35
–––
–––
–––
–––
–––
–––
19
24
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.021
0.021
12.5
18.1
10.2
14.2
1.8
-6.5
-6.9
–––
–––
–––
–––
–––
–––
5.7
7.6
1.2
1.7
0.68
1.0
2.2
3.1
1.6
1.9
2.9
4.0
3.9
5.2
2.1
1.4
8.0
8.9
8.5
10.7
8.8
9.3
5.7
5.0
766
1024
172
238
83
116
Max.
–––
–––
–––
15.5
22.2
12.7
16.9
2.35
–––
–––
1.0
150
100
-100
–––
–––
8.6
11.4
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
3.2
3.1
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Units
Conditions
VGS = 0V, ID = 250µA
V
V/°C
mΩ
V
mV/°C
µA
nA
S
Reference to 25°C, ID = 1mA
e
e
e
e
VGS = 10V, ID = 8.0A
VGS = 4.5V, ID = 6.4A
VGS = 10V, ID = 11A
VGS = 4.5V, ID = 8.6A
Q1: VDS = VGS, ID = 25µA
Q2: VDS = VGS, ID = 25µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VDS = 15V, ID = 6.4A
VDS = 15V, ID = 8.6A
Q1
VDS = 15V
VGS = 4.5V, ID = 6.4A
nC
Q2
VDS = 15V
VGS = 4.5V, ID = 8.6A
See Fig. 31a &31b
nC
VDS = 16V, VGS = 0V
Ω
ns
pF
Q1
VDD = 15V, VGS = 4.5V
ID = 6.4A
RG = 1.8Ω See Fig.30a & 30b
Q2
VDD = 15V, VGS = 4.5V
ID = 8.6A
RG = 1.8W
VGS = 0V
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
d
Typ.
–––
–––
Q1 Max.
49
6.4
Q2 Max.
70
8.6
Units
mJ
A
Diode Characteristics
VSD
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
ton
Forward Trun-On Time
IS
ISM
2
c
Min.
Typ.
Max. Units
Conditions
Q1
–––
–––
1.9
MOSFET symbol
A
Q2
–––
–––
3.0
showing the
integral reverse
Q1
–––
–––
64
A
p-n junction diode.
Q2
–––
–––
88
TJ = 25°C, IS = 6.4A, VGS = 0V
Q1
–––
–––
1.0
V
TJ = 25°C, IS = 8.6A, VGS = 0V
Q2
–––
–––
1.0
Q1 TJ = 25°C, IF = 6.4A,
Q1
–––
15
23
ns
VDD = 15V, di/dt = 100A/µs
Q2
–––
17
26
Q2 TJ = 25°C, IF = 8.6A,
Q1
–––
7.2
11
nC
Q2
–––
9.3
14
VDD = 15V, di/dt = 100A/µs
Intrinsic turn -on time is negligible (turn -on is dominated by LS+LD)
e
e
e
e
www.irf.com
IRF8513PbF
Typical Characteristics
Q1 - Control FET
ID, Drain-to-Source Current (A)
TOP
10
BOTTOM
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
TOP
1
0.1
2.5V
1
10
BOTTOM
1
0.1
2.5V
0.01
0.1
100
1
10
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
10
BOTTOM
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
TOP
ID, Drain-to-Source Current (A)
TOP
2.5V
1
10
BOTTOM
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
2.5V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 175°C
0.1
0.1
0.1
1
10
0.1
100
1
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 3. Typical Output Characteristics
100
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
100
V DS, Drain-to-Source Voltage (V)
100
ID, Drain-to-Source Current (A)
10
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
Tj = 25°C
≤60µs PULSE WIDTH
Tj = 25°C
≤60µs PULSE WIDTH
0.01
0.1
Q2 - Synchronous FET
100
ID, Drain-to-Source Current (A)
100
T J = 175°C
10
TJ = 25°C
1
VDS = 15V
≤60µs PULSE WIDTH
2
3
4
5
6
VGS, Gate-to-Source Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
T J = 25°C
1
VDS = 15V
≤60µs PULSE WIDTH
0.1
0.1
1
T J = 175°C
10
1
2
3
4
5
6
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
3
IRF8513PbF
Typical Characteristics
Q1 - Control FET
10000
Q2 - Synchronous FET
10000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C rss = C gd
C oss = C ds + C gd
1000
C, Capacitance (pF)
C, Capacitance (pF)
C oss = C ds + C gd
Ciss
Coss
100
Crss
1000
Ciss
Coss
Crss
100
10
10
1
10
1
100
10
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
14.0
ID= 6.4A
12.0
VGS, Gate-to-Source Voltage (V)
VGS, Gate-to-Source Voltage (V)
14.0
VDS= 24V
VDS= 15V
10.0
8.0
6.0
4.0
2.0
ID= 8.6A
12.0
VDS= 24V
VDS= 15V
10.0
8.0
6.0
4.0
2.0
0.0
0.0
0
2
4
6
8
10
12
14
0
16
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage
4
6
8
10 12 14 16 18 20
Fig 10. Typical Gate Charge vs. Gate-to-Source
Voltage
1000
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
2
QG, Total Gate Charge (nC)
QG, Total Gate Charge (nC)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100
100µsec
10
10msec
1
1msec
T A = 25°C
100µsec
10
1msec
10msec
1
T A = 25°C
Tj = 175°C
Single Pulse
Tj = 175°C
Single Pulse
0.1
0.1
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 11. Maximum Safe Operating Area
4
100
VDS, Drain-to-Source Voltage (V)
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
IRF8513PbF
Typical Characteristics
Q1 - Control FET
Q2 - Synchronous FET
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.0
ID = 8.0A
VGS = 10V
1.5
1.0
0.5
VGS = 10V
1.5
1.0
0.5
-60 -40 -20 0 20 40 60 80 100120140160180
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
T J , Junction Temperature (°C)
Fig 13. Normalized On-Resistance vs. Temperature
Fig 14. Normalized On-Resistance vs. Temperature
100
100
ISD, Reverse Drain Current (A)
ISD, Reverse Drain Current (A)
ID = 11A
T J = 175°C
10
T J = 25°C
T J = 175°C
10
T J = 25°C
VGS = 0V
VGS = 0V
1.0
1.0
0.2
0.8
1.4
2.0
2.6
3.2
3.8
0.1
VSD, Source-to-Drain Voltage (V)
ID = 8.0A
40
35
30
TJ = 125°C
20
T J = 25°C
15
10
2
4
6
8
10
VGS, Gate -to -Source Voltage (V)
Fig 17. Typical On-Resistance vs.Gate Voltage
www.irf.com
1.9
2.5
3.1
3.7
4.3
Fig 16. Typical Source-Drain Diode Forward Voltage
RDS(on), Drain-to -Source On Resistance (m Ω)
RDS(on), Drain-to -Source On Resistance (m Ω)
50
25
1.3
VSD, Source-to-Drain Voltage (V)
Fig 15. Typical Source-Drain Diode Forward Voltage
45
0.7
30
ID = 11A
25
20
T J = 125°C
15
T J = 25°C
10
2
4
6
8
10
VGS, Gate -to -Source Voltage (V)
Fig 18. Typical On-Resistance vs.Gate Voltage
5
IRF8513PbF
Typical Characteristics
Q1 - Control FET
Q2 - Synchronous FET
12
9
8
10
ID, Drain Current (A)
ID, Drain Current (A)
7
6
5
4
3
2
8
6
4
2
1
0
0
25
50
75
100
125
150
25
175
Fig 19. Maximum Drain Current vs. Ambient Temp.
125
150
175
VGS(th) , Gate Threshold Voltage (V)
2.5
2.0
ID = 250µA
1.5
ID = 25µA
1.0
0.5
2.0
ID = 250µA
1.5
ID = 25µA
1.0
0.5
-75 -50 -25
0
25 50 75 100 125 150 175
-75 -50 -25
T J , Temperature ( °C )
0
25 50 75 100 125 150 175
T J , Temperature ( °C )
Fig 21. Threshold Voltage vs. Temperature
Fig 22. Threshold Voltage vs. Temperature
250
300
EAS , Single Pulse Avalanche Energy (mJ)
EAS , Single Pulse Avalanche Energy (mJ)
100
Fig 20. Maximum Drain Current vs. Ambient Temp.
2.5
ID
2.13A
4.20A
BOTTOM 6.40A
TOP
200
150
100
50
0
ID
2.62A
5.45A
BOTTOM 8.60A
TOP
250
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
175
Fig 23. Maximum Avalanche Energy vs. Drain Current
6
75
T A , Ambient Temperature (°C)
T A , Ambient Temperature (°C)
VGS(th) , Gate Threshold Voltage (V)
50
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 24. Maximum Avalanche Energy vs. Drain Current
www.irf.com
IRF8513PbF
Thermal Response ( Z thJA ) °C/W
1000
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
R5
R5
τ2
τ3
τ3
τ4
τ4
τ5
τ5
1E-005
0.0001
0.001
0.01
τ6
τ6
τ7
τi (sec)
0.16165
0.000010
R8
R8
τA
τ7
0.32401
0.000015
0.610673
0.000020
1.3993
0.001289
1.8271
0.000340
15.5964
0.027339
24.1639
23.89834
55.9172
0.716225
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + T A
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R7
R7
τA
τ2
τ1
Ci= τi/Ri
Ci= τi/Ri
0.01
R6
R6
Ri (°C/W)
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q1)
Thermal Response ( Z thJA ) °C/W
1000
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
0.1
τJ
0.001
1E-006
1E-005
0.0001
τJ
τ1
R2
R2
R3
R3
R4
R4
R5
R5
0.001
0.01
R6
R6
R7
R7
τ1
τ2
τ3
τ3
τ4
τ4
τ5
τ5
τ6
τ6
τ7
τi (sec)
0.12491
0.000010
R8
R8
τA
τ2
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
Ri (°C/W)
τA
τ7
0.18285
0.000012
0.47188
0.000020
1.08129
0.001289
1.41186
0.000340
5.99757
0.013743
18.93874
31.39834
Notes:
34.29159
0.682685
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + T A
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient (Q2)
Fig 27. Layout Diagram
www.irf.com
7
IRF8513PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 28. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 29a. Unclamped Inductive Test Circuit
Fig 29b. Unclamped Inductive Waveforms
RD
V DS
VDS
90%
V GS
D.U.T.
RG
+
- V DD
10%
VGS
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
tr
td(off) tf
Fig 30b. Switching Time Waveforms
Fig 30a. Switching Time Test Circuit
Id
Vds
Vgs
L
DUT
0
1K
20K
VCC
Vgs(th)
S
Qgodr
Fig 31a. Gate Charge Test Circuit
8
Qgd
Qgs2 Qgs1
Fig 31b. Gate Charge Waveform
www.irf.com
IRF8513PbF
SO-8 Package Outline(Mosfet & Fetky)
Dimensions are shown in milimeters (inches)
'
,1&+(6
0,1
0$;
$ $ E F ' ( H %$6,&
H %$6,&
+ . / \
ƒ
ƒ
',0
%
$
+
>@
(
$
; H
H
;E
>@
$
0,//,0(7(56
0,1
0$;
%$6,&
%$6,&
ƒ
ƒ
.[ƒ
&
$
\
>@
;F
;/
& $ %
)22735,17
;>@
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'(<::
3 ',6*1$7(6/($')5((
352'8&7237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRF8513PbF
SO-8 Tape and Reel
Dimensions are shown in milimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRF8513PbF
Orderable part number
IRF8513PbF
IRF8513TRPbF
Standard Pack
Form
Quantity
Tube/Bulk
95
Tape and Reel
4000
Package Type
SO-8
SO-8
Note
Qualification Information†
Qualification level
Moisture Sensitivity Level
Consumer ††
(per JEDEC JESD47F††† guidelines)
SO-8
RoHS Compliant
†
††
†††
MSL1
(per JEDEC J-STD-020D†††)
Yes
Qualification standards can be found at International Rectifier’s web site http://ww.irf.com
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 2.4mH, RG = 25Ω, IAS = 6.4A (Q1) &
L = 1.87mH, RG = 25Ω, IAS = 8.6A(Q2)
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
… Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 11/2008
www.irf.com
11