TA1316AN Toshiba Bipolar Linear Integrated Circuit Silicon Monolithic TA1316AN YCbCr/YPbPr Signal and Sync Processor for Digital TV, Progressive Scan TV and Double Scan TV TA1316AN is a component signal and sync processor for Digital TV, Progressive scan TV and Double scan TV. TA1316AN provides high performance signal processors in the luminance and color difference blocks. The sync circuit can process 525I/P, 625I/P, 750P, 1125I/P, PAL100 Hz and NTSC120 Hz formats. TA1316AN provides I2C bus interface, so various functions and controls are adjustable via the bus. Features Weight: 5.55 g (typ.) Luminance Block • Black stretch, DC restoration • Dynamic DŽ correction • SRT (LTI) • Y group delay correction (shoot balance correction) • APACON white peak limit • White pulse limit (white letter improvement) • Hi-bright color • Color detail enhancer (CDE) • VSM output Color Difference Block • Flesh color correction • Dynamic Y/C correction • Color SRT (CTI) • Color DŽ • White peak blue correction Text Block • OSD blending SW • ACB (only black level) • 2 analog RGB inputs Synchronization Block • Horizontal synchronization (15.75 kHz, 31.5 kHz, 33.75 kHz, 45 kHz) • Vertical synchronization (525I/P, 625I/P, 750P, 1125I/P, PAL 100 Hz, NTSC 120 Hz) • 2-and 3-level sync. separation circuit • Accept both positive and negative HD/VD input • Mask for copy-guard signal • Vertical blanking 1 2002-10-04 TA1316AN Y/C VCC 55 Y2 IN Cb2/Pb2 IN Cr2/Pr2 IN 3 Cb1/Pb1 IN 29 Cr1/Pr1 IN Y1 IN 32 2 I L GND 25 2 DEF/DAC GND 19 I L VDD DEF/DAC VCC Block Diagram 4 5 8 9 10 CLAMP Y/C GND 6 SW YHDPbPr/YCbCrĺ YUV CONVERT U V Y BLACK UVĺ IQ STRETCH CONVERTER RGB VCC 40 RGB GND 44 SCL 30 DAC2 36 (ACB PLUSE) I CBUS DECODER SW IQĺ UV CONVERTER DYNAMIC γ SW DC REST DAC2 28 SYNC OUT SW DAC1 + SCP OUT 18 SCP IN 17 H-OUT 26 HORIZONTAL FREQUENCY 22 SW EXT BPP CP/BPP H FREQUENCY SW SRT APACON WPL + CLAMP PULSE CP SW CP H-AFC DARK DET 1 DARK AREA DET FILTER APL DETECT 56 APL FILTER YNR COLOR SUBCONTRAST UNI-COLOR UNICOLOR SHARPNESS CONTROL Y DETAIL CONTROL CP H CURVE 23 CORRECTION H-BPP FBP IN 24 2 BPH FILTER CDE + H CURVE CORRECTION BLACK PEAK DETECT GROUP DELAY + CORRECTION DL/ COLOR SRT H C/D HVCO AFC FILTER 20 HD1 IN 16 TINT EXT CP HORIZONTAL PHASE SYNC IN 14 SHARPNESS DELAY LINE H DUTY HVCO 21 VP OUT 27 Y/C LEVEL COMP BPP SW 7 MATRIX SW BLACK LEVEL CORECTION FRESH COLOR 2 SDA 31 CLAMP CP FBP/BLK V-BPP VP OUT G-Y MATRIX V FREQUENCY SW R-Y + 53 ABCL IN WPS V-BLK HI-BRIGHT COLOR G-Y COLOR γ Yout-γ HALF TONE /C MUTE HALF TONE EXT V-BLK H-BLK ABCL AMP B-Y ACB PULSE CLAMP PULSE HD POLARITY BRIGHTNESS WPL V C/D HD IN SW CLAMP 2 × fH H-RAMP SYNC SEPA RELATIVE PHASE/ AMPLITUDE 11 COLOR LIMITER HPF HD2 IN 13 V INTEGRAL WP BLUE VD1 IN 15 CP VD2 IN 12 BLK VSM MUTE CLAMP OSD AMP Y RGB MATRIX CP RGB OUT DRIVE MIXER SW/ BLUE BACK B OUT 41 OSD ACL SW S/H CUT OFF RGB BRIGHTNESS IK CLAMP CP OR 54 VSM OUT 39 ANALOG OSD R IN 38 ANALOG OSD G IN 37 ANALOG OSD B IN 51 YS1 (ANALOG OSD) CP SW VSM AMP CLAMP VD IN SW R OUT 43 G OUT 42 COLOR PEAK DETECT V-CLP YM SW CLAMP 50 YS2 (ANALOG OSD) 2 G S/H B S/H 34 33 49 52 YM/PMUTE/BLK R S/H 35 YS3 (ANALOG RGB) 46 ANALOG B IN 47 ANALOG G IN 48 ANALOG R IN 45 IK IN RGB CONTRAST 2002-10-04 TA1316AN Pin Assignment DARK AREA DET FILTER 1 56 APL FILTER BPH FILTER 2 55 Y/C VCC Y1 IN 3 54 VSM OUT Cb1/Pb1 IN 4 53 ABCL IN Cr1/Pr1 IN 5 52 YM/P-MUTE/BLK Y/C GND 6 51 YS 1 (analog OSD) MATRIX SW 7 50 YS 2 (analog OSD) Y2 IN 8 49 YS 3 (analog RGB) Cb2/Pb2 IN 9 48 R S/H Cr2/Pr2 IN 10 47 G S/H COLOR LIMITER 11 46 B S/H VD2 IN 12 45 IK IN HD2 IN 13 44 RGB GND 43 R OUT VD1 IN 15 42 G OUT HD1 IN 16 41 B OUT SCP IN 17 40 RGB VCC SCP OUT 18 39 ANALOG OSD R IN DEF/DAC VCC 19 38 ANALOG OSD G IN AFC FILTER 20 37 ANALOG OSD B IN HVCO 21 36 DAC2 (ACB pulse) HORIZONTAL FREQUENCY SW 22 35 ANALOG R IN H CURVE CORRECTION 23 34 ANALOG G IN FBP IN 24 33 ANALOG B IN DEF/DAC GND 25 32 I L GND H-OUT 26 31 SDA VP OUT 27 30 SCL 28 29 I L VDD SYNC IN 14 TA1316AN 3 2 2 2002-10-04 TA1316AN Pin Functions Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 55 Connect filter for detecting black area. DC Voltage value of this pin controls dynamic γ circuit gain. 1 5 kΩ 50 kΩ 1 DARK AREA DET FILTER 6 Voltage value of this pin controls black stretch gain. 2 200 Ω 1 kΩ DC 5V BPH FILTER 1 kΩ 2 4.25 V Connect filter for detecting black peak. 1 kΩ 4 kΩ 1 kΩ 55 6 4 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 1 Vp-p (including sync) at 100% color bar 55 Inputs Y1 signal via clamp capacitor. 3 Y1 IN 3 1 kΩ 1 kΩ Recommended input amplitude: 1 Vp-p (including sync) at 100% color bar. or 5 kΩ 6 55 Inputs Cb1/Pb1 signal via clamp capacitor. 4 Cb1/Pb1 IN Recommended input amplitude: 700 mVp-p at 100% color bar. 4 1 kΩ 1 kΩ 700 mVp-p at 100% color bar for Cb1/Pb1 5 kΩ 6 5 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 55 Inputs Cr1/Pr1 signal via clamp capacitor. 5 Cr1/Pr1 IN 5 1 kΩ 1 kΩ Recommended input amplitude: 700 mVp-p at 100% color bar. 100 mVp-p at 100% color bar for Cr1/Pr1 5 kΩ 6 Y/C GND GND pin for Y/C block. 55 Matrix switching pin for YCbCr or YPbPr input. 7 MATRIX SW When pin is not used, connect 0.01 µF capacitor between pin and GND. BUS When YUV INPUT MODE = 00 or 01, 25 µA Switches matrix according to voltage value input to this pin when BUS control “YUV INPUT MODE” = 00 or 01. Then, control by pin has priority over control by BUS (see table 4). 7 0~0.6 V: YCbCr → Internal YUV 0.9~5 V: YPbPr → Internal YUV 1 kΩ 112 kΩ 6 Open: BUS control 6 6 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 1 Vp-p (including sync) at 100% color bar 55 Inputs Y2 signal via clamp capacitor. 8 Y2 IN 8 1 kΩ 1 kΩ Recommended input amplitude: 1 Vp-p (including sync) at 100% color bar. or 5 kΩ 6 55 Inputs Cb2/Pb2 signal via clamp capacitor. 9 Cb2/Pb2 IN Recommended input amplitude: 700 mVp-p at 100% color bar. 9 1 kΩ 1 kΩ 700 mVp-p at 100% color bar for Cb2/Pb2 5 kΩ 6 7 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 55 Inputs Cr2/Pr2 signal via clamp capacitor. 10 Cr2/Pr2 IN 10 1 kΩ 1 kΩ Recommended input amplitude: 700 mVp-p at 100% color bar. 700 mVp-p at 100% color bar for Cr2/Pr2 5 kΩ 6 7 µA 55 11 COLOR LIMITER Connect filter for detecting color limit. 11 DC 5 kΩ 6 8 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit 19 VD2 IN Inputs vertical sync signal VD2. Signal input can have both positive and negative polarity. 12 Threshold: 0.75 V 1 kΩ or 45 kΩ 12 Threshold: 0.75 V 25 19 HD2 IN Inputs horizontal sync signal HD2. Signal input can have both positive and negative polarity. 13 1 kΩ Threshold: 0.75 V or 50 kΩ 13 Input Signal/Output Signal Threshold: 0.75 V 25 9 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal White 100%: 1 Vp-p 1 kΩ 19 SYNC IN Inputs sync signal via clamp capacitor. 14 or 1 kΩ 10 µA 1 kΩ 14 25 19 VD1 IN Inputs vertical sync signal VD1. Signal input can have both positive and negative polarity. 15 1 kΩ or 45 kΩ 15 Threshold: 0.75 V 25 10 Threshold: 0.75 V 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit 19 HD1 IN 16 1 kΩ Threshold: 0.75 V or 50 kΩ 16 Inputs horizontal sync signal HD1. Input signal can have both positive and negative polarity. Input Signal/Output Signal 25 Threshold: 0.75 V 40 kΩ 19 Inputs SCP from up converter. SCP IN Input signals are clamp pulse (CP) and black peak detection stop pulse (BPP). 17 2.2 V~2.8 V: BPP 5 kΩ 4.7 V~9 V: CP 50 kΩ 17 25 500 Ω Outputs SCP. Output signals are clamp pulse (CP) and black peak detection stop pulse (BPP). SCP OUT (Note) Don’t use Horizontal-BPP (H-BPP) for the timing pulse of picture period on the screen (e.g. H-BLK) because H-BPP width will be changed by the temperature. CP: 5.0 V BPP: 2.5 V 18 0V 200 Ω 2.5 kΩ 18 19 25 11 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal VCC pin for DEF/DAC block. 19 DEF/DAC VCC To ascertain the correct voltage for VCC, please refer to the table entitled Maximum Ratings. 19 20 AFC FILTER Connect filter for detecting AFC. DC 30 kΩ 20 300 Ω 25 21 HVCO 2 kΩ Connect ceramic oscillator for horizontal oscillation. Use Murata CSBLA503KECZF30 oscillator. 1 kΩ 19 21 1 kΩ 10 kΩ 25 12 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 1 kΩ 19 HORIZONTAL FREQUENCY SW 22 60 kΩ 60 kΩ 15 kΩ 22 When selecting horizontal frequency by BUS control, leave pin open. Control by pin has priority over control by BUS. 60 kΩ Horizontal frequency select pin. Selects horizontal frequency according to voltage value input to this pin. 1 kΩ 30 kΩ 20 pF When this IC will be used on CRT, the frequency of H-out (pin 26) should be controlled by DC voltage which is divided from voltage of DEF VCC (pin 19) by resisters. 7.5 V At BUS control (horizontal frequency): output voltage value 00 (15.75 kHz): DC 9 V 01 (31.5 kHz): DC 6 V 10 (33.75 kHz): DC 3 V 11 (45 kHz): DC 0 V 4.5 V At pin 22 control, horizontal frequency and input voltage value 16 kΩ 1.5 V 0~1.0 V: 2.0~4.0 V: 5.0~7.0 V: 8.0~9.0 V: 45 kHz 33.75 kHz 31.5 kHz 15.75 kHz 25 When pin is not used, connect 0.01 µF capacitor between pin and GND. 50 kΩ 23 1 kΩ DC 6.5 V 130 kΩ H CURVE CORRECTION 25 kΩ 23 Corrects curve at high-tension fluctuation. Input AC component of high-tension fluctuation. 65 kΩ 19 25 13 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 19 2.25 V max: 9 V FBP IN Input FBP and H-BLK for horizontal AFC. H-AFC threshold: 3.0 V 24 BLK threshold: 1.5 V 500 Ω 1 kΩ 5V 24 25 25 DEF/DAC GND GND pin for DEF/DAC block. 19 26 H-OUT Horizontal output pin. Open collector output. 26 5 kΩ 25 14 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 19 27 VP OUT When a current is applied to the pin, external blanking is carried out by ORing this signal with the internal blanking signal. VP output: 200 µA Outputs vertical pulse. 27 5V 200 Ω 0V (Note) When H-POSITION will be changed, VP width will change. Use the start phase of VP. 32 25 Start phase V-BLK input current: 780 µA~1 mA 19 Outputs 1-bit DAC or composite SYNC signal after sync separation. 28 DAC1 (SYNC OUT) Open-collector output (The output level for this pin cannot be guaranteed since leakage from internal signals may occur.) DC or SYNC OUT 28 500 Ω 32 25 2 VDD pin for I L block. Connect 2 V (typ.). 29 2 I L VDD Power to pin 29 should be supplied from pin 19 via zener diode through resister. 15 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 19 SCL 30 5 kΩ SCL SCL pin for I C BUS. 2.25 V 30 2 25 32 19 SDA 2 31 50 Ω 5 kΩ SDA SDA pin for I C BUS. 2.25 V 31 ACK 25 32 32 2 I L GND 2 GND pin for I L block. 16 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 40 33 ANALOG B IN Inputs analog R/G/B signal via clamp capacitor. 34 ANALOG G IN 35 ANALOG R IN Recommended input amplitude: 0.7 Vp-p (no sync) at 100% white 33 34 35 1 kΩ 1 kΩ 100 IRE: 0.7 Vp-p 1 kΩ 44 40 DC or ACB pulse 36 DAC2 (ACB pulse) Outputs 1-bit DAC or ACB pulse 36 500 Ω Open-collector output 44 17 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 40 37 ANALOG OSD B IN Inputs analog OSD signal via clamp capacitor. 38 ANALOG OSD G IN 39 ANALOG OSD R IN Recommended input amplitude: 0.7 Vp-p (no sync) at 100% white 37 38 39 1 kΩ 1 kΩ 100 IRE: 0.7 Vp-p 1 kΩ 44 VCC pin for text/RGB block. 40 RGB VCC To ascertain the correct voltage for VCC, please refer to the table entitled Maximum Ratings. 41 100 Ω 40 B OUT Outputs R/G/B signal. G OUT 43 R OUT Recommended output amplitude: 100 IRE = 2.3 Vp-p Conditions: 41 42 43 200 Ω UNI-COLOR = max SUB-CONT = Cent 2.7 mA 42 100 IRE: 2.3 Vp-p Y IN = 0.7 Vp-p 44 44 RGB GND GND pin for text/RGB block. 18 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 40 R G B 1 Vp-p (typ.) 0 V~3 V Inputs the feedback signal from CRT. (BLK level should be 0 V to 3 V.) 45 IK IN or RGB VCC 45 When ACB is not used, connect this pin to the RGB VCC pin. 1 kΩ 44 40 Sample-and-hold (S/H) pin. 47 G S/H 48 R S/H In ACB mode connect a 2.2-µF capacitor. In CUTOFF mode connect a 0.01-µF capacitor. 46 47 48 500 Ω 1 kΩ 5 kΩ DC 3 pF B S/H 3V 46 44 19 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 40 49 YS3 (analog RGB) Selects input between internal RGB and external analog RGB according to voltage value input to this pin. 49 When analog RGB is selected, mutes VSM output. 300 Ω 0~0.5 V: Internal 300 Ω 1.5~9 V: Analog RGB, VSM mute 44 Switches between internal RGB and OSD input signals. Voltage applied to YS1 and YS2 adjusts blend ratio of internal RGB and OSD signals. YS2 (analog OSD) When YS1 or YS2 is High, mutes VSM output. Blend ratio YS2 YS1 Int RGB: OSD RGB 51 YS1 (analog OSD) L L 10:0 H L 7:3 L H 5:5 H H 0:10 50 51 0~0.5 V: 300 Ω Internal 1.1~1.7 V: VSM mute 2.9~9 V: 50 kΩ 50 40 OSD, VSM mute 44 20 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal 40 YM/P-MUTE/BLK Also performs image mute or blanking. Internal 1.2~1.8 V: Half-tone 2.7~4.0 V: P-mute 7~9 V: Blanking 10 kΩ 52 0~0.5 V: 300 Ω 52 80 kΩ Fast half-tone switch for internal RGB signal. 44 6.75 V 40 ABL and ACL input pin. 53 ABCL IN Can set gain and start point for ABL and dynamic ABL by BUS control. 30 kΩ 3 kΩ DC 53 44 21 2002-10-04 TA1316AN Pin No. Pin Name Function Interface Circuit Input Signal/Output Signal VSM OUT 54 1.6 mA Mutes output signal using pins 49, 50 and 51. 200 Ω 1 kΩ 54 Outputs Y signal for VSM which passes through HPF circuit (primary differential circuit). 200 Ω 40 6 VCC pin for Y/C block. 55 Y/C VCC To ascertain the correct voltage for VCC, please refer to the table entitled Maximum Ratings. 55 40 kΩ Connect filter for correcting DC restoration. 56 APL FILTER Leaving this pin open enables user to monitor Y signal after black stretch and dynamic γ. 56 1 kΩ 1 kΩ 6 22 2002-10-04 TA1316AN Bus Control Map Write Mode Slave Address: 88H Sub-Add D7 00 D6 H-FREQ D5 D4 D3 D2 H-DUTY YUV-SW DAC1 DAC2 01 ACB-MODE SCP-SW 03 SYNC INPUT-SW HBP-PHS CLP-PHS SYNC SEP-LEVEL V-BLK PHASE 04 TEST VERTICAL FREQUENCY COMPRESSION-BLK PHASE-1 COMPRESSION-BLK PHASE-2 P-MODE1 UNI-COLOR 06 07 D0 HORIZONTAL POSITION 02 05 D1 BRIGHTNESS OSD-ACL COLOR Preset 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 08 TINT RGB-ACL 1000 0000 09 PICTURE SHARPNESS YNR 1000 0000 0A RGB BRIGHTNESS DCRR-SW 1000 0000 1000 0000 YUV INPUT MODE 1000 0000 0B HI BRT RGB CONTRAST 0C SUB CONTRAST WPS 0D DRIVE GAIN1 DR-R 1000 0000 0E DRIVE GAIN2 DR-B/G 1000 0000 0F R CUT OFF 1000 0000 10 G CUT OFF 1000 0000 11 B CUT OFF 1000 0000 1000 0000 12 R-Y/B-Y GAIN 13 R-Y/B-Y PHASE G-Y/B-Y GAIN 14 COLOR SRT GAIN 15 C.D.E. G-Y/B-Y PHASE Y/C GAIN COMP1 1000 0000 CLT 1000 0000 FRESH-COLOR 1000 0000 COLOR γ C-SRT FREQ Y/C GAIN COMP2 16 VSM PHASE VSM GAIN APACON PEAK FREQ 1000 0000 17 DC REST POINT DC REST RATE DC REST LIMIT 1000 0000 18 BLACK STRETCH POINT 1000 0000 1000 0000 19 SHR-TRACKING APL VS BSP B.L.C. WPL-LEVEL B.D.L BS-ARE WPL-FREQ 1A DYNAMIC ABL POINT DYNAMIC ABL GAIN P-MODE2 1000 0000 1B ABL POINT ABL GAIN RGB OUT MODE 1000 0000 1000 0000 APACON WPL 1000 0000 WP BLUE POINT 1000 0000 WP BLUE GAIN 1000 0000 1C DYNC γ -POINT 1D OSD BRIGHT DYNC γ GAIN VS DARK AREA OSD CONTRAST 1E Y DETAIL CONTROL 1F Y GROUP DELAY CORRECTION STATIC γ -GAIN Y/C-DL1 Y/C-DL2 Y-OUT γ Read Mode Slave Address: 89H 0 D7 D6 D5 D4 D3 D2 D1 D0 POR IK-IN RGB-OUT YUV-IN H-OUT VP-OUT RGB-IN SYNC-IN 23 2002-10-04 TA1316AN Bus Control Functions Write Mode Parameter Preset Explanation Selects horizontal oscillation frequency. H-FREQUENCY 00: 15.75 kHz, 01: 31.5 kHz, 10: 33.75 kHz, 11: 45 kHz 33.75 kHz Control by pin 22 has priority over BUS control. When this IC will be used on CRT, the frequency of H-out should be controlled by pin 22. Switches horizontal output duty. H-DUTY 41% 0: 41%, 1: 47% Switches YUV input. INPUT-1 YUV-SW 0: INPUT-1 (Y1/Cb1/Cr1), 1: INPUT-2 (Y2/Cb2/Cr2) Switches DAC control output. DAC 1 Open Don't use this function Switches DAC control output. 0: On (low), DAC 2 1: Open (high) When TEST = 00, controls 1-bit DAC when output is open-collector. On When TEST = 01, outputs ACB reference pulse from pin 36. Selects sync input. 00: Selects HD1/VD1 input. SYNC INPUT-SW HD/VD1 01: Selects HD2/VD2 input. 10/11: Selects SYNC input. Adjusts horizontal picture phase. HORIZONTAL POSITION 0000000 (−10.5%)~1111111 (+10.5%) Center (Note) When H-POSITION will be changed, VP width (pin 27) will change. Switches clamp pulse phase. 0: 0.7-µs (2.5%) width with 1.1-µs (3.8%) delay from HD stop phase CLP-PHS 1: 0.7-µs (2.4%) width with 0.2-µs (0.7%) delay from HD stop phase 1.1-µs delay While quiescent, 0.8-µs (2.7%) width with 1.2-µs (4.2%) delay from FBP start phase Also switches CP phase of SCP-OUT (pin 18). Sets ACB mode. Selects reference level for convergence. ACB MODE 00: ACB off (cutoff BUS control), 01: ACB on (5 IRE), 10: ACB on (10 IRE), ACB on (10 IRE) 11: ACB on (20 IRE) Switches SCP (sandcastle pulse) mode. 0: Internal mode, SCP-SW 1: External input mode Inside IC Also switches SCP-OUT (pin 18). (Note) Don’t use H-BPP for the timing pulse, because H-BPP width of internal mode will be changed by the temperature. Switches horizontal black peak detection pulse phase. HBP-PHS 0: ±6.3% of FBP, 1: ±3.5% of FBP 6.3% width Selects SYNC separation level. SYNC SEP-LEVEL min 00: 8.5%, 01: 20%, 10: 30%, 11: 40% Test mode When TEST = 00, controls 1-bit DAC when output is open-collector. TEST When TEST = 01, outputs H-SYNC from pin 28 and ACB reference pulse from pin 00 36. Do not use TEST = 10/11 because this is used for IC Shipment Test mode. 24 2002-10-04 TA1316AN Parameter Preset Explanation Adjusts vertical BLK stop phase. V-BLK PHASE 00000 (16H) ~11110 (46H) (1 H/STEP), 32 H 11111: Internal V-BLK off V-FREQUENCY Vertical free-running frequency. Sets vertical pull-in range (Table 1). 1281 H COMPRESSION-BLK PHASE-1/2 Adjusts compression BLK phase. Adjusts BLK at top and bottom (Table 2). Off P-MODE1/2 Selects picture mode. Selects between picture mute, half-tone, blue background, P-MUTE 1 and Y mute (Table 3). Adjusts unicolor. UNI-COLOR min 0000000 (−16.5dB) ~111 (0dB) Adjusts brightness. BRIGHTNESS Center 00000000 (−40 IRE) ~11111111 (+40 IRE) Turns OSD-ACL on/off. OSD-ACL On 0: Off, 1: On Adjusts color. COLOR 0000000: Color mute, C-MUTE 0000001 (−20dB or more) ~1111111 (+4.6dB) Adjusts tint. TINT Center 0000000 (−32 deg) ~1111111 (+32 deg) Switches analog RGB-ACL sensitivity. RGB-ACL 0: −6dB, −6 dB 1: Normal Adjusts sharpness. PICTURE-SHARPNESS Center 0000000 (−10dB or more) ~1111111 (+17dB (at peak FREQ) ) YNR: Turns luminance (Y) noise reduction (NR) on/off. 0: Off, 1: On YNR Lower two bits of PICTURE-SHARPNESS (09-D2/D1) = 00: Trap (at peak FREQ) = 11: Flat Off YNR level is controlled by lower two bits (09-D2) of PICTURE-SHARPNESS. DL-APACON gain control by PICTURE-SHARPNESS is invalid. Adjusts RGB brightness. RGB-BRIGHTNESS Center 0000000 (−20 IRE) ~1111111 (+20 IRE) Switches DC restoration rate. DCRR-SW 100% or more 0: 100% or more, 1: 100% or less Turns high bright color on/off. HI BRT On 0: Off, 1: On Adjusts RGB contrast. RGB-CONTRAST min 0000000 (−16.5dB) ~1111111 (0dB) Adjusts sub-contrast. SUB-CONTRAST Center 00000 (−3.5dB) ~11111 (+2.6dB) Adjusts WPS level. WPS 110 IRE 0: 110 IRE 1: 130 IRE Selects Y/color difference signal input mode. 00: Y/Cb/Cr, 01: Y/Pb/Pr, YUV INPUT MODE 10: Through, 11: Y/U/V (TA1270) Control by pin takes priority at 00 and 01 (table 4). Y/Cb/Cr (Ref.) Y/Cb/Cr: ITU-R BT 601 Y/Pb/Pr: ITU-R BT 709 (1125/60/2:1) 25 2002-10-04 TA1316AN Parameter Preset Explanation Adjusts drive gain 1 and drive gain 2. DRIVE GAIN1/2 Center 0000000 (−5dB) ~1111111 (+3dB) DR-R Switches reference RGB drive gain (Table 5). R DR-B/G Adjusts R/G/B cutoff. 1) RGB-OUT when ACB off R/G/B CUT OFF Center 00000000 (1.9 V) ~11111111 (2.9 V) 2)SENS-IN when ACB on 00000000 (0.5 Vp-p) ~11111111 (1.5 Vp-p) Adjusts R-Y/B-Y relative amplitude. R-Y/B-Y GAIN Center 0000 (0.54) ~1111 (0.85) Adjusts R-Y/B-Y relative phase. R-Y/B-Y PHASE min 0000 (90 deg) ~1111 (111.5 deg) Adjusts G-Y/B-Y relative amplitude. G-Y/B-Y GAIN Center 0000 (0.28) ~1111 (0.38) Adjusts G-Y/B-Y relative phase. G-Y/B-Y PHASE min 0000 (232 deg) ~1111 (256 deg) Adjusts color SRT gain. COLOR SRT GAIN Center 000 (min) ~111 (max) Selects color SRT peak frequency. C-SRT-FREQ 4.3 MHz 00: 4.5 MHz, COLOR γ 01: 5.8 MHz, 10: 8.5 MHz, 11: Off Selects color γ correction point. 00: Off, 01: 0.23 Vp-p, Off 10: 0.40 Vp-p, 11: 0.58 Vp-p Switches color limiter level. CLT 0: 1.65 Vp-p, 1.65 Vp-p 1: 2 Vp-p Adjusts color detail enhancer. CDE Center 00: min 11: max Selects dynamic Y/C compensation. Y/C GAIN COMP1/2 COMP1, 00: Off, 01: min, 10: mid, 11: max COMP2, 00: Off, 01: min, 10: mid, 11: max All off Selects flesh color. FRESH-COLOR 00: Off, 01: ±33.7 deg, Normal, 10: ±9.5 deg, High, Off 11: ±9.5 deg, Normal Adjusts VSM phase. −7.5 ns VSM-PHASE 000 (−37.5 ns) ~101 (normal) ~111 (+15 ns) Adjusts VSM gain. VSM GAIN 000: OFF, 001: +3 dB, Off 111: +19 dB Selects APACON peak frequency. APACON PEAK f0 13.5 MHz 00: 13.5 MHz, 01: 9.5 MHz, 10: 7.3 MHz, 11: 4.7 MHz DC restoration point DC REST POINT Center 000: 0%, 111: 51% Adjusts DC restoration rate. DC REST RATE 100% 000 (100%) ~111 (135% (65%) ) Selects DC restoration limit point. DC REST LIMIT min 00: 57%, 01: 71%, 10: 78%, 11: 78% 26 2002-10-04 TA1316AN Parameter Preset Explanation Adjusts black stretch point 1. BLACK STRETCH POINT Center 000: OFF, 001 (34 IRE) ~111 (53 IRE) Adjusts black stretch point 2. APL VS BSP 0 IRE 00 (0 IRE) ~11 (24 IRE) up Turns black level automatic correction on/off. B.L.C Max: 8.5 IRE, black stretch has priority. Off 0: Off, 1: On Switches black detection level. B.D.L. 3 IRE 0: 3 IRE, 1: 0 IRE Turns black stretch area on/off. BS-ARE On 0: On, 1: Off SHR tracking (adjusts SRT component gain.) SHR-TRACKING Center 00 (SRT-GAIN max) ~11 (SRT-GAIN min) Adjusts white letter improvement amplitude. WPL-LEVEL min 000: min 111: max Adjusts white letter improvement start frequency. WPL-FREQ 5 MHz 000 (5 MHz) ~111 (16 MHz) Adjusts dynamic ABL detection voltage. DYNAMIC ABL POINT Center 000 (min) ~111 (max) Adjusts dynamic ABL sensitivity. DYNAMIC ABL GAIN min 000 (min) ~111 (max) Adjusts ABL detection voltage. ABL POINT Center 000 (min) ~111 (max) Adjusts ABL sensitivity. ABL GAIN min 000 (min) ~111 (max) Switches RGB output mode (switch for RGB output mode for test and adjustment). RGB-OUT MODE Normal 00: Normal, 01: R only, DYNCγ-POINT 10: G only, 11: B only Switches dynamic Y γ point. 00: 20 IRE, 01: 21.5 IRE, 23.5 IRE 10: 23.5 IRE, 11: 25 IRE Turns dynamic Y γ gain VS dark area on/off. DYNCγ GAIN VS DARK AREA 000 (min) ~ min 111 (max (when 25 IRE or below is 25% or more of area ratio, +3dB) ) STATICγ-GAIN Y-outγ Turns static Y γ dark area gain on/off. 00: Off (0dB) 11: max (1.5dB, at this time, DYNCγ gain is +1.5dB max) Turns Y-out γ on/off. Off Off 0: Off, 1: On Adjusts OSD brightness. OSD BRIGHT 00: 5 IRE, 01: 0 IRE, 10: −5 IRE, 11: −10 IRE −5 IRE Adjusts OSD contrast. OSD-CONTRAST min 00 (min (−9.5dB) ) ~11 (max (0dB) ) Adjust Y/C relative phase: Y phase before RGB matrix is changed. Y/C DL1/2 Y/C DL2 = 0 and Y/C DL1 = 0: −10 ns, Y/C DL2 = 0 and Y/C DL1 = 1: −5 ns −10 ns Y/C DL2 = 1 and Y/C DL1 = 0: 0 ns, Y/C DL2 = 1 and Y/C DL1 = 1: +5 ns Adjusts APACON white peak limiter. APACON WPL Off 000 (Off) ~111 (Maximum effect of positive limiter) 27 2002-10-04 TA1316AN Parameter Preset Explanation Controls Y detail: Adjusts differential signal for frequency other than picture sharpness. 00000 (min (trap) ) ~11111 (max (+6dB) ) Y DETAIL CONTROL Center Peak frequency linked to APACON PEAK FREQ 00: 5.5 MHz, 01: 3.7 MHz, 10: 14.5 MHz, 11: 10 MHz Adjusts white peak blue point. WP BLUE POINT min 000 (60 IRE) ~111 (112 IRE) Corrects Y group delay. Y-GROUP DELAY CORRECTION 0000: Decreases preshoot gain (increases overshoot gain). Center 1111: Decreases overshoot gain (increases preshoot gain). Adjusts white peak blue gain. WP BLUE GAIN min 000 (min (+2.3 dB) ) ~111 (max (+10 dB) ) Table 1: Vertical Frequency Data V-BPP V PULL-IN Range Start Phase Format/V-FREQUENCY, H-FREQUENCY Stop Phase 000 48~1281H 1100H 1125P/30 Hz (33.75 kHz) 001 48~849H 730H 750P/60 Hz (45 kHz) 010 48~725H 600H 011 48~660H 625P/50 Hz (31.5 kHz) V-BLK P. 545H 1125I/60 Hz (33.75 kHz) (C.BLK P.) 100 48~613H 500H 101 48~363H 290H PAL/SECAM/50 Hz (15.625 kHz), 100 Hz (31.5 kHz) 110 48~307H 240H NTSC/60 Hz (15.734 kHz), 120 Hz (31.5 kHz) 111 VP-OUT HI +20 H 525P/60 Hz (31.5 kHz) Table 2: Compression-BLK Phase V-FREQUENCY PHASE-1 (start phase) 000 1088H~1118H 001 720H~750H 010 592H~622H 011 528H~558H 100 488H~518H 101 280H~310H 110 224H~254H 111 PHASE-2 (stop phase) 50H~78H (0000: C-BLK OFF) C-BLK OFF 28 2002-10-04 TA1316AN Table 3: P-Mode 05-D7 1A-D1 1A-D0 MODE Details Can mute picture or half-tone main signal using YM pin. 0 0 0 NORMAL 1 Can insert analog RGB-IN using Ys3; OSD-IN using Ys1/Ys2. Analog RGB-IN > P-Mute Mutes main signal Y in whole picture using BUS. 0 0 1 Y-MUTE Can insert analog RGB-IN using Ys3; OSD-IN using Ys1/Ys2. Analog RGB-IN > P-Mute Half-tones main signal in whole picture using BUS. Can insert P-Mute using YM pin. 0 1 0 YM 1 Can insert analog RGB-IN using Ys3. Blends OSD-IN with main H/T signal using Ys1/Ys2. Analog RGB-IN > P-Mute Blue-backs main signal using BUS. 0 1 1 Can insert P-Mute using YM pin. BB Can insert analog RGB-IN using Ys3; OSD-IN using Ys1/Ys2. Analog RGB-IN > P-Mute Mutes main signal in whole picture using BUS. 1 0 0 P-MUTE 1 Can insert analog RGB-IN using Ys3; OSD-IN using Ys1/Ys2. Analog RGB-IN > P-Mute 1 0 1 YM2 Cannot be used. 1 1 0 P-MUTE 2 Cannot be used. 1 1 NORMAL 2 Cannot be used. 1 Output priority: main signal < BB < P-MUTE < RGB-IN < OSD-IN Table 4: YUV INPUT MODE YUV INPUT MODE 00 Pin 7 MATRIX LOW YCbCr → Internal YUV HIGH YPbPr → Internal YUV OPEN YCbCr → Internal YUV LOW YCbCr → Internal YUV HIGH YPbPr → Internal YUV OPEN YPbPr → Internal YUV 10 Through 11 YUV → Internal YUV 01 29 2002-10-04 TA1316AN Table 5: DR-R, DR-B/G 0D-D0 0E-D0 Reference Axis Drive Gain1 Drive Gain2 0 0 R G B 0 1 R G B 1 0 G R B 1 1 B G R Read Mode Parameter Explanation Power-on reset POR 0: Register preset, 1: Normal After power-on, 0 is read on first read; 1 on subsequent reads. IK input detection: detects input to pin 45. IK-IN 0: NG (no input), 1: OK (input) RGB-OUT self-check result: detects output from pins 41, 42 and 43. RGB-OUT 0: NG (no output), 1: OK (output) Returns OK when signal is detected on all three outputs. If signals are small, does not return OK. YUV-IN self-check result: detects input to pins 3, 4 and 5 or pins 8, 9 and 10. YUV-IN 0: NG (no input), 1: OK (input) Returns OK when AC signal is detected on all three inputs. If signals are small or are DC voltage, does not return OK. H-OUT self-check result: detects output from pin 26. H-OUT 0: NG (no output), 1: OK (output) VP-OUT self-check result: detects output from pin 27. VP-OUT 0: NG (no output), 1: OK (output) RGB-IN self-check result: detects input to pins 33, 34 and 35. RGB-IN 0: NG (no input), 1: OK (input) Returns OK when AC signal is detected on all three inputs. If signals are small or are DC voltage, does not return OK. SYNC-IN self-check result: detects input to pin 14. SYNC-IN 0: NG (no input), 1: OK (input) 30 2002-10-04 TA1316AN 2 Data Transfer Format via I C BUS Slave Address: 88H A6 A5 A4 A3 A2 A1 A0 W/R 1 0 0 0 1 0 0 0/1 Start and Stop Condition SDA SCL S P Start condition Stop condition Bit Transfer SDA SCL Change of SDA allowed SDA stable Acknowledge SDA by transmitter Bit 9: High-impedance SDA by receiver Bit 9 only: Low-impedance SCL from master 1 8 9 S Clock pulse for acknowledge 31 2002-10-04 TA1316AN Data Transmit Format 1 S Slave address 7 bits 0 A MSB S: Start condition Sub address 8 bits A MSB A: Acknowledge Transmit data 9 bits A P MSB P: Stop condition Data Transmit Format 2 S Slave address 0 A Sub address ・・・・・・ A Transmit data Sub address A A ・・・・・・ Transmit data n A P Data Receive Format S Slave address 7 bits MSB 1 A Transmit data 1 8 bits A Transmit data 2 A P MSB At the moment of the first acknowledge, the master transmitter becomes a master receiver and a slave transmitter. The Stop condition is generated by the master. Details are provided in the Philips I2C specifications. Optional Data Transmit Format: Automatic Increment Mode S Slave address 7 bits MSB 0 A 1 Sub address 7 bits A Transmit data 1 8 bits MSB MSB ・・・・ Transmit data 2 8 bits A P MSB In this transmission method, data is set on automatically incremented sub-address from the specified sub-address. Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. 32 2002-10-04 TA1316AN Maximum Ratings (Ta = 25°C) Characteristics Rating Symbol Unit PCB A PCB B PCB C VCCmax 12 12 12 V Input pin signal voltage einmax 9 9 9 Vp-p Power dissipation PD (Note1) Power supply voltage 2551 2717 3378 mW Power dissipation reduction rate 1/θja 20.4 21.7 27.0 mW/°C Operating temperature Topr −20~65 −20~65 −20~65 °C Storage temperature Tstg −55~150 −55~150 −55~150 °C min 8.5 8.7 8.7 typ. 8.8 9.0 9.0 max 9.1 9.3 9.3 Power supply voltage (Pins 19, 40, 55) V Note 1: Please see the following Figure. Note, however, that the conditions apply only to the case where the device is mounted on board A (180 mm × 125 mm × 1.6 mm, one-sided); board B (329 mm × 249 mm × 1.6 mm, two-sided); or board C (276 mm × 192 mm × 1.6 mm, six-layered). When mounting the IC, select boards no smaller than these. When using under the conditions of board A, set the IC’s power supply voltage (pins 19, 40, 55) to 8.8 V (±0.3 V) Because the IC’s thermal capacity margin is narrow, when designing a set, incorporate heat discharge features into the design. Note that the power dissipation varies widely depending on the board mounting conditions. 3378 Printed circuit board B Printed circuit board C Power dissipation PD (mW) 2717 2551 2297 1848 1735 Printed circuit board A 0 0 25 65 150 Ambient temperature Ta (°C) Figure 1 Characteristics of decrease in power dissipation Note 2: Pins 3, 4, 5, 7, 8, 9, 10, 11, 20, 21, 22, 23, 30, 31, 33, 34, 36, 39, 45, 46, 49, 50, 51, 52 and 53 are susceptible to damage from surge voltages and should thus be handled with extreme care. 33 2002-10-04 TA1316AN Note 3: Power supply sequence At power-on, power should be supplied to the IC’s power supply pins according to the following sequence: 2 first to pin 29 (I L VDD), then to pin 19 (DEF/DAC VCC), and finally to pin 40/pin 55 (RGB VCC/YC VCC). Power to pin 29 should be supplied from pin 19 via zener diode through resister. If power is not supplied to all the power pins or if power is not supplied in the above sequence, BUS preset will be unsettled and the IC may not function properly. Especially, when the frequency of H-out (pin 26) will be unsettled, H deflection output transistor may be broken. When this IC will be used on CRT, the frequency of H-out should be controlled by pin 22. V H-out output DEF/DAC VCC 5.2 V (typ.) Power-on reset (POR) threshold voltage for bus operation 3.3 V (typ.) 2 I L VDD Logic operation 1.5 V (typ.) t Figure (Note 3) Timing from immediately after power-on to time at which H-out is output (at Ta = 25°°C) 34 2002-10-04 TA1316AN Note 4: VCC condition at Power-OFF 2 At power-off, the last pulse of H-out (pin 26) will become unknown, if I L VDD (pin 29) is over 1.7 V at the timing of H-out stop. 2 I L VDD should be below 1.7 V when DEF/DAC VCC (pin 19) will be 6.2 V, which is the maximum voltage when H-out stops. Refer to Figure (Note 4-1). V DEF/DAC VCC (pin 19) 6.2 V H-out stop voltage (max) 2 I L VDD (pin 29) Figure (Note 4-1) H-out stop Power off below 1.7 V t VCC condition at power-off If it is not in the condition of Figure (Note 4-1), it is recommended that H-out will be made LOW at power-off by external control like micro-processor ang so on. Refer to Figure (Note 4-2). DFF/DAC VCC (Pin 19) 6.2 V TA1316 DEF VCC Control signal by micro-processor and so on. H-out 26 Approximately ten milli seconds or more Figure (Note 4-2) Power OFF Control signal by micro-processor and so on. H-out stop H-out waveform t Example how to stop H-out 35 2002-10-04 TA1316AN Recommended Operating Conditions Characteristics Description Min Typ. Max Board A (Note1) 8.5 8.8 9.1 Boards B and C (Note1) 8.7 9.0 9.3 Pin 29 1.8 2.0 2.2 Y input level Pins 3 and 8: 100% color bar, including sync (picture signal: 0.7 Vp-p) 1.0 Color difference signal input level Pins 4, 5, 9 and 10: 100% color bar, no sync 0.7 Matrix switching voltage Pin 7 2.0 3.0 5.0 HD/VD input level Pins 12, 13, 15 and 16 2.0 5.0 9.0 SYNC input level Pin 14: 100% color bar, including sync 0.9 1.0 1.1 CP 4.7 5.0 9.0 SCP input level Pin 17 BPP 2.2 2.5 2.8 15.75 kHz 8.0 9.0 9.0 31.5 kHz 5.0 6.0 7.0 33.75 kHz 2.0 3.0 4.0 45 kHz 0 0 1.0 H-AFC 4.0 5.0 9.0 H-BLK 1.7 2.25 2.8 Pins 19, 40 and 55 Supply voltage (VCC) Horizontal frequency switching voltage FBP input level Unit V Vp-p V Vp-p V Pin 22 Pin 24 H-OUT input current Pin 26 9.0 15.0 DAC input current Pins 28 and 36 0.3 1.0 SCL/SDA pull-up voltage Pins 30 and 31 3.3 5.0 9.0 V SDA input current Pin 31 2 mA Analog RGB input level Pins 35, 34 and 33: White 100% 0.7 Analog OSD input level Pins 37, 38 and 39: White 100% 0.7 YS3 switching voltage Pin 49 1.5 5.0 9.0 YS1/2 switching voltage Pins 51 and 50 mA OSD 2.9 5.0 9.0 VSM MUTE 1.1 1.5 1.7 BLK 7.0 9.0 9.0 P-MUTE 2.7 3.2 4.0 HALF TONE 1.2 1.5 1.8 0.78 1 Vp-p V YM switching voltage External V-BLK input current Note1: Pin 52 Pin 27 mA For the parameter values for boards A, B and C, please refer to the table entitled Maximum Ratings. Electrical Characteristics (VCC = 9 V/2 V, Ta = 25°C, unless otherwise specified) Current Dissipation Symbol Test Circuit Min Typ. Max DEF/DAC VCC ICC1 21.0 24.2 26.9 RGB VCC ICC2 55.3 63.6 70.8 I L VDD ICC3 21.0 24.1 26.8 Y/C VCC ICC4 39.3 45.3 50.3 Pin Name 2 36 Unit mA 2002-10-04 TA1316AN Pin Voltage Test Condition (1) (2) BUS = Preset SW1 = B, SW2 = B, SW3 = C, SW4 = B, SW5 = B, SW7 = A, SW8~10 = B, SW14 = B, SW20 = ON, SW23 = B, SW24 = A, SW26 = A, SW33~35 = A, SW37~39 = A, SW54 = OFF, SW56 = ON Pin No. Pin Name Symbol Test Circuit Min Typ. Max 2 BPH FILTER V2 5.5 5.8 6.1 3 Y1 IN V3 4.7 5.0 5.3 4 Cb/Pb1 IN V4 4.7 5.0 5.3 5 Cr/Pr1 IN V5 4.7 5.0 5.3 7 MATRIX SW V7 2.0 3.0 4.0 8 Y2 IN V8 4.7 5.0 5.3 9 Cb/Pb2 IN V9 4.7 5.0 5.3 10 Cr/Pr2 IN V10 4.7 5.0 5.3 11 COLOR LIMITER V11 6.65 6.9 7.15 12 VD2 IN V12 0 0 0.3 13 HD2 IN V13 0 0 0.3 14 SYNC IN V14 1.6 2.0 2.4 15 VD1 IN V15 0 0 0.3 16 HD1 IN V16 0 0 0.3 17 SCP IN V17 3.9 4.4 4.9 20 AFC FILTER V20 5.8 6.5 7.2 21 HVCO V21 5.0 5.3 5.6 23 H CURVE CORRECTION V23 2.2 2.5 2.8 33 ANALOG B IN V33 3.65 3.95 4.25 34 ANALOG G IN V34 3.65 3.95 4.25 35 ANALOG R IN V35 3.65 3.95 4.25 37 ANALOG OSD B IN V37 3.65 3.95 4.25 38 ANALOG OSD G IN V38 3.65 3.95 4.25 39 ANALOG OSD R IN V39 3.65 3.95 4.25 46 B S/H V46 3.5 4.0 4.5 47 G S/H V47 3.5 4.0 4.5 48 R S/H V48 3.5 4.0 4.5 49 YS3 V49 0.0 0.1 0.2 50 YS2 V50 0.0 0.1 0.2 51 YS1 V51 0.0 0.1 0.2 52 YM V52 0.0 0.1 0.2 53 ABCL IN V53 5.85 6.1 6.35 54 VSM OUT V54 4.2 4.4 4.6 56 APL FILTER V56 4.8 5.0 5.2 37 Unit V 2002-10-04 TA1316AN Luminance Block Characteristics Y input dynamic range Black detection level shift Black stretch amplifier maximum gain Black stretch start point 1 Black stretch start point 2 Dynamic ABL detection voltage Dynamic ABL sensitivity Black level correction Dynamic Y γ correction point Dynamic Y γ gain Static Y γ dark area gain DC restoration gain DC restoration start point DC restoration limit point Sharpness control peak frequency Sharpness control range Symbol Test Circuit Test Condition Min Typ. Max Unit DRY 0.7 1.0 1.5 Vp-p VB −15 −5 5 VB3 35 45 55 2.5 3.0 3.5 31 34 37 50 53 56 0 5 10 19 24 29 30 50 70 80 100 120 190 220 250 0.005 0.02 0.29 0.32 0.35 7.0 8.5 10 17 20 23 0.5 1.5 2.5 2 3.5 5 3 5 7 2 3 4 dB dB (Note P01) GBS PBST1 PBST2 PBS1 PBS2 DV001 DV010 DV100 SDAMIN SDAMAX BLC PDGP00 PDGPA PDGPB PDGPC GDG (Note P09) (Note P10) GSG ADT100 ADT135 ADT65 VDT0 VDT1 PDTL11 PDTL10 PDTL01 PDTL00 (Note P02) mV (Note P03) IRE (Note P04) (Note P05) (Note P06) (Note P07) IRE 1.3 1.7 2.2 1.1 1.2 1.2 1.35 1.5 0.55 0.7 0.85 −5 0 5 47 51 55 54 57 61 67 71 75 74 78 82 74 78 82 FAP00 12.2 13.5 14.9 FAP01 8.5 9.5 10.5 FAP10 6.5 7.3 8.1 FAP11 4.2 4.7 5.2 GMAX00 13 16 18 GMIN00 −15 −8 −4 GMAX01 14 17 19 GMIN01 −20 −14 −7 GMAX10 14 17 19 GMIN10 −25 −16 −7 GMAX11 14 18 20 GMIN11 −30 −20 −8 % MHz (Note P14) 38 times % (Note P13) IRE IRE 0.9 (Note P12) mV V/V (Note P08) (Note P11) dB dB 2002-10-04 TA1316AN Characteristics Sharpness control center characteristic YNR characteristic Control of SRT response to 2T pulse input VSM peak frequency VSM gain Threshold voltage of VSM muting Response time for VSM muting VSM limit Delay time from Y input to R output Y delay time switch Transfer distortion correction Symbol Test Circuit GCEN00 GCEN01 GCEN10 Test Condition (Note P15) Min Typ. Max 7.5 10 12.5 8 11 13 8 11 13 GCEN11 9 12 14 GYNRT00 −15 −8 −4 GYNRF00 −3 −1 1 GYNRT01 −20 −12 −8 GYNRF01 −3 −1 1 GYNRT10 −20 −13 −8 GYNRF10 −2 −0.5 1.5 GYNRT11 −25 −12 −8 GYNRF11 −2 0 2 TSRT00 0.05 0.4 0.7 TSRT01 0.5 1 2 TSRT10 1.5 2 4 TSRT11 3.5 5 7 FVSM 15 19 22.8 GV000 −39 −35 GV001 2 3 4 GV010 5.5 6.5 7.5 GV011 9.5 11 12 GV100 12.5 13.8 15 GV101 14.5 16 17.5 GV110 15.5 16.8 18.5 GV111 17.5 18.6 19.5 VSR49 0.62 0.72 0.85 VSR50 0.62 0.72 0.85 VSR51 0.62 0.72 0.85 TVM49A 0 30 100 TVM49B 0 30 100 TVM50A 0 30 100 TVM50B 0 30 100 TVM51A 0 30 100 TVM51B 0 30 100 VLU 0.58 0.65 0.75 VLD 0.55 0.62 0.75 TYR 96 120 144 YDLA 3 5 7 YDLB 7 10 13 YDLC 11 15 19 GAMIN −5 −3.2 −2.0 GBMIN 1 2 3.5 GAMAX 0.3 1.0 1.7 GBMA X −3.0 −1.5 −1.0 (Note P16) (Note P17) (Note P23) 39 MHz V ns (Note P20) (Note P22) dB dB (Note P19) (Note P21) dB dB (Note P18) Pins 49, 50 and 51 Unit Vp-p ns ns dB 2002-10-04 TA1316AN Characteristics Color detail enhancer Y detail frequency Symbol Test Circuit GCDE00 GCDE01 GCDE10 GCDE11 FYD00 FYD01 FYD10 FYD11 Test Condition Min Typ. Max 5.5 6.8 8 5.5 6.8 8 5.5 6.8 8 5.5 6.8 8 4.4 5.5 6.6 2.9 3.7 4.5 11.6 14.5 17.4 8 10 12 GYDMAX00 6 9 12 GYDMAX01 7 10 13 GYDMAX10 2.5 5.5 8.5 GYDMAX11 3 6 9 3.5 6.5 9.5 4 7 10 GYDCEN10 −2 0.8 2 GYDCEN11 −1 1 2 (Note P24) APACON white peak limiter GYDCEN01 (Note P25) dB GYDMIN00 0 1.5 3 GYDMIN01 0 2 4 GYDMIN10 −8 −5 −2 GYDMIN11 −18 −15 −12 GWPL1 −10 −7 −4 GWPL2 −7 −4.8 −2 GWPL3 −5 −2.3 −0.5 (Note P26) 40 dB MHz GYDCEN00 Y detail control range Unit dB 2002-10-04 TA1316AN Color Difference 1/YUV Input and Matrix Block Characteristics Symbol Test Circuit Color difference signal input dynamic range DBB DRR TRMAX Test Condition Min Typ. Max 0.7 0.9 1 0.7 0.9 1 25 29 33 −37 −33 −29 27 31 35 −36 −32 −28 0.65 0.72 0.8 TRMIN TBMAX TBMIN VMSW FB00 3.6 4.5 5.4 FB01 4.6 5.8 7.0 FB10 6.8 8.5 10.2 FR00 3.6 4.5 5.4 FR01 4.6 5.8 7.0 FR10 6.8 8.5 10.2 GSB00CEN 5 8 11 GSB00MAX 9 12 15 GSB01CEN 2 5 8 GSB01MAX 5 8 11 GSB10CEN 1 2 5 GSB10MAX 1 3 6 GSR00CEN 5 8 11 GSR00MAX 9 12 15 GSR01CEN 2 5 8 GSR01MAX 5 8 11 GSR10CEN 1 2 5 GSR10MAX 1 3 6 Delay time from Cb1 input to B output TB 104 130 156 Delay time from Cr1 input to R output TR 104 130 156 Color difference signal tint control characteristic Matrix fast SW threshold voltage Color SRT peak frequency Color SRT gain Pin 7 Vp-p ° V MHz (Note S01) 41 Unit dB ns 2002-10-04 TA1316AN Characteristics Color difference signal amplitude correction YUV gain Symbol Test Circuit GCBDY1 Test Condition Min Typ. Max 0.3 0.5 0.7 GCBDY2 0.7 1.0 1.3 GCBDY3 0.7 1.0 1.3 GCBBS1 0.2 0.4 0.6 GCBBS2 −1.0 −0.6 −0.5 GCBBS3 −3.6 −3.3 −3.0 GCRDY1 0.3 0.5 0.7 GCRDY2 1.4 1.6 1.8 GCRDY3 1.4 1.6 1.8 GCRBS1 0.1 0.3 0.5 GCRBS2 −1.2 −1.0 −0.8 GCRBS3 −3.7 −3.3 −2.9 GY00 4.5 5.5 6 GY01 4.5 5.5 6 GY10 4.5 5.5 6 GY11 4.5 5.5 6 GBA 0.2 0.4 0.5 GBB 1.0 1.1 1.3 GBC 1.0 1.1 1.3 GRA 0.8 1.0 1.2 GRB −1.6 −1.4 −1.2 GRC −3.4 −3.2 −3.0 (Note S02) (Note S03) 42 Unit dB dB 2002-10-04 TA1316AN Color Difference 2 Block Characteristics Color difference signal contrast adjustment characteristic Color adjustment characteristic R-Y relative phase and amplitude G-Y relative phase and amplitude Color difference signal half-tone characteristic Color γ characteristic Color limiter characteristic High bright color gain Symbol Test Circuit ∆VuCY ∆vcCY+ ∆vcCY− θRMAX Test Condition Min Typ. Max Unit 15.5 17.0 18.5 dB 3.6 4.6 5.6 −35 −25 −18 109 111.5 114 θRCNT 98.5 101 103.5 θRMIN 88 90 92 VR/VBMAX 0.82 0.85 0.88 VR/VBCNT 0.68 0.71 0.74 VR/VBMIN 0.51 0.54 0.57 θGMAX 253 256 259 θGCNT 245 248 251 θGMIN 229 232 235 VG/vBMAX 0.35 0.38 0.41 VG/vBCNT 0.30 0.33 0.36 VG/vBMIN 0.25 0.28 0.31 GHTRY 0.47 0.50 0.53 GHTGY 0.47 0.50 0.53 GHTBY 0.47 0.50 0.53 Vγ1 0.09 0.23 0.37 Vγ2 0.26 0.40 0.54 Vγ3 0.44 0.58 0.72 ∆γ 0.60 0.70 0.80 CLT0 1.45 1.65 1.85 CLT1 1.80 2.00 2.20 HBC1 0.02 0.04 0.06 (Note A01) (Note A02) (Note A03) (Note A04) (Note A05) (Note A06) 43 dB ° times ° times times Vp-p Vp-p times 2002-10-04 TA1316AN Text Block Characteristics AC gain (Y1in~R/G/B out) AC gain axial difference Frequency characteristic Symbol Test Circuit GR GG GB GG/R GB/R GfR GfG GfB Frequency characteristics GfCb (Cb1/Cr1in~R/G/B out) GfCr Unicolor adjustment characteristic ∆Vu VbrMAX VbrCNT VbrMIN Vwps1 Vwps2 Vbps N41 N42 (Y1in~R/G/B out) Brightness adjustment characteristic White peak slice level Black peak slice level RGB output S/N Half-tone characteristic Half-tone ON voltage Vertical blanking pulse output level Horizontal blanking pulse output level Blanking pulse delay time Sub-contrast variable range Test Condition (Note T01) Flat gain (−3 dB point at 10 MHz) (Note T02) (Note T03) Min Typ. Max 3.39 3.80 4.28 3.39 3.80 4.28 3.39 3.80 4.28 0.94 1.00 1.06 0.94 1.00 1.06 24 30 24 30 24 30 11 14.5 11 14.5 15.5 16.5 17.5 4.10 4.45 4.80 3.05 3.40 3.75 1.95 2.30 2.65 2.30 2.45 2.65 2.70 2.90 3.10 1.05 1.20 1.35 −55 −49 −55 −49 (Note T04) (Note T05) (Note T06) N43 −55 −49 GHT1 0.45 0.50 0.55 GHT2 0.45 0.50 0.55 VHT 0.65 0.85 1.05 VVR 0.30 0.80 1.30 VVG 0.30 0.80 1.30 VVB 0.30 0.80 1.30 VHR 0.30 0.80 1.30 VHG 0.30 0.80 1.30 VHB 0.30 0.80 1.30 tdON 0.00 0.30 tdOFF 0.08 0.30 ∆vsu+ 2.1 2.6 3.1 ∆vsu− −4.0 −3.5 −3.0 CUT+ 0.42 0.47 0.52 CUT− 0.42 0.47 0.52 Cutoff voltage variable range (Note T07) Pin 52 (Note T08) 44 Unit times MHz MHz dB V Vp-p V dB times V V V µs dB V 2002-10-04 TA1316AN Characteristics Drive adjustment variable range Output voltage at picture muting P mute ON voltage Output voltage at blue back Pin 53 input impedance ACL characteristic ABL point ABL gain Symbol Test Circuit DRR1+ Test Condition Min Typ. Max 2.5 3.0 3.5 DRR1− −5.5 −5.0 −4.5 DRR2+ 2.5 3.0 3.5 Unit DRR2− −5.5 −5.0 −4.5 DRG1+ 2.5 3.0 3.5 DRG1− −5.5 −5.0 −4.5 DRG2+ 2.5 3.0 3.5 DRG2− −5.5 −5.0 −4.5 DRG3+ 2.5 3.0 3.5 DRG3− −5.5 −5.0 −4.5 DRB1+ 2.5 3.0 3.5 DRB1− −5.5 −5.0 −4.5 DRB2+ 2.5 3.0 3.5 DRB2− −5.5 −5.0 −4.5 DRB3+ 2.5 3.0 3.5 DRB3− −5.5 −5.0 −4.5 MURD 1.5 1.7 1.9 MUGD 1.5 1.7 1.9 MUBD 1.5 1.7 1.9 VMUTE 1.90 2.15 2.40 BBR 1.0 1.2 1.4 BBG 1.0 1.2 1.4 BBB 1.1 1.25 1.4 Vp-p Zin 24 30 36 kΩ ACL1 −7.5 −5.5 −3.5 ACL2 −16.0 −14.5 −12.0 ABLP1 0.10 0.15 0.20 ABLP2 −0.01 0.04 0.09 ABLP3 −0.07 −0.02 0.03 ABLP4 −0.17 −0.12 −0.07 ABLP5 −0.27 −0.22 −0.17 ABLP6 −0.36 −0.31 −0.26 ABLP7 −0.44 −0.39 −0.34 ABLP8 −0.50 −0.45 −0.40 ABLG1 −0.06 −0.02 0.00 ABLG2 −0.17 −0.12 −0.07 ABLG3 −0.34 −0.29 −0.24 ABLG4 −0.52 −0.47 −0.42 ABLG5 −0.68 −0.63 −0.59 ABLG6 −0.85 −0.80 −0.75 ABLG7 −1.01 −0.96 −0.91 ABLG8 −1.09 −1.04 −0.99 (Note T09) Pin 52 V V V (Note T10) (Note T11) (Note T12) (Note T13) 45 dB dB V V 2002-10-04 TA1316AN Characteristics RGB output mode Y-OUT γ characteristic Blue stretch circuit characteristic Forced blanking input threshold voltage ACB pulse phase and amplitude IK input amplitude IK input cover range Symbol Test Circuit V43R Test Condition Min Typ. Max 2.15 2.40 2.65 V42R 0.30 0.80 1.30 V41R 0.30 0.80 1.30 V43G 0.30 0.80 1.30 V42G 2.15 2.40 2.65 V41G 0.30 0.80 1.30 V43B 0.30 0.80 1.30 V42B 0.30 0.80 1.30 V41B 2.15 2.40 2.65 γ1 56 66 76 γ2 72 82 92 ∆1 0.49 1.24 1.99 ∆2 −1.67 −0.92 −0.17 ∆3 −4.59 −3.84 −3.09 BSPmin 55.0 60.0 65.0 BSPcnt 92.5 97.5 102.5 BSPmax 107 112 117 BSGmin 1.75 2.25 2.75 BSGcnt 6.4 7.4 8.4 BSGmax 9 10 11 VBLKIN 5.50 6.00 6.50 θACBR 1 θACBG 2 (Note T14) Unit V IRE (Note T15) dB IRE (Note T16) Pin 52 θACBB 3 VACB1R 0.04 0.07 0.10 VACB1G 0.04 0.07 0.10 VACB1B 0.04 0.07 0.10 VACB2R 0.16 0.21 0.26 VACB2G 0.16 0.21 0.26 VACB2B 0.16 0.21 0.26 VACB3R 0.41 0.46 0.51 VACB3G 0.41 0.46 0.51 VACB3B 0.41 0.46 0.51 IKR 0.73 0.93 1.13 IKG 0.73 0.93 1.13 IKB 0.73 0.93 1.13 DIKin+ 3.00 3.30 3.60 DIKin− −0.50 −0.30 −0.10 dB V H (Note T17) (Note T18) (Note T19) 46 Vp-p Vp-p V 2002-10-04 TA1316AN Characteristics Analog RGB gain Analog RGB gain triaxial difference Analog RGB frequency characteristic Analog RGB input dynamic range Analog RGB white peak slice level Analog RGB black peak limit level RGB contrast adjustment characteristic Analog RGB brightness adjustment characteristic Analog RGB mode switch voltage Analog RGB mode switching transfer characteristic Text ACL characteristic Analog OSD gain Analog OSD gain triaxial difference Symbol Test Circuit GTXR GTXG GTXB GTXG/R GTXB/R GfTXR GfTXG GfTXB Test Condition (Note T20) Min Typ. Max 3.03 3.40 3.83 3.03 3.40 3.83 3.03 3.40 3.83 0.94 1.00 1.06 0.94 1.00 1.06 30 35 30 35 30 35 DR35 0.80 1.20 1.50 DR34 0.80 1.20 1.50 DR33 0.80 1.20 1.50 TXVWPSR 2.30 2.55 2.80 TXVWPSG 2.30 2.55 2.80 TXVWPSB 2.30 2.55 2.80 VBPSR 1.05 1.20 1.35 VBPSG 1.05 1.20 1.35 VBPSB 1.05 1.20 1.35 ∆vuTXR 15.5 16.5 18.5 ∆vuTXG 15.5 16.5 18.5 At −3dB (Note T21) (Note T22) (Note T23) ∆vuTXB 15.5 16.5 18.5 VbrTXmax 3.0 3.2 3.4 VbrTXcnt 2.5 2.7 2.9 VbrTXmin 2.0 2.2 2.4 VTXON 0.65 0.85 1.05 τRYS 15 50 tPRYS 20 50 ∆tRYS 0 10 τFYS 10 50 tPRYS 30 50 ∆tRYS 0 10 TXACL1 −2.00 −1.00 −0.05 TXACL2 −7.5 −5.5 −3.5 TXACL3 −6.0 −4.0 −2.0 TXACL4 −17 −15 −13 GOSDR 2.95 3.30 3.70 GOSDG 2.95 3.30 3.70 GOSDB 2.95 3.30 3.70 GOSDG/R 0.94 1.00 1.06 GOSDB/R 0.94 1.00 1.06 (Note T24) Pin 49 (Note T25) (Note T26) (Note T27) 47 Unit times MHz Vp-p Vp-p V dB V V ns dB times 2002-10-04 TA1316AN Characteristics Analog OSD frequency characteristic Analog OSD input dynamic range Analog OSD input white peak slice level Analog OSD input black peak limit level Analog OSD contrast adjustment characteristic Analog OSD brightness adjustment characteristic Analog OSD mode switch voltage Symbol Test Circuit GfOSDR GfOSDG GfOSDB DR35 Test Condition At −3dB Min Typ. Max 35 40 35 40 35 40 0.80 1.20 1.50 0.80 1.20 1.50 DR34 DR33 0.80 1.20 1.50 OSDVWPSR 2.45 2.70 2.95 OSDVWPSG 2.45 2.70 2.95 OSDVWPSB 2.45 2.70 2.95 OSDVBPSR 1.30 1.45 1.60 OSDVBPSG 1.30 1.45 1.60 OSDVBPSB 1.30 1.45 1.60 VUOSDR11 0.58 0.64 0.71 VUOSDG11 0.58 0.64 0.71 VUOSDB11 0.58 0.64 0.71 VUOSDR10 0.47 0.53 0.59 VUOSDG10 0.47 0.53 0.59 VUOSDB10 0.47 0.53 0.59 VUOSDR01 0.32 0.38 0.46 VUOSDG01 0.32 0.38 0.46 VUOSDB01 0.32 0.38 0.46 VUOSDR00 0.21 0.23 0.25 VUOSDG00 0.21 0.23 0.25 VUOSDB00 0.21 0.23 0.25 VbrOSD0 2.20 2.40 2.60 VbrOSD1 2.05 2.25 2.45 VbrOSD2 1.95 2.15 2.35 VbrOSD3 1.80 2.00 2.20 VOSDON1 Pin 51 2.05 2.30 2.55 VOSDON2 Pin 50 2.05 2.30 2.55 (Note T28) (Note T29) (Note T30) Unit MHz Vp-p Vp-p V Vp-p V (Note T31) V 48 2002-10-04 TA1316AN Characteristics Analog OSD mode switching transfer characteristic OSD ACL characteristic OSD blending characteristic Crosstalk between inputs Symbol Test Circuit τRYS1 Test Condition Min Typ. Max 15 50 tPRYS1 20 50 ∆tPRYS1 0 10 τFYS1 10 50 tPRYS1 30 50 ∆tPRYS1 0 10 τRYS2 15 50 tPRYS2 20 50 ∆tPRYS2 0 10 τFYS2 10 50 tPRYS2 30 50 ∆tPRYS2 0 10 tROSD 20 50 tPROSD 15 50 ∆tPROSD 0 10 τFOSD 20 50 tPROSD 20 50 ∆tPROSD 0 10 OSDACL1 0.00 OSDACL2 OSDACL3 OSDACL4 (Note T32) 0.00 −8.0 −5.5 −3.0 −17 −15 −13 α41TV1 −7 −6 −5 α42TV1 −7 −6 −5 α43TV1 −7 −6 −5 α41TV2 −4 −3 −2 α42TV2 −4 −3 −2 α43TV2 −4 −3 −2 α41TV3 −55 −50 α42TV3 −55 −50 α43TV3 −55 −50 α41OSD1 −6.5 −5.5 −4.5 α42OSD1 −6.5 −5.5 −4.5 α43OSD1 −6.5 −5.5 −4.5 α41OSD2 −12.0 −10.5 −9.0 α42OSD2 −12.0 −10.5 −9.0 α43OSD2 −12.0 −10.5 −9.0 α41OSD3 −40 −30 α42OSD3 −40 −30 α43OSD3 −40 −30 −50 −40 (Note T33) (Note T34) 49 Unit ns dB dB dB 2002-10-04 TA1316AN Deflection Block Parameter Symbol Test Circuit SPH HD1PH/2PH HDDUTY1 HDDUTY2 HDDUTY3 HDDUTY4 Min Typ. Max Unit (Note HA01) 0.55 0.65 0.75 µs (Note HA02) 0.58 0.68 0.78 µs 0.5 2.0 62 67 72 99.5 98 47.5 52.5 57.5 VthS00 4 8.5 14 VthS01 14 20 26 VthS10 24 30 36 VthS11 34 40 46 VthHD1/2 0.7 0.8 0.9 ∆HSFT− 9.5 10.5 11.5 ∆HSFT+ 9.5 10.5 11.5 ∆H#23 2.9 3.4 3.9 CPS0 3.1 3.8 4.5 CPW0 2.0 2.5 3.0 CPV0 4.7 5.0 5.3 CPS1 0 0.7 1.5 CPW1 1.9 2.4 2.9 CPV1 4.7 5.0 5.3 CPS2 3.2 4.2 5.2 CPW2 2.2 2.7 3.2 CPV2 4.7 5.0 5.3 HBPS0a 4.3 6.3 8.9 HBPS0b 4.3 6.3 8.9 HBPV0 2.2 2.5 2.8 HBPS1a 1.5 3.5 5.9 HBPS1b 1.5 3.5 5.9 HBPV1 2.2 2.5 2.8 V HBPs45a 6.0 8.5 11.5 % HBPs45b 6.0 8.5 11.5 % HBPsv45 2.2 2.5 2.8 % FBP threshold VthFBP 2.5 3.0 3.5 V HVCO oscillation start voltage VVCO Monitor pin 21 = VCC 3.5 4.0 4.5 V H-OUT start voltage VHON Monitor pin 26 = VCC 4.5 5.2 6.2 V Sync input horizontal sync phase HD 1/2 input horizontal sync phase Polarity detection range Sync input threshold amplitude HD 1/2 input threshold voltage Horizontal picture phase adjustment variable range Curve correction amount Clamp pulse phase, width and level Black peak detection pulse phase and level Test Condition (Note HA03) % % (Note HA04) (Note HA05) % (Note HA06) (Note HA07) Vp-p % % V % (Note HA08) V % V % V % (Note HA09) (Note HA10) 50 2002-10-04 TA1316AN Parameter H-OUT pulse duty Symbol Test Circuit TH00A Min Typ. Max 39 41 43 TH01A 38 40 42 TH10A 38 40 42 TH00B 45 47 49 TH01B 44.5 46.5 48.5 TH10B 45 47 49 F00 15.59 15.75 15.91 F01 31.19 31.5 31.82 33.41 33.75 34.09 Horizontal free-running frequency F11 44.52 45.0 45.48 F00MIN 14.48 14.78 15.08 F00MAX 16.37 16.70 17.03 F01MIN 28.97 29.56 30.15 F01MAX 32.72 33.39 34.06 F10MIN 30.91 31.54 32.17 F10MAX 34.91 35.62 36.33 F11MIN 43.20 44.00 44.80 F11MAX 47.85 48.65 49.45 BH00 176 220 264 BH01 352 440 528 BH10 376 470 564 BH11 520 650 780 V26H 4.8 5.1 5.2 V26L 0.1 0.3 V22L 1.3 1.5 1.7 V22M 4.3 4.5 4.7 V22H 7.3 7.5 7.7 VDAC2H TEST = (00), DAC2 = (1) 8.5 9.0 VDAC2L TEST = (00), DAC2 = (0) 0.3 0.7 VPW 4 4.5 5 000 VPt0 1278 1281 1284 001 VPt1 846 849 852 010 VPt2 722 725 728 H-OUT output voltage Horizontal oscillation frequency pin (pin 22) control voltage threshold DAC2 VP output pulse width Hz/0.1 V (Note HB04) % kHz V V H (Note V01) VPt3 657 660 663 VPt4 610 613 616 101 VPt5 360 363 366 110 VPt6 304 307 310 TVPULL 47 48 49 011 100 Vertical minimum pull-in range (Note HB03) (Note HB05) Unit kHz (Note HB02) Horizontal oscillation control sensitivity Vertical free-running (maximum pull-in range) (Note HB01) F10 Horizontal oscillation frequency variable range DAC switching voltage Test Condition (Note V02) 51 H H 2002-10-04 TA1316AN Parameter 000 001 010 Vertical black peak detection pulse 011 100 101 110 Vertical blanking stop phase High VP output voltage Low Delay time from SYNC input to VP output Symbol Test Circuit VBPP0E VBPP0S VBPP1E 51 52 53 VBPP1S 729.5 730.5 731.5 VBPP2E 49.5 50.5 51.5 VBPP2S 599.5 600.5 601.5 VBPP3E 49.5 50.5 51.5 VBPP3S 544.5 545.5 546.5 VBPP4E 51 52 53 VBPP4S 499.5 500.5 501.5 VBPP5E 51 52 53 VBPP5S 289.5 290.5 291.5 VBPP6E 51 52 53 VBPP6S 239.5 240.5 241.5 VBLKMIN 15 16 17 VBLKMAX 45 46 47 V27VPH 4.6 5.0 5.4 V27VPL 0.1 0.5 15.75 kHz 10.0 11.6 13.4 31.5 kHz 4.8 5.8 7.6 33.75 kHz 4.4 5.4 7.2 45 kHz 3.1 4.1 5.9 Test Condition Min Typ. Max 51 52 53 Unit 1099.5 1100.5 1101.5 (Note V03) H (Note V04) Pin 27 voltage 52 H V µs 2002-10-04 TA1316AN Parameter 000 001 010 Compression BLK1 (start phase) 011 100 101 110 000 001 010 Compression BLK2 011 (stop phase) 100 101 110 External vertical blanking insert current Symbol Test Circuit CBLK1000min Test Condition Min Typ. Max 1087 1088 1089 CBLK1000max 1117 1118 1119 CBLK1001min 719 720 721 CBLK1001max 749 750 751 CBLK1010min 591 592 593 CBLK1010max 621 622 623 CBLK1011min 527 528 529 CBLK1011max 557 558 559 CBLK1100min 487 488 489 CBLK1100max 517 518 519 CBLK1101min 279 280 281 CBLK1101max 309 310 311 CBLK1110min 223 224 225 CBLK1110max 253 254 255 CBLK2000min 49 50 51 CBLK2000max 77 78 79 CBLK2001min 49 50 51 CBLK2001max 77 78 79 CBLK2010min 49 50 51 CBLK2010max 77 78 79 CBLK2011min 49 50 51 CBLK2011max 77 78 79 CBLK2100min 49 50 51 CBLK2100max 77 78 79 CBLK2101min 49 50 51 CBLK2101max 77 78 79 CBLK2110min 49 50 51 CBLK2110max 77 78 79 IEXTBLK 520 625 780 Pin 27, current 53 Unit H H µA 2002-10-04 TA1316AN Test Conditions for Luminance Common Test Conditions for Luminance (1) (2) (3) (4) SW4 = SW5 = B, SW7 = OPEN, SW8~SW10 = B, SW20 = ON, SW23 = B, SW33∼SW39 = A, SW54 = 54 = ON After sending bus control data with preset values, set ACB MODE to off (00) and SYNC INPUT-SW to sync input (10). Input sync signal [signal in sync with input signal used for testing, except for sweep signal] to pin 14 (SYNC IN). Set horizontal frequency to that of pin 14. Set pin 7 to open, Y/color difference signal input mode (YUV INPUT MODE) to Through (10), SYNC SEP-LEVEL to 20% (01) and vertical free-running frequency to 307H (110). Test Conditions Note No. P01 Parameter Black detection level shift Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 B C C SW56 OPEN (1) Connect external power supply (PS) to pin 3 and monitor pins 2 and 56. (2) Set black stretch point 1 to off (000) and black detection level (BDL) to 0 IRE (1). (3) Increase PS voltage from 4.95 V in 1-mV steps. When pin 2 picture period (High) goes Low, measure pin 56 DC differential VB. (4) Set black detection level (BDL) to 3 IRE (0). (5) Repeat step (3) above and measure pin 56 DC differential VB3. Pin 56 waveform VB, VB3 Pin 2 waveform P02 Black stretch amplifier maximum gain B A A OPEN (1) Set SW2 to A (maximum gain) and input 500-kHz sine wave to TPA. (2) Adjust signal amplitude to 0.1 Vp-p using pin 3. (3) Set black stretch point 1 to off (000) and measure pin 56 amplitude VA. (4) Set black stretch point 1 to 001 (black stretch on) and measure pin 56 amplitude VB. (5) Calculate GBS using the following formula. GBS = 20 × "og (VB ÷ VA) [dB] 54 2002-10-04 TA1316AN Test Conditions Note No. P03 Parameter Black stretch start point 1 Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 B A C SW56 OPEN (1) Set SW2 to A (maximum gain) and black stretch start point 1 to off (000). (2) Connect external power supply (PS) to pin 3, increase voltage from V3, and plot resulting pin 56 voltage change S1. Define pin 56 voltages when V3 and V3 + 0.7 V are applied as V0 and V100. (3) Set black stretch start point 1 to 001 (minimum), increase PS voltage from V3 as in (2) above and plot resulting pin 56 voltage change S2. (4) Set black stretch start point 1 to maximum (111), repeat step (2) above and plot resulting pin 56 voltage change S3. (5) Determine S1 and S2 intersection VBST1 and S1 and S3 intersection VBST2 using the graph below. Calculate PBST1 and PBST2 using the following formulae. VZ [V] = V100 [V] − V0 [V] PBST1 [(IRE)] = [(VBST1 [V] − V56 [V]) ÷ VZ] × 100 (IRE) PBST2 [(IRE)] = [(VBST2 [V] − V56 [V]) ÷ VZ] × 100 (IRE) Pin 56 S3 VBST2 S1 VBST1 S2 V56 Pin 3 55 2002-10-04 TA1316AN Test Conditions Note No. P04 Parameter Black stretch start point 2 Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B A A ON (1) Set black stretch start point 1 to off (000), picture mute to off (P-MODE: Normal1 (000)) and apply 0 V to #1. Input TG7 linearity to TPA, adjust amplitude using pin 3 as shown below, set UNI-COLOR to center (1000000), then measure pin 43 (R OUT) amplitude VP43. (2) Set black stretch start point 1 to 001 (black stretch on), connect external power supply (PS) to pin 56 and monitor pin 43 (R OUT). (3) When black stretch start point 2 data is a minimum (00), determine black stretch start point differential ∆V00 for PS = V56 (APL = 0%) and for PS = V56 + 1.0 V (APL = 100%), as shown below. (Using oscilloscope, adjust input waveform so that amplitude (gradient) is same as that of output waveform in VAR. Compare waveforms and determine point where output waveform bends.) (4) When black stretch start point 2 data is a maximum (11), determine black stretch start point differential ∆V11 as in (3) above. (5) Calculate using the following formulae. PBS1 = (∆V00/VP43) × 100 PBS2 = (∆V11/VP43) × 100 LINEARITY APL 100% 0.7 Vp-p ∆V*** APL 0% 0.3 Vp-p Pin 3 waveform (linear) 56 Pin 43 (R OUT) 2002-10-04 TA1316AN Test Conditions Note No. P05 Parameter Dynamic ABL detection voltage Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 B A C SW56 OPEN (1) Set ABL GAIN to minimum (000), DYNAMIC ABL GAIN to maximum (111) and black stretch point 1 to off (000). (2) Connect external power supply (PS) to pin 53 and decrease voltage from 6.5 V. (3) When DYNAMIC ABL POINT bus data is 000, 001, 110 and 100, repeat step (2) above. When pin 56 picture period goes Low, measure PS voltages V000, V001, V010 and V100. (4) Determine voltage differential between V000 and V001 (∆V001), between V000 and V010 (∆V010), and between V000 and V100 (∆V100). DV*** = V000 − V001 (V010, V100) Pin 56 undetected Pin 56 detected Pin 2 waveform 57 2002-10-04 TA1316AN Test Conditions Note No. P06 Parameter Dynamic ABL sensitivity Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B A C ON (1) Set black stretch point 1 to off (000) and connect external power supply (PS) to pin 53. (2) When DYNAMIC ABL POINT is a minimum (000) and DYNAMIC ABL GAIN is a minimum (000) or a maximum (111), plot pin 53 voltage characteristic in relation to pin 56 voltage. (3) Determine gradients SDAMIN and SDAMAX using the graph below. SDAMIN = ∆Y/∆X SDAMAX = ∆Y/∆X Pin 56 10% ∆Y 100% 10% ∆X 58 Pin 53 2002-10-04 TA1316AN Test Conditions Note No. P07 Parameter Black level correction Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 B A C SW56 OPEN (1) Set black stretch point 1 to off (000) and monitor pin 56. (2) Set black level correction (BLC) to on (1), measure ∆V1 (mV) and calculate BLC using the following formula. (VZ: P09 value) 3 BLC = [∆V1/(VZ × 10 )] × 100 (IRE) Picture period ∆V1 [mV] 59 2002-10-04 TA1316AN Test Conditions Note No. P08 Parameter Dynamic Y γ correction point Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 A B A SW56 OPEN (1) Connect external power supply (PS1) to pin 3 and (PS2) to TP1. Set PS2 to 0 V. (2) Set dynamic Y γ point switch (DYNCγ-POINT) to 19 IRE (00), dynamic Y γ gain VS dark area (DYNCγ GAIN VS DARK AREA) to off (000) and dynamic Y γ dark area gain to off (00). (3) When PS1 is increased from V3 to V3 + 0.7 V, set V3 to 0 V and plot voltage change in pin 56. (V3 is pin voltage of pin 3.) (4) Set DYNCγ GAIN VS DARK AREA to maximum (111), static Y γ dark area gain (STATICγ-GAIN) to maximum (11) and PS2 to 1 V. (5) As in step (3) above, increase PS1 from V3 to V3 + 0.7 V and plot pin 56 voltage change. (6) Set DYNCγ-POINT to 21 IRE (01), 25 IRE (10) and 30 IRE (11), increase PS1 from V3 to V3 + 0.7 V and plot pin 56 voltage change. (7) Determine dynamic Y γ point when DYNCγ-POINT is set to 19 IRE (00) as VDGP00 using the graph below. Also determine dynamic Y γ point when DYNCγ-POINT is set to 21 IRE (01) as VDGP01; to 25 IRE (10) as VDGP10; to 30 IRE (10) as VDGP11. (8) Using VDGP01, VDGP10, and VDGP11 thus determined, calculate PDGP00, PDGP01, PDGP10 and PDGP11 using the following formulae. PDGP00 = (VDGP00/0.7) × 100 PDGP01 = (VDGP01/0.7) × 100 PDGP10 = (VDGP10/0.7) × 100 PDGP11 = (VDGP11/0.7) × 100 PDGPA = PDGP01 − PDGP00 PDGPB = PDGP10 − PDGP00 PDGPC = PDGP11 − PDGP00 Pin 56 voltage [V] ON OFF VDGP*** 60 100 IRE Pin 3 voltage 2002-10-04 TA1316AN Test Conditions Note No. P09 Parameter Dynamic Y γ gain Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 A B A SW56 OPEN (1) Connect external power supply (PS1) to pin 3 and (PS2) to TP1. Set PS2 to 0 V. (2) Set DYNCγ-POINT to 30 IRE (11), DYNCγ GAIN VS DARK AREA to off (000) and STATICγ-GAIN to off (00). (3) Set PS1 to V3 and determine pin 56 voltage VDGOFF1. (4) Set PS1 to V3 + 0.16 V and determine pin 56 voltage VDGOFF2. (5) Set DYNCγ GAIN VS DARK AREA to maximum (111), PS2 to 1 V and determine pin 56 voltage VGDON. (6) Calculate GDG using the following formula. GDG = 20 × "og (VDGON − VDGOFF1/VDGOFF2 − VDGOFF1) P10 Static Y γ dark area gain A B A OPEN (1) Connect external power supply (PS1) to pin 3 and (PS2) to TP1. Set PS2 to 0 V. (2) Set DYNCγ-POINT to 30 IRE (11), DYNCγ GAIN VS DARK AREA to off (000) and STATICγ-GAIN to off (00). (3) Set PS1 to V3 and determine pin 56 voltage VSGOFF1. (4) Set PS1 to V3 + 0.16 V and determine pin 56 voltage VSGOFF2. (5) Set STATICγ GAIN to maximum (11) and determine pin 56 voltage VSGON. (6) Calculate GSG using the following formula. GSG = 20 × "og (VSGON − VSGOFF1/VSGOFF2 − VSGOFF1) 61 2002-10-04 TA1316AN Test Conditions Note No. P11 Parameter DC restoration gain Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B C ON (1) Set picture mute to off (P-MODE: Normal1 (000)), DC restoration start point to minimum (000) and DC restoration limit point (DC REST LIMIT) to 100% (11) and connect external power supply PS1 to pin 3. (2) Measure DC level of pin 43 picture period. When use PS1 at V3 as reference, Set PS1 to V3 + 0.7 V and adjust DC level to 0.7 V using UNI-COLOR. (3) Set DC REST RATE to minimum (000) and measure VDT1 and VDT2 when pin 3 is at V3 and at V3 + 0.1 V (see figure below). (4) Measure VDT3 when pin 3 is at V3 + 0.1 V. Set DC REST RATE to maximum (111) and measure VDT3. (5) Set DC restoration rate switch (DCRR-SW) to 100% or less (1) and pin 3 to V3 + 0.1 V, and measure VDT4. Set DC REST RATE to maximum (111) and measure VDT4. (6) Calculate ADT100, ADT135 and ADT65 using the following formulae. ADT100 = (VDT2 [V] − VDT1 [V]) ÷ 0.1 [V] ADT135 = (VDT3 [V] − VDT1 [V]) ÷ 0.1 [V] ADT65 = 1 − {(VDT2 [V] − VDT4 [V]) ÷ 0.1 [V]} V3 [V] Picture period V3 + 0.1 V 62 Pin 43 waveform VDT1 VDT2 VDT3 VDT4 2002-10-04 TA1316AN Test Conditions Note No. P12 Parameter DC restoration start point Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B C ON (1) Set picture mute to off (P-MODE: Normal1 (000)), DC restoration start point to minimum (000) and DC REST LIMIT to 100% (11), and connect external power supply PS1 to pin 3. (2) Measure DC level of pin 43 picture period. Use PS1 at V3 as reference. When PS1 is set to V3 + 0.7 V, adjust DC level to +1.0 V using UNI-COLOR. (3) Set DC REST RATE to minimum (000), increase PS1 from V3 and plot voltage relationship between pin 56 (DC voltage) and pin 43 (picture period voltage). (4) Set DC REST RATE to maximum (111), increase PS1 from V3 and plot voltage relationship between pins 56 and 43. (5) Set DC REST RATE to maximum (111), DC restoration start point to maximum (111), increase PS1 from V3 and plot voltage relationship between pins 56 and 43. (6) Calculate VDT0 and VDT1 using the following formulae. VDT0 = [(VSP0 − V56)/1 V] × 100% VDT1 = [(VSP1 − V56)/1 V] × 100% Pin 43 DC restoration start point: 000 DC restoration start point: 111 DC restoration rate: 000 VSP0 VSP1 VPC 63 Pin 56 2002-10-04 TA1316AN Test Conditions Note No. P13 Parameter DC restoration limit point Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B C ON (1) Set picture mute to off (P-MODE: Normal1 (000)), UNI-COLOR to maximum (1111111) and DC restoration start point to minimum (000), and connect external power supply PS to pin 56. (2) Set DC REST RATE to maximum (111). (3) Increase PS from 5 V, monitor pin 43 and plot DC restoration. (4) Change DC REST LIMIT and repeat step (3) above. Determine VL11, VL10, VL01 and VL00 using the graph below. Calculate PDTL11, PDTL10, PDTL01 and PDTL00 using the following formulae. PDTL11 = [(VL11 − V56)/1.0] × 100% PDTL10 = [(VL10 − V56)/1.0] × 100% PDTL01 = [(VL01 − V56)/1.0] × 100% PDTL00 = [(VL00 − V56)/1.0] × 100% Pin 43 100% (00) 87% (01) 73% (10) 60% (11) VL11 VL10 64 VL00 VL01 Pin 56 2002-10-04 TA1316AN Test Conditions Note No. P14 Parameter Sharpness control range Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input sine wave (frequency variable) to TPA. (2) Set pin 3 amplitude to 20 mVP-P. (3) Set UNI-COLOR to maximum (1111111), SHR-TRACKING to SRT-GAIN minimum (11), APACON peak frequency (APACON PEAK f0) to 15 M (00) and color detail enhancer (CDE) to center (10). (4) Set picture mute to off (P-MODE: Normal1 (000)) and monitor pin 43. (5) Set picture sharpness (PICTURE-SHARPNESS) to center (1000000) and measure amplitude V100 when input frequency is 100 kHz. (6) Set PICTURE-SHARPNESS to maximum (1111111) and measure amplitude VMAX00 when input frequency is FAP00. Calculate GMAX00 using the following formula. (7) Set PICTURE-SHARPNESS to minimum (0000000) and measure amplitude VMIN00 when input frequency is FAP00. Calculate GMIN00 using the following formula. (8) Set APACON PEAK f0 to 8.8 M (01) and measure amplitudes VMAX01 and VMIN01 as in steps (6) and (7) when input frequency is FAP01. Calculate GMAX01 and GMIN01 using the following formulae. (9) Set APACON PEAK f0 to 7.5 M (10) and measure amplitudes VMAX10 and VMIN10 as in steps (6) and (7) when input frequency is FAP10. Calculate GMAX10 and GMIN10 using the following formulae. (10) Set APACON PEAK f0 to 5 M (11) and measure amplitudes VMAX11 and VMIN11 as in steps (6) and (7) when input frequency is FAP11. Calculate GMAX11 and GMIN11 using the following formulae. GMAX*** = 20 × "og (VMAX*** ÷ V100) GMIN*** = 20 × "og (VMIN*** ÷ V100) *: [dB] [dB] When using a spectrum analyzer for monitoring, measure gain for low frequency. 65 2002-10-04 TA1316AN Test Conditions Note No. P15 Parameter Sharpness control center characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input sine wave (frequency variable) to TPA. (2) Set pin 3 amplitude to 20 mVP-P. (3) Set UNI-COLOR to maximum (1111111), SHR-TRACKING to SRT-GAIN minimum (11), APACON peak frequency (APACON PEAK f0) to 15 M (00) and color detail enhancer (CDE) to center (10). (4) Set picture mute to off (P-MODE: Normal1 (000)) and monitor pin 43. (5) Set PICTURE-SHARPNESS to center (1000000) and measure amplitude V100 when input frequency is 100 kHz. (6) Measure pin 43 amplitude VCEN00 when input frequency is FAP00 with PICTURE-SHARPNESS set to center (1000000). Calculate GCEN00 using the following formula. (7) Set APACON PEAK f0 to 8.8 M (01) and measure amplitude VCEN01 as in step (6) when input frequency is FAP01. Calculate GCEN01 using the following formula. (8) Set APACON PEAK f0 to 7.5 M (10) and measure amplitude VCEN10 as in step (6) when input frequency is FAP10. Calculate GCEN10 using the following formula. (9) Set APACON PEAK f0 to 5 M (11) and measure amplitudes VCEN11 as in step (6) when input frequency is FAP11. Calculate GCEN11 using the following formula. GCEN*** = 20 × "og (VCEN*** ÷ V100) *: [dB] When using a spectrum analyzer for monitoring, measure gain for low frequency. 66 2002-10-04 TA1316AN Test Conditions Note No. P16 Parameter YNR characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input sine wave (frequency variable) to TPA. (2) Set pin 3 amplitude to 20 mVP-P. (3) Set UNI-COLOR to maximum (1111111), SHR-TRACKING to SRT-GAIN minimum (11), APACON peak frequency (APACON PEAK f0) to 15 M (00) and color detail enhancer (CDE) to center (10). (4) Set picture mute to off (P-MODE: Normal1 (000)) and monitor pin 43. (5) Set PICTURE-SHARPNESS to center (1000000) and measure amplitude V100 when input frequency is 100 kHz. (6) Set YNR to on (1) and PICTURE-SHARPNESS to minimum (0000000). Measure pin 43 amplitude VTRAP00 when input frequency is FAP00 and calculate GYNRT00 using the following formula. (7) When PICTURE-SHARPNESS is set to 0000011 and measure pin 43 amplitude VFLAT00. Calculate GYNRF00 using the following formula. (8) Set APACON PEAK f0 to 8.8 M (01) and measure amplitude VTRAP01 as in step (7) when input frequency is FAP01. Calculate GTRAP01 using the following formula. (9) Set APACON PEAK f0 to 7.5 M (10) and measure amplitude VTRAP10 as in step (7) when input frequency is FAP10. Calculate GTRAP10 using the following formula. (10) Set APACON PEAK f0 to 5 M (11) and measure amplitude VTRAP11 as in step (7) when input frequency is FAP11. Calculate GTRAP11 using the following formula. *: GYNRT** = 20 × "og (VTRAP**/V100) [dB] GYNRF** = 20 × "og (VFLAT**/V100) [dB] When using a spectrum analyzer for monitoring, measure gain for low frequency. 67 2002-10-04 TA1316AN Test Conditions Note No. P17 Parameter Control of SRT response to 2T pulse input Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input 2T pulse (0.7 VP-P) signal to TPA and set picture mute to off (P-MODE: Normal1 (000)), UNI-COLOR to maximum (1111111), and SHR-TRACKING to SRT-GAIN minimum (11), CDE to center (10) and PICTURE-SHARPNESS to center (1000000). (2) Set APACON frequency to 15 M (00) and monitor pin 43. (3) Measure TSRTMIN00 and VSRTMIN00 as shown in the figure below. (4) Set SHR-TRACKING to SRT-GAIN maximum (00) and measure TSRTMAX00 and VSRTMAX00. (5) Set APACON frequency to 8.8 M (01), SHR-TRACKING to SRT-GAIN minimum (11) and maximum (00) as in step (4) above, and measure TSRTMIN01, VSRTMIN01, TSRTMAX01 and VSRTMAX01. (6) Set APACON frequency to 7.5 M (10), SHR-TRACKING to SRT-GAIN minimum (11) and maximum (00) as in step (4) above, and measure TSRTMIN10, VSRTMIN10, TSRTMAX10 and VSRTMAX10. (7) Set APACON frequency to 5 M (11), SHR-TRACKING to SRT-GAIN minimum (11) and maximum (00) as in step (4) above, and measure TSRTMIN11, VSRTMIN11, TSRTMAX11 and VSRTMAX11. (8) Calculate using the following formulae. TSRT00 = 20 × "og [((VSRTMAX00/TSRTMAX00)/(VSRTMIN00/TSRTMIN00)] TSRT01 = 20 × "og [(VSRTMAX01/TSRTMAX01)/(VSRTMIN01/TSRTMIN01)] TSRT10 = 20 × "og [(VSRTMAX10/TSRTMAX10)/(VSRTMIN10/TSRTMIN10)] TSRT11 = 20 × "og [(VSRTMAX11/TSRTMAX11)/(VSRTMIN11/TSRTMIN11)] T*** 20% V*** 100% 20% 68 2002-10-04 TA1316AN Test Conditions Note No. P18 Parameter VSM gain Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input sine wave of frequency FVSM2 to TPA. (2) Set picture mute to off (P-MODE: Normal1 (000)), and pin 3 amplitude to 0.02 VP-P. (3) Vary VSM GAIN from off (000) to maximum (111) and measure pin 54 amplitudes V001, V010, V011, V100, V101, V110 and V111. Set input amplitude to 0.7 VP-P and measure pin 54 amplitude V000 when VSM GAIN is OFF (000). (4) Calculate using the following formulae. GV000 = 20 × "og (V000/0.7) [dB] GV001 = 20 × "og (V001/0.02) [dB] GV010 = 20 × "og (V010/0.02) [dB] GV011 = 20 × "og (V011/0.02) [dB] GV100 = 20 × "og (V100/0.02) [dB] GV101 = 20 × "og (V101/0.02) [dB] GV110 = 20 × "og (V110/0.02) [dB] GV111 = 20 × "og (V111/0.02) [dB] 69 2002-10-04 TA1316AN Test Conditions Note No. P19 Parameter Response time for VSM fast muting Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input sine wave of frequency FVSM to TPA. (2) Set picture mute to off (P-MODE: Normal1 (000)), VSM GAIN to 100 and pin 3 amplitude to 0.1 VP-P. Monitor pin 54. (3) Input pulse as shown below to pin 49 and determine response times TVM49A and TVM49B. (4) Likewise input pulse to pin 50 and determine response times TVM50A and TVM50B. (5) Likewise input pulse to pin 51 and determine response times TVM51A and TVM51B. Square wave (50 kHz, 2 VP-P) 2V VSR49 [V] Pin 49 waveform 0V TVM49A TVM49B Pin 54 waveform Mute period 70 2002-10-04 TA1316AN Test Conditions Note No. P20 Parameter VSM limit Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input sine wave of frequency FVSM2 to TPA. (2) Set picture mute to off (P-MODE: Normal1 (000)), VSM GAIN to 111 and pin 3 amplitude to 0.7 VP-P. (3) Measure pin 54 amplitudes VLU and VLD [VP-P] as shown below. VLU VLD 71 2002-10-04 TA1316AN Test Conditions Note No. P21 Parameter Delay time from Y input to R output Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Set picture mute to off (P-MODE: Normal1 (000)), UNI-COLOR to maximum (1111111), SHR-TRACKING to SRT-GAIN minimum (11) and input 2T pulse signal (STD) to TPA. (2) Set PICTURE-SHARPNESS to center (1000000). (3) Determine TYR by monitioring pins 43 and 3 as shown below. 2T pulse (STD) Pin 3 50% 50% Pin 43 72 TYR 2002-10-04 TA1316AN Test Conditions Note No. P22 Parameter Y delay time change Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Set picture mute to off (P-MODE: Normal1, 000), UNI-COLOR to maximum (1111111) and SHR-TRACKING to SRT-GAIN minimum (11), and input T2 pulse signal (approx. 0.7 Vp-p) to TPA. (2) Set picture sharpness to center (1000000). (3) Monitor pin 3 and pin 43, and determine the time difference YDL00 for each signal at the 50% point as shown below. (4) Set Y/C-DL1 to +5 ns (1) and determine YDL01. (5) Set Y/C-DL1 to +0 ns (0) and Y/C-DL2 to +10 ns (1), and determine YDL10. (6) Set Y/C-DL1 to +5 ns (1) and Y/C-DL2 to +10 ns (1), and determine YDL11. (7) Determine YDLA, YDLB and YDLC as follows: YDLA = YDL01 − YDL00 T2 pulse signal approx. 0.7 Vp-p YDLB = YDL10 − YDL00 YDLC = YDL11 − YDL00 #43 #3 50% 50% YDL00 YDL01 YDL10 YDL11 73 2002-10-04 TA1316AN Test Conditions Note No. P23 Parameter Transfer distortion correction Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Input multi-burst signal (frequency equivalent to 4.2 MHz) of signal A to TPA. Set picture mute to off (P-MODE: Normal1 (000)), UNI-COLOR to maximum (1111111), SHR-TRACKING to SRT-GAIN minimum (11) and CDE to minimum (00). (2) Set PICTURE-SHARPNESS to flat (near DEC[24]), APACON PEAK f0 to 5 M (11) and monitor pin 43. Signal A (3) Input sine wave signal A (approx. 4.2 MHz) becomes signal B on pin 43 as shown at right. Determine SA and SB. SA (4) When Y-GROUP DELAY CORRECTION is set to minimum (0000), signal A becomes signal C on pin 43. Determine SAMIN and SBMIN. Signal B SB (5) When Y-GROUP DELAY CORRECTION is set to maximum (1111), signal A becomes signal D on pin 43. Determine SAMAX and SBMAX. (6) Calculate using the following formulae. Signal C SAMIN GAMIN = 20 × "og (SAMIN/SA) [dB] SBMIN GBMIN = 20 × "og (SBMIN/SB) [dB] GAMAX = 20 × "og (SAMAX/SA) [dB] GBMAX = 20 × "og (SBMAX/SB) [dB] SAMAX Signal D SAMAX Note: The input sine wave starts and ends within the picture period. It is like a burst signal, not a continuous wave. 74 2002-10-04 TA1316AN Test Conditions Note No. P24 Parameter Color detail enhancer Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Set picture mute to off (P-MODE: Normal1 (000)), UNI-COLOR to maximum (1111111), SHR-TRACKING to SRT-GAIN minimum (11), COLOR to center (1000000), color limiter level (CLT) to 2 Vp (1) and C-SRT-FREQ to 4.5 M (10). Input SWEEP signal to TPA and set pin 3 amplitude to 20 mVP-P. Set SW4 to A. Input signal (pin 4 amplitude: 0.2 VP-P) to TP4 as shown in the figure below. (2) Set PICTURE-SHARPNESS to center (1000000) and Y DETAIL CONTROL to center (10000), and monitor pin 41 using a spectrum analyzer. (3) Set low-frequency area to 0dB when CDE is set to minimum (00) and measure peak level GCDEMIN. (4) Set low-frequency area to 0dB when CDE is set to maximum (11) and measure peak level GCDEMAX. (5) Calculate using the following formula. GCDE00 = GCDEMAX00 − GCDEMIN00 (6) Set APACON PEAK f0 to 15 M (00), 8.8 M (01), 7.5 M (10) and 5 M (11), and measure peak levels GCDE00, GCDE01, GCDE10 and GCDE11. Output gain [dB] max 0.2 Vp-p min 0 dB BLK period Picture period Input frequency [MHz] 75 2002-10-04 TA1316AN Test Conditions Note No. P25 Parameter Y detail control range Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Set picture mute to off (P-MODE: Normal1 (000)), UNI-COLOR to maximum (1111111), SHR-TRACKING to SRT-GAIN minimum (11) and CDE to center (10). Input SWEEP signal to TPA. (2) Set pin 3 amplitude to 20 mVP-P. (3) Set PICTURE-SHARPNESS to minimum (0000000) and Y DETAIL CONTROL to maximum (11111), and monitor pin 43 using a spectrum analyzer. (4) Set low-frequency area to 0dB. Set APACON PEAK f0 to 15 M (00), 8.8 M (01), 7.5 M (10) and 5 M (11), and measure peak levels GYDMAX00, GYDMAX01, GYNMAX10 and GYDMAX11. (5) Set Y DETAIL CONTROL to center (10000) and measure peak levels GYDCEN00, GYDCEN01, GYDCEN10 and GYDCEN11. (6) Set Y DETAIL CONTROL to minimum (00000) and measure peak levels GYDMIN00, GYDMIN01, GYNDIN10 and GYDMIN11. 76 2002-10-04 TA1316AN Test Conditions Note No. P26 Parameter APACON white peak limiter Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW1 SW2 SW3 SW56 B B A ON (1) Set picture mute to off (P-MODE: Normal1 (000)), UNI-COLOR to 1101000, SHR-TRACKING to SRT-GAIN maximum (00) and CDE to maximum (11). Input T pulse signal (0.7 VP-P) to TPA. (2) Set PICTURE-SHARPNESS to maximum (111111) and APACON PEAK f0 to 5 M (11), and monitor pin 43. (3) When APACON white peak limiter is off (000), measure positive spike amplitude VWPLOFF1. (4) When APACON white peak limiter is at maximum (111), measure positive spike amplitude VWPLMAX1. (5) Set UNI-COLOR to center (1000000). When APACON white peak limiter is off (000) and at maximum (111), measure positive spike amplitudes VWPLOFF2 and VWPLMAX2. (6) Set UNI-COLOR to minimum (0000000). When APACON white peak limiter is off (000) and at maximum (111), measure positive spike amplitudes VWPLOFF3 and VWPLMAX3. (7) Calculate using the following formulae. GWPL1 = 20 × "og (VWPLMAX1/VWPLOFF1) [dB] GWPL2 = 20 × "og (VWPLMAX2/VWPLOFF2) [dB] GWPL3 = 20 × "og (VWPLMAX3/VWPLOFF3) [dB] VWPLMAX 77 VWPLOFF 2002-10-04 TA1316AN Test Conditions for Color Difference Signal 1/YUV Input and Matrix Common Test Conditions for Color Difference Signal 1/YUV Input and Matrix (1) (2) (3) (4) SW1 = B, SW2 = B, SW20 = ON, SW33∼SW39 = A, SW54 = OPEN, SW56 = OPEN Send BUS control data with preset values. Set ACB MODE to off (0) and high bright color (HI BRT) to off (0). Input sync signal [signal in sync with input signal for testing, except for SWEEP signal] to pin 14 (SYNC IN) and set SYNC-INPUT to (10). Test Conditions Note No. S01 Parameter Color SRT gain Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 C A A SW8 SW9 SW10 B B B SW7 OPEN (1) Set Y mute to on (P-MODE: Y-MUTE (001)), YUV INPUT MODE to Through (10), BRIGHTNESS to center (10000000), COLOR to center (1000000) and UNI-COLOR to maximum (1111111). ― (2) Input 2T pulse signal to TP4 and set pin 4 amplitude to 350 mVP-P. ― (3) Monitor pin 41 output waveform. When C-SRT-FREQ is 5 MHz (00), measure edge gradients SB00MIN, SB00CEN and SB00MAX when COLOR SRT GAIN is at minimum (000), center (100) and maximum (111) as in shown in the figure below. Set SB00MIN to 0 dB, determine GSB00CEN = 20 × "og (SB00CEN/SB00MIN) and GSB00MAX = 20 × "og (SB00MAX/SB00MIN). (4) Repeat step (3) above, setting C-SRT-FREQ to 6.7 MHz (01) and 10 MHz (10), and measure edge gradients when COLOR SRT GAIN is at minimum (000), center (100) and maximum (111). Determine GSB01CEN, GSB10CEN, GSB01MAX and GSB10MAX. (5) Input 2T pulse signal to TP5 and set pin 5 amplitude to 350 mVP-P. (6) Monitor pin 43 output waveform. When C-SRT-FREQ is 5 MHz (00), measure edge gradients SR00MIN, SR00CEN and SR00MAX when COLOR SRT GAIN is at minimum (000), center (100) and maximum (111) as shown in the figure below. Set SR00MIN to 0dB, determine GSR00CEN = 20 × "og (SR00CEN/SR00MIN) and GSR00MAX = 20 × "og (SR00MAX/SR00MIN). (7) Repeat step (3) above, setting C-SRT-FREQ to 6.7 MHz (01) and 10 MHz (10), and measure edge gradients when COLOR SRT GAIN is at minimum (000), center (100) and maximum (111). Determine GSR01CEN, GSR10CEN, GSR01MAX and GSR10MAX. 78 T*** Gradient S*** = V***/T*** 10% V*** 100% 10% 2002-10-04 TA1316AN Test Conditions Note No. S02 Parameter Color difference signal amplitude correction Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 C A A SW8 SW9 SW10 B B B SW7 OPEN (1) Input 100-kHz sine wave to TP4 and set pin 4 amplitude to 0.2 VP-P. SW56 (2) Set Y mute to OFF (P-MODE: Normal1 (000)), YUV INPUT MODE to Through (10), BRIGHTNESS to center (10000000), COLOR to center (1000000), UNI-COLOR to maximum (1111111), Y/C GAIN COMP1 to OPEN minimum (00), Y/C GAIN COMP2 to minimum (00), black stretch point 1 to off (000), dynamic Y γ point to 30 IRE (11) and SW1 to A. Apply 0 V to TP1 using external power supply PS1 and 5.16 V to pin 3 using PS2. (3) Monitor pin 41 output waveform and measure amplitude VBDY0. (4) Set Y/C GAIN COMP1 to maximum (11) and measure pin 41 amplitude VBDY1. (5) Set DYNCγ GAIN VS DARK AREA to maximum (111), STATICγ-GAIN to maximum (11) and external power supply PS1 to 1 V, and measure pin 41 amplitude VBDY2. (6) Set Y/C GAIN COMP2 to maximum (11) and measure pin 41 amplitude VBDY3. (7) Set Y/C GAIN COMP1 to minimum (00), Y/C GAIN COMP2 to minimum (00), DYNCγ GAIN VS DARK AREA to minimum (000), STATICγ-GAIN to minimum (00), PS1 to 0 V, PS2 to 5 V and SW2 to A. Measure pin 41 amplitude VBBS0. (8) Set Y/C GAIN COMP1 to maximum (11) and measure pin 41 amplitude VBBS1. (9) Set black stretch point 1 to maximum (111) and measure pin 41 amplitude VBBS2. (10) Set Y/C GAIN COMP2 to maximum (11) and measure pin 41 amplitude VBBS3. (11) Calculate using the following formulae. GCBDY1 = 20 × "og (VBDY1/VBDY0) GCBDY2 = 20 × "og (VBDY2/VBDY0) GCBDY3 = 20 × "og (VBDY3/VBDY0) GCBBS1 = 20 × "og (VBBS1/VBBS0) GCBBS2 = 20 × "og (VBBS2/VBBS0) GCBBS3 = 20 × "og (VBBS3/VBBS0) (12) Input 100-kHz sine wave to TP5, set pin 5 amplitude to 0.2 VP-P, repeat steps (2) to (11) above and determine GCRDY1, GCRDY2, GCRDY3, GCRSB1, GCRSB2 and GCRSB3. 79 2002-10-04 TA1316AN Test Conditions Note No. S03 Parameter YUV gain Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 A/C A/B A/B SW8 SW9 SW10 B B B SW7 OPEN (1) Set picture mute to off (P-MODE: Normal1 (000)), BRIGHTNESS to maximum (11111111), COLOR to center (1000000) and UNI-COLOR to maximum (1111111). ― (2) Set SW3 to A, and SW4 and SW5 to B; input a 100-kHz sine wave to TPA and set pin 3 amplitude to 0.2 ― VP-P. (3) Set SW56 to open, YUV INPUT MODE to Y/Cb/Cr (00), Y/Pb/Pr (01), Through (10) and Y/U/V (11). Measure pin 56 amplitudes, VY00, VY01, VY10 and VY11. (4) Set SW3 to C, and SW4 to A and SW5 to B, input 100-kHz sine wave to TP4 and set pin 4 amplitude to 0.2 VP-P. (5) Set YUV INPUT MODE to Y/Cb/Cr (00), Y/Pb/Pr (01), Through (10) and Y/U/V (11). Measure pin 41 amplitudes VB00, VB01, VB10 and VB11. (6) Set SW3 to C, and SW4 and SW5 to A; input a 100-kHz sine wave to TP5 and set pin 5 amplitude to 0.2 VP-P. (7) Set YUV INPUT MODE to Y/Cb/Cr (00), Y/Pb/Pr (01), Through (10) and Y/U/V (11). Measure pin 43 amplitudes VR00, VR01, VR10 and VR11. (8) Calculate using the following formulae. GY00 = 20 × "og (VY00/0.2) GY01 = 20 × "og (VY01/0.2) GY10 = 20 × "og (VY10/0.2) GY11 = 20 × "og (VY11/0.2) GBA = 20 × "og (VB01/VB00) GBB = 20 × "og (VB10/VB00) GBC = 20 × "og (VB11/VB00) GRA = 20 × "og (VR01/VR00) GRB = 20 × "og (VR10/VR00) GRC = 20 × "og (VR11/VR00) 80 2002-10-04 TA1316AN Test Conditions for Color Difference Signal 2 Test Conditions Note No. Parameter SW3 A01 Color difference signal contrast adjustment characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode C SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A A A A A A A A or or (2) Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.23 VP-P) to pin 5. B B (3) Vary UNI-COLOR to maximum (7F), center (40) and minimum (00) and measure pin 43 picture period amplitudes VuCYMAX, VuCYCNT and VuCYMIN. (1) Set BRIGHTNESS to maximum and sub-address (12) data to F0. (4) Determine in decibels amplitude ratio ∆VuCY of UNI-COLOR maximum to minimum. (5) Repeat steps (2) and (4) changing input to pin 4 (picture period amplitude = 0.2 VP-P), and measure pin 41 output. A02 Color adjustment characteristic C A A or or (2) Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.115 VP-P) to pin 5. B B (3) Vary COLOR to maximum (7F), center (40) and minimum (01), and measure pin 43 picture period amplitudes VCCYMAX, VCCYCNT and VCCYMIN. A A A A A A (1) Set BRIGHTNESS to maximum and sub-address (12) data to F0. (4) Determine in decibels amplitude ratio ∆VCCY of maximum and minimum to COLOR center. (5) Repeat steps (2) and (4), changing input to pin 4 (picture period amplitude = 0.1 VP-P), and measure pin 41 output. 81 2002-10-04 TA1316AN Test Conditions Note No. Parameter SW3 A03 Color difference signal half-tone characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode C SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A A A A A A (1) Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 5. A A or or (2) Measure pin 43 output picture period amplitude vHTARY. B B (3) Apply 1.5 V to pin 52 from external power supply. (4) Measure pin 43 output picture period amplitude vHTBRY. (5) Determine GHTRY = vHTBRY/vHTARY. (6) Repeat steps (1) to (5) above, changing pin to pin 42, and determine GHTGY = vHTBGY/vHTAGY. (7) Input signal to pin 4, measure pin 4 and determine GHTBY = vHTBBY/vHTABY. 82 2002-10-04 TA1316AN Test Conditions Note No. A04 Parameter Color γ characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 C B A A A A A A A (1) Input signal 2 to pin 5. (2) Increase signal 2 amplitude A. When sub-address (14) data starts with γ correction, determine pin 43 output signal amplitudes Vγ1, Vγ2 and Vγ3. Graph the results in the following cases: (01) − γ off (03) − γ1 on (05) − γ2 on (07) − γ3 on (3) Determine Vγ where γ starts applying and gradient ratio ∆γ at γ on when linearity at off is (1). Pin 43 output amplitude γOFF Vγ γON Pin 5 input amplitude 83 2002-10-04 TA1316AN Test Conditions Note No. A05 A06 Parameter Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 Color limiter characteristic C B A A A A A A A High bright color gain C (1) Input signal 2 (picture period amplitude = 0.4 VP-P) to pin 4. (2) When sub-address (14) data is 00 and 01, measure pin 43 output signal picture period amplitudes CLT0 and CLT1. B A A A A A A A (1) Input signal 2 (picture period amplitude = 0.2 VP-P) to pin 4. (2) Adjust COLOR and set pin 41 output picture period amplitude to 1.2 VP-P. (3) When sub-address (0B) data is 80, measure pin 41 output signal picture period amplitude V41. (4) Calculate using the following formula. 84 HBC1 = (1.2 − v41)/1.2 2002-10-04 TA1316AN Test Conditions for Text Common Test Conditions for Text (1) (2) Unless otherwise specified, measure bus data using preset values. Set the following data: Sub-address (00) to data (02) Sub-address (05) to data (7F) Sub-address (09) to data (40) Sub-address (0B) to data (7F) Sub-address (0C) to data (82) Sub-address (12) to data (F0) Sub-address (19) to data (F8) Sub-address (1A) to data (E0) Sub-address (1B) to data (E0) Sub-address (1D) to data (78) Sub-address (1E) to data (87) Test Conditions Note No. T01 Parameter AC gain Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A (1) Input signal 1 (f0 = 100 kHz, amplitude of picture period voltage = 0.2 VP-P) to pin 3. (2) Measure pins 41, 42 and 43 picture period amplitudes V41, V42 and V43. (3) Determine AC gain using the following formulae. GR = V43/0.2 GG = V42/0.2 GB = V41/0.2 T02 Unicolor adjustment characteristic A B B A A A A A A (1) Input signal 1 (f0 = 100 kHz, amplitude of picture period voltage = 0.2 VP-P) to pin 3. (2) Vary UNI-COLOR data to maximum (7F), center (40) and minimum (00), and measure pin 43 picture period amplitudes VuMAX, VuCNT and VuMIN. (3) Determine amplitude ratio ∆Vu of VuMAX to VuCNT (in decibels). T03 T04 Brightness adjustment characteristic A White peak slice level C B B A A A A A A (1) Input signal 2 to pin 3 and set pin 43 picture period amplitude to 1 VP-P. (2) Vary BRIGHTNESS to maximum (7F), center (80) and minimum (00), and measure pin 43 voltages VbrMAX, VbrCNT and VbrMIN. B B A A A A A A (1) Set SUB-CONTRAST to maximum. (2) Apply external power supply to pin 3 and increase voltage from 5.8 V. (3) When pin 43 picture period is clipped, measure pin 43 picture period amplitude voltage VWPS1. (4) Repeat steps from (1) to (3) above (for VWPS2), changing sub-address (0C) data to 06. 85 2002-10-04 TA1316AN Test Conditions Note No. T05 T06 Parameter Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 Black peak slice level C B B A A A A A A RGB output S/N C (1) Apply external power supply to pin 3 and gradually decrease voltage from 5.8 V. (2) When picture period is clipped, measure Vbps voltage for pins 41, 42 and 43. B B A A A A A A (1) Adjust BRIGHTNESS so that pin 41 picture period voltage is 2.4 V. (2) Set COLOR to minimum. (3) Measure pins 41, 42 and 43 picture period noise levels n41, n42 and n43 (VP-P) using oscilloscope. (4) Calculate S/N. N41 = −20 × "og [2.3/(0.2 × n41)] N42 = −20 × "og [2.3/(0.2 × n42)] N43 = −20 × "og [2.3/(0.2 × n43)] T07 Half-tone characteristic A B B A A A A A A (1) Input signal 1 (f0 = 100 kHz, amplitude of picture period voltage = 0.2 VP-P) to pin 3. (2) Measure pin 41 picture period amplitude v41A. (3) Apply 1.5 V to pin 52 from external power supply. (4) Measure pin 41 picture period amplitude v41B. (5) Determine GHT1 = v41B/v41A. (6) Stop applying voltage to pin 52, set sub-address (1A) data to E2 and measure pin 41 picture period amplitude v41C. (7) Determine GHT2 = v41C/v41A. 86 2002-10-04 TA1316AN Test Conditions Note No. T08 Parameter Blanking pulse delay time Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 C B B A A A A A A (1) Apply signal shown in Figure (A) to pin 24 (BLK IN) and determine tdON and tdOFF from output signal from pins 41, 42 and 43 (Figure (B)). 63.5 µs (A) Signal applied to pin 24 tdON tdOFF (B) Output signal from pins 41, 42 and 43. 87 2002-10-04 TA1316AN Test Conditions Note No. T09 Parameter Drive adjustment variable range Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3. (2) Change sub-address (0D) data to maximum (FE), center (80) and minimum (00), and measure pin 42 picture period amplitude. (3) Determine in decibels amplitude ratios of maximum and minimum to drive center (DRGG1+, DRG1−). (4) Repeat steps (1) to (3) above, changing sub-address (0E) data to instead, and determine in decibels pin 41 picture period amplitude ratios (DRB1+, DRB2−). (5) Repeat steps (1) to (3) above, changing sub-address (0E) data to center (81), and determine in decibels pin 42 picture period amplitude ratios (DRG2+, DRG2−). (6) Repeat steps (1) to (3) above, changing sub-address (0E) data to maximum (FF), center (81) and minimum (01), and determine in decibels pin 41 amplitude ratios (DRB2+, DRB2−). (7) Repeat steps (1) to (3) above, changing sub-address (0D) data to maximum (FF), center (81) and minimum (01), and determine in decibels pin 43 amplitude ratios (DRR1+, DRR1−). (8) Repeat steps (1) to (3) above, setting sub-address (0D) data to 81 and changing sub-address (0E) data, and determine in decibels pin 41 picture period amplitude ratios (DRB3+, DRB3−). (9) Repeat steps (1) to (3) above, setting sub-address (0E) data to 81 and changing sub-address (0D) data to maximum (FF), center (81) and minimum (01), and determine in decibels pin 42 picture period amplitude ratios (DRG3+, DRG3−). (10) Repeat steps (1) to (3) above, setting sub-address (0D) data to 81 and changing sub-address (0E) data to maximum (FF), center (81) and minimum (01), and determine in decibels pin 43 picture period amplitude ratios (DRR2+, DRR2−). 88 2002-10-04 TA1316AN Test Conditions Note No. T10 Parameter Pin 53 input impedance Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 C B B A A A A A A (1) Connect external power supply, voltmeter and ammeter as shown below. Adjust voltage so that current value is 0. (2) Increase pin 53 voltage by 0.2 V and measure current value of ammeter Iin. (3) Determine Zin53 = 0.2 V/Iin (Ω). 53 − A + Ammeter (µA) T11 ACL characteristic C B B A A A A A A V Voltmeter (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3. (2) Measure pin 43 picture period amplitude vACL1. (3) Apply external power supply (pin 53 DC voltage − 0.5 V) to pin 53 and measure pin 43 picture period amplitude vACL2. (4) Apply external power supply (pin 53 DC voltage − 1 V) to pin 53 and measure pin 43 picture period amplitude vACL3. (5) Calculate using the following formulae. ACL1 = −20 × "og (vACL2/vACL1) ACL2 = −20 × "og (vACL3/vACL1) 89 2002-10-04 TA1316AN Test Conditions Note No. T12 Parameter ABL point Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 C B B A A A A A A (1) Measure pin 53 DC voltage VABL1. (2) Set sub-address (1B) data to 1C. (3) Apply external power supply to pin 53 and decrease voltage from 6.5 V. When pin 43 voltage starts changing, measure pin 53 voltage VABL2. (4) Repeat step (3) above, making the following changes: Set sub-address (1B) data to 3C, 5C, 7C, 9C, BC, DC and FC and measure the following voltages on pin 53: VABL3, VABL4, VABL5, VABL6, VABL7, VABL8 and VABL9. T13 ABL gain C B B A A A A A A (5) ABLP1 = VABL2 − VABL1 ABLP5 = VABL6 − VABL1 ABLP2 = VABL3 − VABL1 ABLP6 = VABL7 − VABL1 ABLP3 = VABL4 − VABL1 ABLP7 = VABL8 − VABL1 ABLP4 = VABL5 − VABL1 ABLP8 = VABL9 − VABL1 (1) Apply external power supply of 6.5 V to pin 53. (2) Set sub-address (1B) data to 00. (3) Set BRIGHTNESS to maximum. (4) Apply external power supply of 4.5 V to pin 53. (5) Repeat step (3) above, making the following changes: Set sub-address (1B) data to 00, 04, 08, 0C, 10, 14, 18 and 1C and measure the following voltages on pin 53: VABL11, VABL12, VABL13, VABL14, VABL15, VABL16, VABL17 and VABL18. (6) ABLG1 = VABL11 − VABL10 ABLG2 = VABL12 − VABL10 ABLG3 = VABL13 − VABL10 ABLG4 = VABL14 − VABL10 ABLG5 = VABL15 − VABL10 ABLG6 = VABL16 − VABL10 ABLG7 = VABL17 − VABL10 ABLG8 = VABL18 − VABL10 90 2002-10-04 TA1316AN Test Conditions Note No. T14 Parameter RGB output mode Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 C B B A A A A A A (1) Adjust BRIGHTNESS so that pin 43 picture period voltage becomes 2.4 V. (2) Set sub-address (1B) data to 01. (3) Measure picture period voltages V43R, V42R and V41R on pins 43, 42 and 41 respectively. (4) Repeat step (3) above, changing sub-address (1B) data to 02, and measure picture period voltages V43G, V42G and V41G on pins 43, 42 and 41 respectively. (5) Repeat step (3), changing sub-address (1B) data to 03, and measure picture period voltages V43B, V42B and V41B on pins 43, 42 and 41 respectively. 91 2002-10-04 TA1316AN Test Conditions Note No. T15 Parameter Y-OUT γ characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A (1) Input ramp waveform to pin 3 and adjust input amplitude so that pin 43 picture period amplitude becomes 2.3 VP-P. (2) Set sub-address (1C) data to 01. (3) Adjust input amplitude so that pin 43 picture period amplitude becomes 2.3 VP-P. (4) According to the figure below, determine in decibels Y-OUT γ correction start points γ1 and γ2 and gradient ratios ∆1, ∆2 and ∆3, which are ratios of gradient at γ-on to gradient at γ-off. Output amplitude (Y-OUT) 100 IRE ∆3 γ2 ∆2 γ1 2.3 Vp-p ∆1 Note: Solid line: γ-off Dotted line: γ-on Input amplitude 92 2002-10-04 TA1316AN Test Conditions Note No. T16 Parameter Blue stretch circuit characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A (1) Input ramp signal of 0.7 VP-P to pin 3. (2) Set SUB-CONTRAST to maximum. (3) Set sub-address (1F) data to 04. (4) Set sub-address (1E) data to 00 and determine blue stretch start point BSPmin using pin 41 in the figure below. (5) Repeat step (4) above, changing sub-address (1E) data to 04 and 07. Determine blue stretch start points BSPCNT and BSPmax. (6) Set sub-address (1E) data to 04. (7) Determine in decibels ratio of gradient at blue stretch on to gradient at blue stretch off, using pin 41 as shown in the figure below. (8) Repeat step (7) above, changing sub-address (1F) data to 00 and 07, and determine in decibels gradient ratios BSGmin and BSGmax. Note: The blue stretch start point is determined as an IRE value by setting the amplitude from the output signal pedestal level to the positive side to be 2.3 VP-P = 100 IRE. Blue stretch on Output amplitude (Pin 41 output) Blue stretch off Blue stretch start point Input amplitude 93 2002-10-04 TA1316AN Test Conditions Note No. T17 Parameter ACB pulse phase and amplitude Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A or (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3. Adjust DRIVE GAIN 1/2 so that pin 41/42 picture period amplitude is equal to that of pin 43. (2) Measure voltage of pins 46, 47 and 48 and apply measured voltages from external power supply to pins. C (3) Set sub-address (02) data to 40. (4) Determine ACB pulse phase by referencing signal waveform output from pins 43, 42 and 41 as shown in Figure 1 below. Note: The first picture period after V-BLK ends and FBP input falls is 1H. After each H-BLK, the phase is 2H, 3H and so on. ACB pulse amplitude V-BLK period Figure 1 RGB output 1H 2H 3H 4H Figure 2 FBP input (pin 24) (5) Determine ACB pulse amplitudes VACB1R, VACB1G and VACB1B by referencing signal waveform output from pins 43, 42 and 41. (Amplitude is based on picture period level at no input.) (6) Repeat step (5) above, setting sub-address (02) data to 80, and measure VACB2R, VACB2G and VACB2B. (7) Repeat step (5) above, setting sub-address (02) data to C0, and measure VACB3R, VACB3G and VACB3B. 94 2002-10-04 TA1316AN Test Conditions Note No. T18 Parameter IK input amplitude Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A or (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3. Adjust DRIVE GAIN 1/2 so that pin 41/42 picture period amplitude is equal to that of pin 43. (2) Set sub-address (02) data to 40. C (3) Determine voltage amplitudes while ACB pulse is being applied to pin 45 input signal as shown in Figure 1 of T19 above. At 1H = IKR, at 2H = IKG and at 3H = IKB T19 IK input cover range C B B A A A A A A (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3 and adjust DRIVE GAIN 1/2 so that pin 41/42 picture period amplitude is equal to that of pin 43. (2) Set sub-address (02) data to 40. (3) Determine DC voltage of pin 45 during V-BLK (#45VBLK). (4) Apply external voltage via 10 kΩ and gradually increase the voltage from 0 V. (5) Determine DC voltage of pin 45 during V-BLK when picture period amplitude of pin 43 has just started decreasing (#45VBLK+). (6) Reset the external voltage to 0 V and gradually decrease from 0 V. (7) Determine DC voltage of pin 45 during V-BLK when picture period amplitude of pin 43 has just started increasing (#45VBLK−). (8) DIKin+ = (#45VBLK+) − (#45VBLK) DIKin− = (#45VBLK−) + (#45VBLK) T20 Analog RGB gain A B B A A A or or or B B B A A A (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3 and adjust DRIVE GAIN 1/2 so that pin 41/42 picture period amplitude is equal to that of pin 43. (2) Apply 5 V from external power supply to pin 49. (3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 35. (4) Measure picture period amplitude v43R on pin 43. (5) Repeat steps (3) and (4), making the following changes. Input signal 1 to pin 34 and measure pin 42 output (v42G). Input signal 1 to pin 33 and measure pin 41 output (v41B). (6) Calculate using the following formulae. GTXR = v43R/0.2 GTXG = v42G/0.2 GTXB = v41B/0.2 95 2002-10-04 TA1316AN Test Conditions Note No. T21 Parameter Analog RGB white peak slice level Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A (1) Apply 5 V from external power supply to pin 49. (2) Set RGB CONTRAST to maximum (7F). (3) Apply external power supply to pin 35. Gradually increase voltage from 3.0 V DC. When pin 43 output is clipped, measure picture period amplitude. (4) Repeat step (3), making the following changes: Input to pin 34 and measure pin 42 output; input to pin 33 and measure pin 41 output. T22 Analog RGB black peak limit level A B B A A A A A A (1) Apply 5 V from external power supply to pin 49. (2) Set RGB CONTRAST to maximum (7F). (3) Apply external power supply to pin 35. Gradually increase voltage from 4.5 V DC. When pin 43 output is clipped, measure picture period amplitude. (4) Repeat step (3), making the following changes: Input to pin 34 and measure pin 42 output; input to pin 33 and measure pin 41 output. T23 RGB contrast adjustment characteristic A B B A A A or or or (2) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 35. B B B (3) Change RGB CONTRAST to maximum (7F), center (40) and minimum (00), and measure picture period amplitude output VuTXR (max, CNT and min) on pin 43. A A A (1) Apply 5 V from external power supply to pin 49. (4) Determine in decibels amplitude ratios of maximum and minimum to center. (5) Repeat steps (3) and (4), making the following changes: Input to pin 34 and measure picture period amplitude output on pin 42. Input to pin 33 and measure picture period amplitude output on pin 41. T24 Analog RGB brightness adjustment characteristic A B B A A A or or or (2) Apply 5 V from external power supply to pin 49. B B B (3) Adjust signal 2 amplitude (A) so that pin 43 picture period amplitude becomes 0.5 VP-P. A A A (1) Input signal 2 to pins 33, 34 and 35. (4) Change RGB BRIGHTNESS to maximum (FE), center (80) and minimum (00), and measure picture period voltage output VbrTX (max, CNT and min) on pins 43, 42 and 41 respectively. T25 Analog RGB mode switching transfer characteristic C B B A A A A A A (1) Set RGB BRIGHTNESS to maximum (FE). (2) Input signal 4 (signal amplitude = 1.5 VP-P) to pin 49. (3) Measure input/output transfer characteristic using pin 43 in Figure T-2. (4) Repeat steps (2) and (3) above, making the following changes: Input to pin 34 and measure pin 42; input to pin 33 and measure pin 41. (5) Determine maximum inter-axial rise/fall transfer delay time, using the data measured above. 96 2002-10-04 TA1316AN Test Conditions Note No. T26 Parameter Text ACL characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A B A A A (1) Apply 5 V from external power supply to pin 49. (2) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 35. (3) Measure pin 43 picture period amplitude vTXACL1. (4) Apply external power supply (pin 53 DC voltage − 0.5 V) to pin 53 and measure picture period amplitude output vTXACL2 on pin 43. (5) Apply external power supply (pin 53 DC voltage − 1.0 V) to pin 53 and measure picture period amplitude output vTXACL3 on pin 43. (6) TXACL1 = −20 × "og (vTXACL2/vTXACL1) TXACL2 = −20 × "og (vTXACL3/vTXACL1) (7) Repeat steps (5) and (6), setting sub-address (10) data to 01 to ascertain TXACL3 and TXACL4. T27 Analog OSD gain A B B A A A A A A or or or B B B (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3 and adjust DRIVE GAIN 1/2 so that pin 41/42 picture period amplitude is equal to that of pin 43. (2) Apply 5 V from external power supply to pins 50 and 51. (3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 39. (4) Adjust output picture period amplitude v43R on pin 43. (5) Repeat steps (3) and (4), making the following changes: Input to pin 38 and measure picture period amplitude output on pin 42 (v42G). Input to pin 37 and measure picture period amplitude output on pin 41 (v41B). (6) Calculate using the following formulae. GOSDG = v42G/0.2 GOSDR = v43R/0.2 T28 Analog OSD white peak slice level A B B A A A A A A GOSDB = v41B/0.2 (1) Apply 5 V from external power supply to pins 50 and 51. (2) Apply external power supply to pin 39 and gradually increase voltage from 4.5 V DC. When pin 43 output is clipped, measure picture period amplitude. (3) Repeat step (2), making the following changes: Input to pin 38 and measure picture period amplitude output on pin 42. Input to pin 37 and measure picture period amplitude output on pin 41. T29 Analog OSD black peak limit level A B B A A A A A A (1) Apply 5 V from external power supply to pins 50 and 51. (2) Apply external power supply to pin 39 and gradually decrease voltage from 4.5 V DC. When pin 43 output is clipped, measure picture period amplitude. (3) Repeat step (2), making the following changes. Input to pin 38 and measure picture period amplitude output on pin 42. Input to pin 37 and measure picture period amplitude output on pin 41. 97 2002-10-04 TA1316AN Test Conditions Note No. T30 Parameter Analog OSD contrast adjustment characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A A (1) Apply 5 V from external power supply to pins 50 and 51. or or or (2) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 39. B B B (3) Change OSD-CONTRAST to (11), (10), (01) and (00) and measure picture period amplitude outputs VuOSDR (11), (10), (01) and (00) on pin 43. (4) Repeat steps (2) and (3), making the following changes: Input to pin 38 and measure picture period amplitude outputs VuOSDG (11), (10), (01) and (00) on pin 42. Input to pin 37 and measure picture period amplitude outputs VuOSDB (11), (10), (01) and (00) on pin 41. T31 Analog OSD brightness adjustment characteristic C B B A A A A A A (1) Apply 5 V from external power supply to pins 50 and 51. (2) Change OSD BRIGHT (sub-address 1D) to (38), (78), (B8) and (F8) and measure picture period voltage outputs on pins 43, 42 and 41. Data (38) − VbrOSD0 Data (78) − VbrOSD1 Data (B8) − VbrOSD2 Data (F8) − VbrOSD3 T32 Analog OSD mode switching transfer characteristic C B B A A A A A A (1) Set OSD BRIGHT to maximum (11). (2) Input signal 4 (signal amplitude = 4.5 VP-P) to pin 50. (3) Measure input/output transfer characteristic, using pin 43 as shown in Figure T-2. (4) Repeat steps (2) and (3) above, and measure pins 42 and 41. (5) Determine maximum inter-axial rise/fall transfer delay time, using the data measured above. (6) Repeat steps (1) to (5), inputting signal 4 (signal amplitude = 4.5 VP-P) to pin 51, and measure. 98 2002-10-04 TA1316AN Test Conditions Note No. T33 Parameter OSD ACL characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A B (1) Set sub-address (07) data to 01. (2) Apply 5 V from external power supply to pins 50 and 51. (3) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 39. (4) Measure picture period amplitude vOSDACL1 on pin 43. (5) Apply external power supply (pin 53 DC voltage − 0.5 V) to pin 53 and measure picture period amplitude vOSDACL2 on pin 43. (6) Apply external power supply (pin 53 DC voltage − 1 V) to pin 53 and measure picture period amplitude vOSDACL3 on pin 43. (7) OSDACL1 = −20 × "og (vOSDACL2/vOSDACL1) OSDACL2 = −20 × "og (vOSDACL3/vOSDACL1) (8) Repeat steps (5) and (6) above, changing sub-address (07) data to 00, and measure OSDACL3 and OSDACL4. 99 2002-10-04 TA1316AN Test Conditions Note No. T34 Parameter OSD blending characteristic Test Method (test conditions: VCC = 9 V/2 V, Ta = 25° ± 3°C) SW mode SW3 SW4 SW5 SW33 SW34 SW35 SW37 SW38 SW39 A B B A A A A A B (1) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pin 3. ↓ ↓ ↓ ↓ (2) Measure picture period amplitudes v41a, v42a and v43a on pins 41, 42 and 43 respectively. C B B B (3) Apply 5 V from external power supply to pin 51. (4) Measure picture period amplitudes v41b, v42b and v43b on pins 41, 42 and 43 respectively. (5) Determine in decibels v41b amplitude in relation to v41a; v42b amplitude in relation to v42a; v43b amplitude in relation to v43a: α41TV1, α42TV1 and α43TV1. (6) Repeat steps (3) to (5), applying 5 V from external power supply to pin 50, and measure α41TV2, α42TV2 and α43TV2. (7) Repeat steps (3) to (5), applying 5 V from external power supply to pins 50 and 51, and measure α41TV3, α42TV3 and α43TV3. (8) Set to SW3 to C; SW37, SW38, Sw39 to B. (9) Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 VP-P) to pins 37, 38 and 39. (10) Apply 5 V from external power supply to pins 50 and 51. (11) Measure picture period amplitudes v41c, v42c and v43c on pins 41, 42 and 43 respectively. (12) Apply 5 V from external power supply to pin 50. (13) Measure picture period amplitudes v41d, v42d and v43d on pins 41, 42 and 43 respectively. (14) Determine in decibels v41d amplitude in relation to v41c; v42d amplitude in relation to v42c; v43d amplitude in relation to v43c: α41OSD1, α42OSD1 and α43OSD1. (15) Repeat steps (12) to (14), applying 5 V from external power supply to pin 51, and measure α41OSD2, α42OSD2 and α43OSD2. (16) Repeat steps (12) to (14), applying 5 V from external power supply to pins 50 and 51, and measure α41OSD3, α42OSD3 and α43OSD3. 100 2002-10-04 TA1316AN Test Conditions for Deflection Common Test Conditions for Sync Signal (Unless otherwise specified, VCC = 9 V/2 V, Ta = 25°C, BUS data = preset values.) (Unless otherwise specified, SW3 = A, SW14 = A, SW20 = on, SW22 = open, SW23 = B, SW24a = B, SW24b = open and SW26 = B.) Note No. Parameter HA01 Sync input horizontal sync phase Test Method (1) Input signal a (as shown in figure below) to TPA. Set sub-address (00) data to 82H. (2) Determine phase difference S1PH from pin 14 (SYNC IN) input waveform and pin 20 (AFC filter) waveform. 29.36 µs Signal a 0.285 V 0.593 µs SPH Pin 20 waveform HA02 HD 1/2 input (1) Set sub-address (00) data to 40H. horizontal sync phase (2) Input signal b (as shown in figure below) to TP16. (3) Determine phase difference HD1PH from pin 16 (HD1 IN) input waveform and pin 20 (AFC filter) waveform. (4) Input signal b to TP13 and set sub-address (00) data to 41H. (5) Determine phase difference HD2PH as in step (3) above. 31.75 µs Signal b 1.5 V 2.35 µs HD1PH, HD2PH Pin 20 waveform 101 2002-10-04 TA1316AN Note No. Parameter HA03 Polarity detection range Test Method (1) Set sub-address (00) data to 40H. (2) Input signal b (as shown in figure below) to TP16. (3) Decrease signal b duty from 10% (to shorter negative polarity period) and determine signal b duty (HDDUTY1) when pin 16 input signal phase no longer locks with that of pin 26 (H-OUT). (4) Increase signal b duty from 10% (to longer negative polarity period) and determine signal b duty (HDDUTY2) when pin 24 (FBP IN) phase changes in relation to signal b. (5) Further increase signal b duty (to longer negative polarity period) and determine signal b duty (HDDUTY3) when pin 16 input signal phase no longer locks with that of pin 26 (H-OUT). (6) Decrease signal b duty from 90% (to shorter negative polarity period) and determine signal b duty (HDDUTY4) when pin 24 (FBP IN) phase changes in relation to signal b. 31.75 µs Signal b 1.5 V A B Duty = A/B × 100% (0%~100%) HA04 Sync input threshold amplitude (1) Set sub-address (00) to 82H and TEST mode to 01. (2) Apply external voltage via 20 kΩ to pin 14. (3) Set external voltage to 0 V and monitor pin 14 pin voltage SYNC_TIP_00. Also check that pin 28 pin voltage is L. (4) By increasing external voltage SYNC_OFF_00, monitor pin 14 SYNC IN pin voltage when pin 28 DAC1 pin voltage becomes H. (5) Determine SYNC input level at SYNC separation level 00 as follows: Vths00 = (SYNC_OFF_00 − SYNC_TIP_00) /0.286 × 100 (6) Set SYNC separation level from 01 to 10 to 11, and determine Vths01, Vths10 and Vths11. Vths01 = (SYNC_OFF_01 − SYNC_TIP_01) /0.286 × 100 Vths10 = (SYNC_OFF_10 − SYNC_TIP_10) /0.286 × 100 Vths11 = (SYNC_OFF_11 − SYNC_TIP_11) /0.286 × 100 1H 0.08H Pin 14 40 IRE (= 286 mVp-p) Sync Sepa level Sync Tip level Pin 28 (SYNC output Mode) 102 2002-10-04 TA1316AN Note No. Parameter HA05 HD 1/2 input threshold voltage Test Method (1) Set sub-address (00) data to 40H. (2) Input signal b (as shown in figure below) to TP16. (3) Increase signal b amplitude from 0 VP-P. When pin 26 (H-OUT) phase locks with that of signal b, determine signal b amplitude VthHD1. (4) Input signal b (as shown in figure below) to TP13 and set sub-address (00) data to 41H. (5) Measure as in step (3) above, and determine signal amplitude VthHD2. 31.75 µs Signal b VthDH 2.35 µs HA06 Horizontal picture phase adjustment variable range (1) Set sub-address (00) data to 40H. (2) Input signal b (as shown in figure below) to TP16. (3) Change sub-address (01) data from 80H to 00H and measure pin 26 (H-OUT) waveform phase change ∆HSFT−. (4) Change sub-address (01) data from 80H to FEH and measure pin 26 (H-OUT) waveform phase change ∆HSFT+. 31.75 µs Signal b 1.5 V 2.35 µs Pin 26 waveform Data: 00H ∆HSFT− Pin 26 waveform Data: 80H ∆HSFT+ Pin 26 waveform Data: FEH 103 2002-10-04 TA1316AN Note No. Parameter HA07 Curve correction Test Method (1) Set sub-address (00) data to 40H. (2) Input signal b (as shown in figure below) to TP16. (3) Connect external power supply to pin 23 (H CURVE CORRECTION). Apply 1.5 V and 3.5 V to pin 23 and measure the output waveform phase change ∆H#23 on pin 26 (H-OUT). 31.75 µs Signal b 1.5 V 2.35 µs Pin 26 waveform (pin 23 voltage: 1.5 V) ∆H#23 Pin 26 waveform (pin 23 voltage: 3.5 V) HA08 Clamp pulse phase, width and level (1) Set sub-address (00) data to 40H. (2) Input signal b (as shown in figure below) to TP16. (3) Determine clamp pulse phase CPS0, width CPPW0 and output level CPV0 on pin 18 (SCP OUT) in relation to signal b. (4) Set sub-address (01) data to 81H. Determine CPS1, CPPW1 and CPV1 as in step (3) above. (5) Apply no signal input to TP16. (6) Determine pin 18 clamp pulse phase CPS2, width CPPW2 and output level CPV2 in relation to pin 24. 31.75 µs Signal b 1.5 V 2.35 µs CPS0/1 Pin 18 waveform CPV0/1 CPW0/1 Pin 24 waveform CPS2 Pin 18 waveform CPV2 CPW2 104 2002-10-04 TA1316AN Note No. Parameter Test Method HA09 Black peak detection (1) Set sub-address (00) data to 40H. pulse phase and level (2) Set SW24A to open. (3) Input signal c (as shown in figure below) to pin 24 (FBP IN). (4) Determine pin 18 (SCP OUT) black peak detection pulse phase HBPS0a and HBPS0b in relation to signal c. (5) Determine output level HBPSV0 from pin 18 (SCP OUT) output waveform. (6) Set sub-address (02) data to 90H. (7) Measure as in steps (4) and (5), and determine phases HBPS1a and HBPS1b, and output level HBPSV1. (8) Change sub-address (00) data to C0H and sub-address (02) data to 80H, and determine phases HBPS45a and HBPS45b, and output level HBPSV45. 31.5 µs 4.13 µs 2V Signal c 0V HBPS0a/S1a/S45a HBPS0b/S1b/S45b Pin 18 waveform HBPSV0/SV1/SV45 HA10 FBP threshold (1) Set sub-address (00) data to 40H. (2) Input signal b (as shown in figure below) to TP16. (3) Increase amplitude of FBP signal input to pin 24 (FBP IN) from 0 VP-P. When signal b and pin 26 (H-OUT) phases are locked, measure pin 24 input amplitude (VthFBP). 31.75 µs 1.5 V 2.35 µs 105 2002-10-04 TA1316AN Note No. Parameter HB01 H-OUT pulse duty Test Method (1) No signal input. (2) Measure T1 and T2 (as shown in figure below) from pin 26 (H-OUT) output waveform when sub-address (00) data is 80H and A0H. Determine duties TH00A and TH00B using the following formula: TH = T1/(T1 + T2) × 100 % (3) Set sub-address (00) data to 81H, A1H, 82H and A2H, measure as in step (2) above, and determine duties TH01A, TH01B, TH10A and TH10B. T1 T2 Pin 26 waveform HB02 Horizontal free-running frequency (1) Set SW20 to open. (2) Set sub-address (00) data to 00H and measure horizontal free-running frequency F00 from pin 26 (H-OUT) output waveform. (3) Set sub-address (00) data to 40H, 80H and C0H, measure as in step (2) above, horizontal free-running frequencies F01, F10 and F11. HB03 Horizontal oscillation frequency variable range (1) Set sub-address (00) data to 00H. (2) Connect 10-kΩ resistor between pin 20 and VCC. Measure horizontal frequency F00MIN from pin 26 (H-OUT) output waveform. (3) Connect 68-kΩ resistor between pin 20 and GND. Measure horizontal frequency F00MAX from pin 26 (H-OUT) output waveform. (4) Set sub-address (00) data to 40H, 80H and C0H, and measure as in steps (2) and (3) above, horizontal frequencies F01MIN, F01MAX, F10MIN, F10MAX, F11MIN and F11MAX. HB04 Horizontal oscillation control sensitivity (1) Set SW20 to open. (2) Connect external power supply to TP20. Set sub-address (00) data to 00H. Apply V20 + 0.05 V and V20 − 0.05 V (see HB01) to TP20, and measure frequencies FA and FB from pin 26 (H-OUT) output waveform. Calculate frequency change rate (BH00) using the following formula. (3) Set sub-address (00) data to 40H, 80H and C0H, measure as in step (2) above, and calculate frequency change rates BH01, BH10 and BH11. HB05 H-OUT output voltage (1) Set SW20 to open. (2) Measure high (V15H) and low (V15L) voltages of pin 26 (H-OUT) output waveform. 106 2002-10-04 TA1316AN Note No. V01 Parameter Test Method VP output pulse width (1) Input signal d (as shown in figure below) to TP16 and signal e (as shown in figure below) to pin 24 (FBP IN). Vertical free-running (maximum pull-in (2) Measure VP output pulse width (VPW ) from TP27 output waveform. range) (3) Measure VP pull-in range (VPt0) from TP27 output waveform. (4) Set sub-address (03) data to 01H, 02H, 03H, 04H, 05H and 06H and measure, as in step (4) above, pull-in ranges VPt1, VPt2, VPt3, VPt4, VPt5 and VPt6. 2.35 µs 29.63 µs Signal d (TP16 input signal) 4V 5.6 µs 9V Signal e (pin 24 input waveform) GND Pin 24 input waveform TP27 waveform VPw VPt V02 Minimum vertical pull-in range (1) This is same as step (1) for V01. (2) Input signal f (as shown in figure below) to TP15. (3) Increase signal f cycle from 30H. Measure cycle (TVPULL) when phase locks with that of TP27. Signal f (TP15 input waveform) 3H TVPULL Pin 24 input waveform TP27 waveform 107 2002-10-04 TA1316AN Note No. V03 Parameter Vertical black peak detection pulse Test Method (1) This is same as step (1) for V01. (2) Input signal f (as shown in figure below) to TP15. (3) Measure phase differences VBPP0E and VBPP0S from TP18 output waveform. (4) Set sub-address (03) data to 01H, 02H, 03H, 04H, 05H and 06H, and measure as in step (3) above, phase differences VBPP1E, VBPP1S, VBPP2E, VBPP2S, VBPP3E, VBPP3S, VBPP4E, VBPP4S, VBPP5E, VBPP5S, VBPP6E and VBPP6S. Signal f (TP15 input waveform) 3H 262.5H~1125H Pin 24 input waveform VBPPS VBPPE TP18 waveform V04 Vertical blanking stop (1) This is same as step (1) for V01. phase (2) Input signal f (as shown in figure below) to TP15. (3) Set sub-address (03) data to 00H and F0H, and measure blanking stop phases VBLKMIN and VBLKMAX from pin 43 output waveform. Signal f (TP15 input waveform) 3H 1125H Pin 24 input waveform VBLK Pin 43 waveform 108 2002-10-04 TA1316AN (1) Video signal 63.5 µs Frequency f0 sine wave (2) Input signal 1 (3) Input signal 2 Amplitude A Frequency f0 sine wave (4) Input signal 3 Figure T-1 Test Signals for Text/Color Difference Signal 2 109 2002-10-04 TA1316AN 63.5 µs 20 µs 20 µs 20 µs 20 ns 20 ns (1) Input signal 4 50% tPR (2) tPF 0% 10% 50% 90% 100% τR τF tPR (3) tPF 0% 10% 50% 90% 100% τR Figure T-2 τF Test Pulses for Text/Color Difference Signal 2 110 2002-10-04 1000 pF 14 2 3 13 4 TP13 TP14a A 12 5 11 6 TP15 TP16 10 7 111 TP17 9 8 15.75 kHz TP18 16 1 1000 pF TP14b B SW14 1200 pF 15 14 TC4538BP 2 3 TP20 TP21 13 4 12 5 DEF/DAC GND H-OUT VP OUT DAC1 (SYNC OUT) 24 25 26 27 28 #23 11 6 A TP23b B A 10 7 #24 TP23a B C B A 9 8 31.5/33.75 kHz #26 1 31 #30 16 30 #27 1200 pF 15 1000 pF 14 TC4538BP 2 3 13 0.1 µF 100 µF 470 Ω 10 kΩ TP30 2.0 V 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 0.1 µF 470 Ω #31 I L VDD 32 SCL SDA 33 2 2 I L GND ANALOG B IN #33 30 kΩ FBP IN 100 µF 10 kΩ 10 kΩ 10 kΩ 10 kΩ 10 kΩ B 1/2W 240 Ω SW33 SW37 SW34 SW38 SW35 SW39 300 pF 6.8 V 100 kΩ 0.01 µF 100 Ω 100 Ω 100 Ω TP31 1 kΩ #22 34 5.1 kΩ H CURVE CORRECTION #34 3.9 kΩ #21 35 SW26 HORIZONTAL FREQUENCY SW 23 DAC2 (ACB pluse) #35 B A 10 kΩ #20 36 SW24b #18 #36 1 µF HVCO 22 ANALOG OSD B IN 37 B A SW24A 10 kΩ ANALOG G IN AFC FILTER 21 ANALOG OSD G IN #37 100 Ω DEF/DAC VCC 20 ANALOG OSD R IN 38 SW23 ANALOG R IN SCP OUT 19 RGB VCC #38 15 kΩ 15 kΩ 15 kΩ #17 39 470 Ω SCP IN 18 B OUT #39 CSBLA503KECZF30 #16 40 1 kΩ HD1 IN 17 G OUT #40 10 µF VD1 IN 16 R OUT 41 100 Ω SYNC IN 15 RGB GND HD2 IN #41 100 Ω #15 100 Ω 100 Ω 100 Ω 0.1 µF 0.1 µF 0.1 µF 0.01 µF 10 kΩ 10 kΩ 470 Ω 9V 12 4 5 51 kΩ TP12 #14 42 A 51 kΩ 1200 pF #13 #42 TP33 10 µF 15 #12 43 B TP34 50 kΩ 7.5 kΩ TP10 #43 0.01 µF B #11 100 Ω 14 IK IN VD2 IN 13 44 B S/H COLOR LIMITER 12 45 1 µF 3 kΩ SW20 B A #45 B A TP35 5.1 kΩ 50 kΩ 1 #46 TP37 51 kΩ 16 30 kΩ A #10 2.2 µF 11 46 G S/H Cr2/Pr2 IN 10 47 TP38 10 µF A TP9 #47 B A 50 kΩ 7.5 kΩ TP5 #9 0.1 µF 9 48 R S/H Cb2/Pb2 IN #48 SW10 B 0.1 µF YS 3 (analog RGB) Y2 IN 8 49 TP39 51 kΩ 10 µF #8 B A SW9 A SW8 7 50 A 0.01 µF B 0.1 µF YS 2 (analog OSD) MATRIX SW 100 µF 0.01 µF 3 kΩ SW54 10µF SW56 LED 5.1 kΩ 50 kΩ B #7 SW7 YS 1 (analog OSD) Y/C GND 6 51 YM/P-MUTE/BLK Cr1/Pr1 IN 5 52 ABCL IN Cb1/Pb1 IN #53 1 µF NP B A 0.1 µF 0.1 µF #5 SW INPUT 0.1 µF 4 53 VSM OUT Y1 IN 3 54 Y/C VCC BPH FILTER 2 55 APL FILTER DARK AREA DET FILTER 1 56 51 kΩ TPB #49 10 µF TPA #50 50 kΩ 7.5 kΩ C 33 kΩ TP4 SW5 A #51 5.1 kΩ 50 kΩ B 56 kΩ A #4 2 kΩ 3.9 kΩ C #3 #52 51 kΩ 10 µF #2 5.1 kΩ TP1 SW4 B #54 75 Ω SW3 A 20 kΩ SW1 #55 0.1 µF 0.1 µF 1 µF #1 2 kΩ 3.9 kΩ 30 pF 20 kΩ SW2 #56 5.1 kΩ 75 Ω A 1 µF 100 kΩ 2 kΩ 1 µF TA1316AN Test Circuit VCC (9 V) #29 29 TA1316AN #28 TP27 B C VCC (9 V) TPC TC4538BP 11 10 9 TPD 6 7 8 45 kHz 2002-10-04 Cr/Pr1-IN 10 µF Cr/Pr2-IN Cb/ Pb2-IN 10 µF 10 µF 112 A B ANALOG R IN ANALOG G IN HVCO HORIZONTAL FREQUENCY SW H CURVE CORRECTION FBP IN DEF/DAC GND H-OUT VP OUT 20 21 22 23 24 25 26 27 VP-OUT TA1316AN 47 µH 31 H-FREQ Tr. 0.01 µF 470 Ω 470 Ω 0.1 µF 0.1 µF 0.1 µF 30 kΩ 0.1 µF 0.1 µF 0.1 µF 0.01 µF 100 µF 100 Ω 100 Ω 100 Ω 6.8 V 300 pF 30 kΩ 0.01 µF 0.01 µF 0.01 µF 47 µH IK IN ABCL 47 µH VSM-OUT B-OUT G-OUT R-OUT 2.0 V ANALOG B-IN ANALOG G-IN ANALOG R-IN DAC2-OUT OSD B-IN OSD G-IN OSD R-IN SDA I L VDD 2 SCL SDA 32 H-OUT 2 33 I L GND ANALOG B IN 34 1 kΩ 10 kΩ 35 FBP-IN DAC2 (ACB pluse) ANALOG OSD B IN 36 CURVE CORR 470 Ω CSBLA503KECZF30 AFC FILTER 19 ANALOG OSD G IN 37 M 0.01 µF ○ 3 kΩ DEF/DAC VCC 38 1 µF 0.01 µF 18 ANALOG OSD R IN 39 0.1 µF 1 kΩ SCP OUT 17 RGB VCC 40 560 Ω SCP IN 16 B OUT 41 1.5 kΩ 100 µF HD1 IN 15 G OUT 42 SCP-OUT VD1 IN 14 R OUT 43 SCP-IN SYNC IN 13 44 HD1-IN 1 µF 12 45 RGB GND HD2 IN 11 46 VD1-IN HD2-IN VD2 IN 10 47 IK IN COLOR LIMITER 9 48 B S/H Cr2/Pr2 IN 8 49 G S/H Cb2/Pb2 IN 7 50 R S/H YS 3 (analog RGB) Y2 IN 6 51 1 kΩ 3.9 kΩ SYNC-IN 10 µF 5.1 kΩ 2.2 µF M 0.1 µF ○ M 0.1 µF ○ M 0.1 µF ○ YS 2 (analog OSD) MATRIX SW Ys3 VD2-IN Matrix SW 0.01 µF 100 kΩ 0.01 µF 100 µF 2.2 µF Ys2 75 Ω 1 kΩ 3.9 kΩ YS 1 (analog OSD) Y/C GND 5 52 YM/P-MUTE/BLK Cr1/Pr1 IN 4 53 ABCL IN Cb1/Pb1 IN 3 54 VSM OUT Y1 IN 2 55 Y/C VCC BPH FILTER 1 56 APL FILTER DARK AREA DET FILTER Ys1 1 kΩ 10 µF 5.1 kΩ 75 Ω Y2-IN 10 µF 1 kΩ 75 Ω M 0.1 µF ○ M 0.1 µF ○ M 0.1 µF ○ 1 µF 1 µF YM 75 Ω 1 kΩ 1 kΩ 3.9 kΩ 10 µF 75 Ω 5.1 kΩ 75 Ω Y1-IN 1 kΩ Cb/Pb1-IN 75 Ω TA1316AN Application Circuit VCC VCC SCL 30 29 28 M : Mylar capacitor ○ Application of H-FREQ switching (31.5 k/33.75 k/45 kHz) A 31.5 kHz L L 33.75 kHz L H 3V 45 kHz H * 0V B Pin 22 Voltage 6V *: Don’t care 2002-10-04 TA1316AN ACB Application Circuit +B CRT R G CRT CRT B R G B 0~3.0 V (DC) 113 20~51 kΩ 1 Vp-p 51~330 pF 45 6.8 V Z IK IN CLAMP 2002-10-04 TA1316AN Package Dimensions Weight: 5.55 g (typ.) 114 2002-10-04 TA1316AN RESTRICTIONS ON PRODUCT USE 000707EBA • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The products described in this document are subject to the foreign exchange and foreign trade laws. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. • The information contained herein is subject to change without notice. 115 2002-10-04