IRF IRFIB7N50APBF

PD - 94805
SMPS MOSFET
IRFIB7N50APbF
HEXFET® Power MOSFET
Applications
Switch Mode Power Supply ( SMPS )
Uninterruptable Power Supply
High speed power switching
High Voltage Isolation = 2.5KVRMS
Lead-Free
Benefits
Low Gate Charge Qg results in Simple
Drive Requirement
Improved Gate, Avalanche and dynamic
dv/dt Ruggedness
Fully Characterized Capacitance and
Avalanche Voltage and Current
Effective Coss specified ( See AN 1001)
VDSS
500V
Rds(on) max
ID
0.52Ω
6.6A
TO-220 FULLPAK
GDS
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
Max.
6.6
4.2
44
60
0.48
± 30
6.9
-55 to + 150
Units
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Applicable Off Line SMPS Topologies:
Two Transistor Forward
Half & Full Bridge Convertors
Power Factor Correction Boost
Notes through are on page 8
www.irf.com
1
10/31/03
IRFIB7N50APbF
Static @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
V(BR)DSS
∆V(BR)DSS/∆TJ
Min. Typ. Max. Units
Conditions
500 ––– –––
V
VGS = 0V, ID = 250µA
––– 0.61 ––– V/°C Reference to 25°C, ID = 1mA
––– ––– 0.52
Ω
VGS = 10V, ID = 4.0A 2.0
––– 4.0
V
VDS = VGS, ID = 250µA
––– ––– 25
VDS = 500V, VGS = 0V
µA
––– ––– 250
VDS = 400V, VGS = 0V, TJ = 125°C
––– ––– 100
VGS = 30V
nA
––– ––– -100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
6.1
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Typ.
–––
–––
–––
–––
14
35
32
28
1423
208
8.1
2000
55
97
Max. Units
Conditions
–––
S
VDS = 50V, ID = 6.6A
52
ID = 11A
13
nC
VDS = 400V
18
VGS = 10V, See Fig. 6 and 13 –––
VDD = 250V
–––
ID = 11A
ns
–––
R G = 9.1Ω
–––
R D = 22Ω,See Fig. 10 –––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 400V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 400V Typ.
Max.
Units
–––
–––
–––
275
11
6.0
mJ
A
mJ
Typ.
Max.
Units
–––
–––
2.1
65
°C/W
Thermal Resistance
Parameter
RθJC
RθJA
Junction-to-Case
Junction-to-Ambient
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 6.6
showing the
A
G
integral reverse
44
––– –––
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 11A, VGS = 0V ––– 510 770
ns
TJ = 25°C, IF = 11A
––– 3.4 5.1
µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFIB7N50APbF
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
1
4.5V 20µs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
10
1
100
1
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
10
TJ = 150 ° C
TJ = 25 ° C
V DS = 100V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
100
0.1
4.0
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
1
20µs PULSE WIDTH
TJ = 150 ° C
4.5V
9.0
ID = 11A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFIB7N50APbF
C, Capacitance (pF)
2000
Ciss
20
V GS = 0V,
f = 1MHz
C iss = Cgs + C gd , Cds SHORTED
C rss = C gd
C oss = C ds + C gd
VGS , Gate-to-Source Voltage (V)
2400
1600
Coss
1200
800
Crss
400
0
1
10
100
1000
ID = 11A
6.6A
VDS = 400V
VDS = 250V
VDS = 100V
16
12
8
4
0
A
FOR TEST CIRCUIT
SEE FIGURE 13
0
10
100
40
50
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
30
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10
TJ = 150° C
1
TJ = 25 ° C
0.1
0.0
V GS = 0 V
0.4
0.8
1.2
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
20
QG , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
1.6
10us
10
100us
1ms
1
0.1
10ms
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
100
1000
10000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFIB7N50APbF
7.0
VGS
ID , Drain Current (A)
6.0
RG
5.0
D.U.T.
+
-VDD
10V
4.0
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
3.0
Fig 10a. Switching Time Test Circuit
2.0
VDS
1.0
0.0
RD
VDS
90%
25
50
75
100
125
TC , Case Temperature ( °C)
150
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
P DM
0.05
t1
0.02
t2
0.01
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
A
EAS , Single Pulse Avalanche Energy (mJ)
IRFIB7N50APbF
600
TOP
500
BOTTOM
ID
4.9A
7.0A
11A
400
300
200
100
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
660
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
640
620
600
.3µF
D.U.T.
+
V
- DS
VGS
580
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
I av , Avalanche Current (A)
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
V DSav , Avalanche Voltage (V)
10 V
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
A
IRFIB7N50APbF
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
-
-
+
RG
•
•
•
•
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
D=
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFIB7N50APbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
EXAM PLE: TH IS IS AN IRFI84 0G
W ITH A SSEM B LY
LO T C O DE 3 43 2
ASSEM BLED O N W W 24 1999
IN TH E ASSEM BLY LIN E "K"
Note: "P" in assembly line
position indicates "Lead-Free"
PART N U M BER
IN TERN ATIO N AL
RECTIFIER
LO G O
IRFI840G
924K
34
ASSEM BLY
LO T C O D E
32
D ATE CO D E
YEAR 9 = 1999
WEEK 24
LIN E K
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Starting TJ = 25°C, L = 4.5mH
RG = 25Ω, IAS = 11A. (See Figure 12)
ISD ≤ 11A, di/dt ≤140A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
Pulse width ≤ 300µs; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
Uses IRFB11N50A data and test conditions
t=60s,f=60Hz
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/03
8
www.irf.com