IRF IRL3715ZCLPBF

PD - 95220
IRL3715ZCSPbF
IRL3715ZCLPbF
Applications
l High Frequency Synchronous Buck
Converters for Computer Processor Power
l Lead-Free
HEXFET® Power MOSFET
VDSS RDS(on) max
11mΩ
7.0nC
D2Pak
IRL3715ZCS
TO-262
IRL3715ZCL
20V
Benefits
l Low RDS(on) at 4.5V VGS
l Ultra-Low Gate Impedance
l Fully Characterized Avalanche Voltage
and Current
Qg
Absolute Maximum Ratings
Parameter
Max.
Units
20
V
VDS
Drain-to-Source Voltage
VGS
Gate-to-Source Voltage
± 20
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
50 …
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
36 …
IDM
Pulsed Drain Current 
200
PD @TC = 25°C
Maximum Power Dissipation
45
PD @TC = 100°C
Maximum Power Dissipation
23
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
Soldering Temperature, for 10 seconds
A
W
W/°C
°C
0.30
-55 to + 175
300 (1.6mm from case)
Thermal Resistance
Parameter
RθJC
RθJA
Typ.
Max.
Units
Junction-to-Case
–––
3.33
°C/W
Junction-to-Ambient (PCB Mount) „
–––
40
Notes  through … are on page 11
www.irf.com
1
04/27/04
IRL3715ZCS/LPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
BVDSS
Drain-to-Source Breakdown Voltage
20
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.014
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
9.2
11
–––
12.4
15.5
VGS(th)
Gate Threshold Voltage
1.65
2.1
2.55
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.2
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
VDS = 16V, VGS = 0V
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
31
–––
–––
IGSS
gfs
Qg
V
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 15A ƒ
VGS = 4.5V, ID = 12A ƒ
VDS = VGS, ID = 250µA
VDS = 16V, VGS = 0V, TJ = 125°C
VGS = -20V
S
VDS = 10V, ID = 12A
Total Gate Charge
–––
7.0
11
Qgs1
Pre-Vth Gate-to-Source Charge
–––
2.1
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
0.9
–––
Qgd
Gate-to-Drain Charge
–––
2.3
–––
ID = 12A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
1.7
–––
See Fig. 16
Qsw
–––
3.2
–––
Qoss
Output Charge
–––
3.7
–––
td(on)
Turn-On Delay Time
–––
7.1
–––
VDD = 10V, VGS = 4.5V ƒ
tr
Rise Time
–––
44
–––
ID = 12A
td(off)
Turn-Off Delay Time
–––
11
–––
tf
Fall Time
–––
4.6
–––
Ciss
Input Capacitance
–––
870
–––
Coss
Output Capacitance
–––
270
–––
Crss
Reverse Transfer Capacitance
–––
140
–––
VDS = 10V
nC
nC
VGS = 4.5V
VDS = 10V, VGS = 0V
ns
Clamped Inductive Load
pF
VDS = 10V
VGS = 0V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy‚
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy 
Typ.
–––

Units
mJ
Max.
44
–––
12
A
–––
4.5
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
50 …
ISM
(Body Diode)
Pulsed Source Current
–––
–––
200
showing the
integral reverse
VSD
(Body Diode) 
Diode Forward Voltage
–––
–––
1.0
V
S
p-n junction diode.
TJ = 25°C, IS = 12A, VGS = 0V ƒ
trr
Reverse Recovery Time
–––
9.1
14
ns
Qrr
Reverse Recovery Charge
–––
2.2
3.3
nC
2
MOSFET symbol
A
D
G
TJ = 25°C, IF = 12A, VDD = 10V
di/dt = 100A/µs ƒ
www.irf.com
IRL3715ZCS/LPbF
1000
1000
VGS
10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
100
10
3.0V
60µs PULSE WIDTH
Tj = 25°C
100
1
3.0V
10
60µs PULSE WIDTH
Tj = 175°C
1
0.1
1
10
0.1
VDS, Drain-to-Source Voltage (V)
1
10
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
2.0
T J = 25°C
T J = 175°C
100
VDS = 10V
60µs PULSE WIDTH
10
3.0
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current (Α)
VGS
10V
9.0V
7.0V
5.0V
4.5V
4.0V
3.5V
BOTTOM 3.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
ID = 30A
VGS = 10V
1.5
1.0
0.5
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRL3715ZCS/LPbF
10000
12
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
C, Capacitance (pF)
Coss = Cds + Cgd
1000
Ciss
Coss
Crss
8
6
4
2
10
0
100
8
12
16
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
1000.0
ISD, Reverse Drain Current (A)
4
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
100.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
T J = 175°C
10.0
T J = 25°C
1.0
VGS = 0V
0.0
0.5
1.0
1.5
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
100µsec
10
1
0.1
4
VDS= 20V
VDS= 10V
10
0
100
1
ID= 12A
2.0
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
0
10msec
1
10
100
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRL3715ZCS/LPbF
60
2.6
VGS(th) Gate threshold Voltage (V)
LIMITED BY PACKAGE
ID , Drain Current (A)
50
40
30
20
10
2.2
1.8
1.4
0
25
50
75
100
125
150
ID = 250µA
1.0
175
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
Ci= τi/Ri
Ci= τi/Ri
Ri (°C/W) τi (sec)
0.942
0.000145
0.982
0.000805
0.406
0.004757
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRL3715ZCS/LPbF
200
D R IV E R
L
VDS
D .U .T
RG
+
V
- DD
IA S
2V0GS
V
A
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D S S
tp
EAS, Single Pulse Avalanche Energy (mJ)
15V
ID
3.9A
5.4A
BOTTOM 12A
TOP
160
120
80
40
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
IAS
LD
VDS
Fig 12b. Unclamped Inductive Waveforms
+
VDD D.U.T
Current Regulator
Same Type as D.U.T.
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
50KΩ
12V
.2µF
Fig 14a. Switching Time Test Circuit
.3µF
D.U.T.
+
V
- DS
VDS
90%
VGS
3mA
10%
IG
ID
Current Sampling Resistors
Fig 13. Gate Charge Test Circuit
6
VGS
td(on)
tr
td(off)
tf
Fig 14b. Switching Time Waveforms
www.irf.com
IRL3715ZCS/LPbF
D.U.T
Driver Gate Drive
P.W.
+
ƒ
+
-
-
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
Period
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Waveform
www.irf.com
7
IRL3715ZCS/LPbF
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET
Synchronous FET
Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the Rds(on) of the
MOSFET, but these conduction losses are only about
one half of the total losses.
The power loss equation for Q2 is approximated
by;
*
Ploss = Pconduction + Pdrive + Poutput
(
2
Ploss = Irms × Rds(on)
)
Power losses in the control switch Q1 are given
by;
+ (Qg × Vg × f )
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
Q

+  oss × Vin × f + (Qrr × Vin × f )
 2

This can be expanded and approximated by;
*dissipated primarily in Q1.
Ploss = (Irms 2 × Rds( on ) )

Q
+  I × gd × Vin ×
ig

Q
 
f  +  I × gs 2 × Vin ×
ig
 

f

+ (Qg × Vg × f )
+
 Qoss
× Vin × f 
 2

This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Qgs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by
the power supply input buss voltage.
For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the control IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.
Figure A: Qoss Characteristic
8
www.irf.com
IRL3715ZCS/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information (Lead-Free)
T H IS IS AN IR F 530S WIT H
L OT CODE 8024
AS S E MB L E D ON WW 02, 2000
IN T H E AS S E MB L Y L INE "L "
IN T E R N AT IONAL
R E CT IF IE R
L OGO
Note: "P " in as s embly line
pos ition indicates "L ead-F ree"
P AR T NU MB E R
F 530S
AS S E MB L Y
L OT CODE
DAT E CODE
YE AR 0 = 2000
WE E K 02
L INE L
OR
INT E R N AT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
www.irf.com
P AR T N U MB E R
F 530S
DAT E CODE
P = DE S IGNAT E S L E AD-F R E E
P R ODU CT (OP T ION AL )
YE AR 0 = 2000
WE E K 02
A = AS S E MB L Y S IT E CODE
9
IRL3715ZCS/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
E XAMPL E : T H IS IS AN IR L 3103L
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P " in as s embly line
pos ition indicates "L ead-F ree"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
P AR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
OR
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
10
P AR T NU MB E R
DAT E CODE
P = DE S IGNAT E S L E AD-F R E E
P R ODU CT (OPT IONAL )
YE AR 7 = 1997
WE E K 19
A = AS S E MB L Y S IT E CODE
www.irf.com
IRL3715ZCS/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR R
1 .6 0 (.0 6 3 )
1 .5 0 (.0 5 9 )
4 .1 0 (.1 6 1 )
3 .9 0 (.1 5 3 )
F E E D D IR E C T IO N
1 .6 0 (.0 6 3 )
1 .5 0 (.0 5 9 )
1 1 .6 0 (.4 5 7 )
1 1 .4 0 (.4 4 9 )
1 .8 5 (.0 7 3 )
1 .6 5 (.0 6 5 )
0 .3 6 8 (.0 1 4 5 )
0 .3 4 2 (.0 1 3 5 )
1 5 .4 2 (.6 0 9 )
1 5 .2 2 (.6 0 1 )
2 4 .3 0 (.9 5 7 )
2 3 .9 0 (.9 4 1 )
TR L
1 .7 5 (.0 6 9 )
1 .2 5 (.0 4 9 )
1 0 .9 0 (.4 2 9 )
1 0 .7 0 (.4 2 1 )
4 .7 2 (.1 3 6 )
4 .5 2 (.1 7 8 )
1 6 .1 0 (.6 3 4 )
1 5 .9 0 (.6 2 6 )
F E E D D IR E C T IO N
2 7 .4 0 (1.0 7 9)
2 3 .9 0 (.9 4 1 )
13 .5 0 (.53 2 )
12 .8 0 (.50 4 )
4
3 3 0 .0 0
(14 .1 7 3 )
M AX.
60 .0 0 (2 .3 6 2)
M IN .
NO TES :
1 . C O M F O R M S TO E IA-41 8 .
2 . C O N T R O LL IN G D IM EN S IO N : M IL L IM ET E R .
3 . D IM E N S IO N M E A S U R E D @ H U B .
4 . IN C L U D E S F L A N G E D IST O R T IO N @ O U T E R E D G E.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.61mH, RG = 25Ω,
IAS = 12A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
3 0.40 (1 .1 9 7)
M AX.
2 6 .4 0 (1 .0 3 9 )
2 4 .4 0 (.96 1 )
3
4
„ This is applied to D2Pak, when mounted on 1" square PCB
(FR4 or G-10 Material). For recommended footprint
and soldering
techniques refer to application note #AN-994.
… Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 30A.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/04
www.irf.com
11
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/