TOSHIBA TA1360AFG

TA1360AFG
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA1360AFG
YCbCr/YPbPr Signal and Sync Processor for Digital TV, Progressive Scan TV and Double
Scan TV
The TA1360AFG integrates an analog component signal
(YCbCr/YPbPr) processor and sync processor in a 80-pin QFP
plastic package. The IC is ideal for digital TVs, progressive TVs,
and double scan TVs.
The luminance block and the color difference block incorporate
the high performance signal processing circuits. The sync
processor block supports 525I/60, 625I/50, 525P/60, 625P/50,
1125I/50, 1125I/60, 750P/60, (750P/50), PAL100 Hz, NTSC120 Hz,
and SVGA/60(VESA).
The TA1360AFG incorporates the I2C bus. The device can
control various functions via the bus line.
Weight: 1.6 g (typ.)
Features
Luminance Block
•
Black stretch circuit and DC restoration rate correction circuit
•
Dynamic γ correction circuit (gray scale correction)
•
SRT (LTI)
•
Y group delay correction (shoot balance correction)
•
High-bright color circuit
•
Color detail enhancer (CDE)
•
White pulse limiter (WPL)
•
VSM output
Color difference Block
•
Fresh color correction
•
Dynamic Y/C correction circuit
•
Color SRT (CTI)
•
Color γ circuit
•
Green stretch
•
Blue stretch
Text Block
•
OSD blending SW
•
ACB (only black level)
•
Two analog RGB inputs
Synchronization Block
•
Horizontal sync (15.75 k, 28.125 k, 31.5 k, 33.75 k, 37.9 k, 45 kHz)
•
Vertical sync (525I/P, 625I/P, 750P, 1125I/P, PAL 100 Hz/NTSC 120 Hz
•
2- and 3-level sync separator circuit
•
HD/VD input (positive and negative polarities)
•
Copy guard
•
Vertical blanking
1
2003-01-21
TA1360AFG
68
Y/C VCC 75
Cr2/Pr2 IN
Y1 IN
27
Cb2/Pb2 IN
I2L GND
31
Y2 IN
I2L VDD
38
Cb1/Pb1 IN
DEF/DAC GND
45
Cr1/Pr1 IN
DEF/DAC VCC
Block Diagram
67
66
63
61
60
CLAMP
CLAMP
CP1
Y/C GND 65
SW
YHDPbPr/YCbCrĺ YUV CONVERT
U
V
Y
BLACK
UVĺ IQ
STRETCH
CONVERTER
BLACK LEVEL
FRESH
CORECTION
COLOR
RGB VCC 16
RGB GND 10
SCL 30
2
SDA 28
DAC2 23
(ACB PLUSE)
I CBUS
DECODER
SW
IQĺ UV
CONVERTER
DYNAMIC γ
SW
DC REST
DAC2
DAC1
(SYNC OUT) 34
SYNC OUT
SW
DAC1
CP OUT 47
SCP IN 49
H-OUT 37
H-FREQ SW1 55
H-FREQ SW2 41
EXT
BPP
CP/BPP
H
FREQUENCY
SW
AFC FILTER 44
SRT
GROUP
DELAY
+
CORRECTION
TINT
H C/D
CP2
HVCO
CLAMP
PULSE
DL/
COLOR SRT
CP
SW
H-AFC
COLOR
SUBCONTRAST
UNI-COLOR
UNICOLOR
FBP/BLK
V-BPP
LIGHT
DET
LIGHT AREA
64 DET FILTER
74 APL FILTER
SHARPNESS
CONTROL
Y DETAIL
CONTROL
G-Y
MATRIX
V
FREQUENCY
SW
R-Y
H-BLK
+
ABCL
AMP
V-BLK
HI-BRIGHT
COLOR
G-Y
Yout-γ
HALF TONE
/C MUTE
HALF TONE
/Y MUTE
58 COLOR
LIMITER
HPF
VSM AMP
COLOR
PEAK
DETECT
V-CLP
WP BLUE
VSM
MUTE
CLAMP
VD IN SW
R OUT 12
CLAMP
OSD
AMP
Y
RGB
MATRIX
CP2
BLK
CP2
DRIVE
MIXER SW/
BLUE BACK
OSD
ACL SW
BLUE
STRETCH CP2
B OUT 14
SW
S/H
RGB
BRIGHTNESS
CLAMP
57 VSM FILTER
77 VSM OUT
18 ANALOG
OSD R IN
19 ANALOG
OSD G IN
21 ANALOG
OSD B IN
OR
80 YS1
(ANALOG OSD)
CUT OFF
IK
78 ABCL IN
WPS
COLOR
γ
EXT
V-BLK
HD IN SW
BRIGHTNESS
B-Y
ACB
PULSE
CLAMP
PULSE
HD
POLARITY
CLAMP
WPL
V C/D
SYNC
SEPA
RELATIVE
PHASE/
AMPLITUDE
2 × fH
H-RAMP
VP OUT
RGB OUT
71 DARK AREA
DET FILTER
APL
DETECT
CP2
G OUT 13
DARK
DET
CP2
H-BPP
V
INTEGRAL
VD IN 52
70 BPH FILTER
CDE
+
H CURVE 40
CORRECTION
FBP IN 39
+
CP1
H CURVE
CORRECTION
HD IN 50
GREEN
STRETCH
EXT
CP
HORIZONTAL
PHASE
SYNC IN 53
SHARPNESS
DELAY LINE
H DUTY
HVCO 42
VP OUT 35
BPP
SW
Y/C LEVEL
COMP
BLACK PEAK
DETECT
YM SW
CLAMP
1 YS2
(ANALOG OSD)
2
G S/H
B S/H
25
26
2
79
YM/PMUTE/BLK
R S/H
24
YS3
(ANALOG RGB)
7
ANALOG
B IN
6
ANALOG
G IN
4
ANALOG
R IN
8
IK IN
RGB
CONTRAST
2003-01-21
TA1360AFG
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
YS1
(ANALOG
OSD)
YM/PMUTE/BLK
ABCL IN
VSM OUT
NC
Y/C VCC
APL FILTER
NC
NC
DARK AREA DET FILTER
BPH FILTER
NC
Y1 IN
Cb1/Pb1
IN
Cr1/Pr1
IN
Y/C
GND
Pin Assignment
1 YS2
(ANALOG OSD)
2
YS3
(ANALOG RGB)
3 NC
LIGHT AREA
64
DET FILTER
Y2 IN 63
NC 62
4 R S/H
Cb2/Pb2 IN 61
5 NC
Cr2/Pr2 IN 60
6 G S/H
NC 59
7 B S/H
COLOR LIMITER 58
8 IK IN
VSM FILTER 57
9 NC
NC 56
10 RGB GND
H-FREQ SW1 55
11 NC
NC 54
12 R OUT
SYNC IN 53
TA1360AFG
13 G OUT
VD IN 52
14 B OUT
NC 51
15 NC
HD IN 50
16 RGB VCC
SCP IN 49
17 NC
NC 48
18 ANALOG OSD R IN
CP OUT 47
19 ANALOG OSD G IN
NC 46
20 NC
DEF/DAC VCC 45
21 ANALOG OSD B IN
AFC FILTER 44
22 NC
NC 43
23 DAC2 (ACB PULSE)
I2L GND
SDA
NC
SCL
I2L VDD
NC
NC
DAC1 (SYNC OUT)
VP OUT
NC
H-OUT
DEF/DAC GND
26
27
28
29
30
31
32
33
34
35
36
37
38
3
H-FREQUENCY
SW2 41
H COURVE
CORRECTION
ANALOG
B IN
25
24 ANALOG R IN
FBP IN
ANALOG
G IN
HVCO 42
39
40
2003-01-21
TA1360AFG
Pin Functions
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
Switches internal RGB and OSD
input signals.
The blend ratio of internal RGB
and OSD signals can be adjusted
according to applying voltage to
pins YS1 and YS2.
YS2
(analog OSD)
VSM output is muted when YS1 or
YS2 pin is set to High.
YS2 YS1
80
YS1
(analog OSD)
300 Ω
1
80
Blend ratio
Int RGB:
OSD RGB
L
L
10:0
H
L
7:3
L
H
5:5
H
H
0:10
0 to 0.5 V
: Internal
1.1 V to 1.7 V : VSM Mute
50 kΩ
1
16
2.9 V to 9 V
: OSD, VSM Mute
10
16
YS3
(analog RGB)
2
VSM output is muted when analog
RGB is selected.
300 Ω
0 to 0.5 V
300 Ω
1.5 V to 9 V : Analog RGB, VSM
Mute
This pin is not used.
3
50 kΩ
2
Switches internal RGB and
external analog RGB input.
: Internal
10

NC
Connect to GND.

16
R S/H
S/H (sample-and-hold) pin.
G S/H
7
B S/H
In ACB Mode, connect 2.2-µF
capacitor. In CUT-OFF Mode,
connect 0.01-µF capacitor.
1 kΩ
5 kΩ
DC
3V
6
500 Ω
4
6
7
3 pF
4
10
This pin is not used.
5

NC
Connect to GND.

16
1 Vp-p (typ.) R
Inputs feedback signal from CRT.
(BLK level should be 0 to 3 V.)
8
IK IN
When ACB function is not used,
connect this pin to RGB VCC pin.
1 kΩ
8
G
B
0~3 V
or RGB VCC
10
This pin is not used.
9
NC
Connect to GND.
10
RGB GND
11
NC
GND pin for text/RGB block
This pin is not used.
Connect to GND.
4






2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
12
100 Ω
16
R OUT
Outputs R/G/B signal.
G OUT
14
B OUT
Recommended output amplitude:
100 IRE = 2.3 Vp-p
Conditions:
12
13
14
200 Ω
UNI-COLOR = max
SUB-CONT = Cent
2.5 mA
13
100 IRE: 2.3 Vp-p
Y IN = 0.7 Vp-p
10
This pin is not used.
15
NC
Connect to GND.






VCC pin for text/RGB block.
16
RGB VCC
17
NC
See “Maximum Ratings” about the
supply voltage.
This pin is not used.
Connect to GND.
16
18
19
21
ANALOG OSD
R IN
ANALOG OSD
G IN
Inputs analog OSD signal via
clamp capacitor.
1 kΩ
18
19
21
100 IRE: 0.7 Vp-p (not including
sync)
1 kΩ
1 kΩ
ANALOG OSD
B IN
10
20
This pin is not used.


NC
22
Connect to GND.
16
DC or ACB PULSE
23
DAC2
(ACB pulse)
Outputs 1-bit DAC or pulse over
ACB period.
500 Ω
23
Open-collector output.
10
16
24
ANALOG R IN
25
ANALOG G IN
26
ANALOG B IN
Inputs analog R/G/B signal via
clamp capacitor.
1 kΩ
24
25
26
100 IRE: 0.7 Vp-p (not including
sync)
1 kΩ
1 kΩ
10
27
I2L GND

GND pin for I2L block
5

2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
45
SDA
SDA pin for I2C BUS
50 Ω
28
5 kΩ
SDA

2.25 V
28
ACK
38
27
This pin is not used.
29

NC
Connect to GND.

45
SCL
SCL pin for I2C BUS
5 kΩ
30
SCL

2.25 V
30
38
27
VDD pin for I2L block. Connects 2
V (typ.).
31
I2L VDD
32
Supply power via zener diode
through resistor from pin 45. (See
“Application Circuit”)
This pin is not used.
NC
33
Connect to GND.




45
34
DAC1
(SYNC OUT)
Outputs 1-bit DAC or separated
SYNC.
34
DC or SYNC OUT
500 Ω
Open-collector output.
27
38
35
VP OUT
Applying current to this pin,
performs external blanking by
OR-ing with internal blanking.
35
200 Ω
5V
0V
Note: Changing H-position varies
VP output width. Use the
start phase only for VP
output.
27
Start phase
38
This pin is not used.
36
VP output:
200 µA
45
Outputs vertical pulse.

NC
Connect to GND.
6
V-BLK input current: 780 µA to 1 mA

2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
45
37
H-OUT
Horizontal output pin.
Open-collector output.
5 kΩ
37
38
38
DEF/DAC GND

GND pin for DEF/DAC block

2.25 V
45
max: 9 V
Inputs FBP for horizontal AFC.
39
FBP IN
Sets H-BLK width.
H-AFC threshold
: 5.3 V
BLK threshold
: 2.3 V
20 kΩ
39
5V
30 kΩ
500 Ω
38
H CURVE
CORRECTION
50 kΩ
Adjusts screen curve at high
voltage fluctuation. Input AC
component of high voltage
fluctuation.
1 kΩ
40
DC
25 kΩ
When not used, connect 0.01-µF
capacitor between this pin and
GND.
6.5 V
130 kΩ
40
65 kΩ
45
38
1 kΩ
45
H-FREQ SW2
60 kΩ 60 kΩ 15 kΩ
41
Leave this pin open when
horizontal frequency is switched
by Bus controlling. Controlling this
pin prevails over Bus control.
(Refer to Table 1: Bus control
function.)
60 kΩ
Switches horizontal frequency
(Switch 2).
1 kΩ
41
30 kΩ
20 pF
When this IC is used for CRT,
frequency of horizontal output (pin
37) is controlled according to
voltage of this pin. DC voltage that
is generated by dividing resistor of
DEF VCC (pin 45) should be used
to control this pin.
7.5 V
4.5 V
At pin 22 control, horizontal
frequency and input voltage value
0 to 1.0 V
: 37 k/45 kHz
2.0 V to 4.0 V : 33 kHz
5.0 V to 7.0 V : 31 kHz
8.0 V to 9.0 V : 28 k/15 kHz
16 kΩ
1.5 V
At BUS control (horizontal
frequency) : output voltage value
28 k/15 kHz
: DC 9 V
31 kHz
: DC 6 V
33 kHz
: DC 3 V
37 k/45 kHz
: DC 0 V
38
42
2 kΩ
Connects ceramic oscillator for
horizontal oscillation.
HVCO
Use Murata
“CSBLA503KECZF30”.
1 kΩ
45
42

1 kΩ
10 kΩ
38
This pin is not used.
43

NC
Connect to GND.
7

2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
45
300 Ω
30 kΩ
Connects filter for detecting AFC.
VCO
DC
6.3 V
AFC FILTER
7.5 kΩ
44
44
38
VCC pin for DEF/DAC block.
45
DEF/DAC VCC
46
NC
See “Maximum Ratings” about the
supply voltage.
This pin is not used.
Connect to GND.




45
5V
CP OUT
47
200 Ω
2.5 kΩ
47
Outputs internal clamp pulse
(CP).
0V
38
This pin is not used.
48

NC
Connect to GND.

45
SCP IN
Inputs SCP from up converter.
Input signals are clamp pulse
(CP) and black peak detection
stop pulse (BPP).
2.2 V to 2.8 V : BPP
5 kΩ
49
4.2 V to 9 V
: CP
50 kΩ
49
38
45
Threshold
: 0.75 V
0V
HD IN
50
1 kΩ
or
50 kΩ
50
Inputs horizontal sync HD signal.
Inputs positive- or
negative-polarity signals.
Threshold
: 0.75 V
38
0V
This pin is not used.
51

NC
Connect to GND.

45
Threshold
: 0.75 V
0V
VD IN
52
1 kΩ
or
45 kΩ
52
Inputs vertical sync VD signal.
Inputs positive- or
negative-polarity signals.
38
Threshold
: 0.75 V
0V
8
2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
White 100%: 1 Vp-p
45
1 kΩ
Inputs Y signal with sync signal
via clamp capacitor.
or
53
1 kΩ
SYNC IN
1 kΩ
60 kΩ
53
38
This pin is not used.
54

NC
Connect to GND.

Switches horizontal frequency
(Switch 1).
45
1 kΩ
55
This pin is not used.
56
DEF VCC or DEF GND
30 kΩ
When this IC is used for CRT,
connect this pin to DEF VCC (pin
45) or DEF GND (pin 38). If it is
not necessary to control this pin
on CRT, connect this pin directly
to DEF VCC or DEF GND on the
PCB.

NC
57
Connects VSM output filter.
16
DC
Please connect 0.01-µF capacitor
between this pin and GND.
200 Ω
77
1 kΩ
VSM FILTER

200 Ω 1 kΩ
Connect to GND.
57
38
1.6 mA
H-FREQ SW1
Controlling this pin prevails over
Bus control. (Refer to Table 1:
Bus control function.)
50 kΩ
55
50 µA
Leave this pin open when
horizontal frequency is switched
by Bus controlling.
65
7 µA
16
58
COLOR LIMITER
Connects filter for detecting color
limit.
5 kΩ
58
DC
65
This pin is not used.
59

NC
Connect to GND.
9

2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
60
Cr2/Pr2 IN
Inputs Cr2/Pr2 signal via clamp
capacitor.
700 mVp-p700 mVp-p at 100% color
bar for Cr1/Pr1
61
Cb2/Pb2 IN
Inputs Cb2/Pb2 signal via clamp
capacitor.
700 mVp-p at 100% color bar for
Cb1/Pb1
16
60
61
63
1 Vp-p (including sync) at 100%
color bar
1 kΩ
1 kΩ
5 kΩ
63
Y2 IN
Inputs Y2 signal via clamp
capacitor.
or
65
This pin is not used.
62

NC
Connect to GND.

75
Connects filter for detecting light
area.
5 kΩ
64
Voltage of this pin controls
dynamic γ circuit gain for light
area.
DC
1 kΩ
1 kΩ
LIGHT AREA
DET FILTER
100 kΩ
64
65
65


Y/C GND
GND pin for Y/C block
66
Cr1/Pr1 IN
Inputs Cr1/Pr1 signal via clamp
capacitor.
700 mVp-p700 mVp-p at 100% color
bar for Cr1/Pr1
67
Cb1/Pb1 IN
Inputs Cb1/Pb1 signal via clamp
capacitor.
700 mVp-p at 100% color bar for
Cb1/Pb1
16
66
67
68
1 Vp-p (including sync) at 100%
color bar
1 kΩ
1 kΩ
5 kΩ
68
Y1 IN
Inputs Y1 signal via clamp
capacitor.
65
This pin is not used.
69

NC
Connect to GND.
10
or

2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
1 kΩ
75
Voltage of this pin controls black
stretch gain.
200 Ω
70
DC
5V
Leaving Y open and setting the
test circuit SW 2 = C enable to
monitor H/V-BPP
(black-stretch-stop pulse) width.
1 kΩ
BPH FILTER
1 kΩ
70
4 kΩ
Connects filter for detecting black
peak.
65
75
5 kΩ
71
DC
1 kΩ
1 kΩ
100 kΩ
71
Connects filter for detecting dark
area.
DARK AREA DET
Voltage of this pin controls
FILTER
dynamic γ circuit gain for dark
area.
65
72
This pin is not used.


NC
73
Connect to GND.
75
40 kΩ
Connects filter for correcting DC
restoration rate.
74
APL FILTER
74
1 kΩ
Leaving this pin open enables to
monitor Y signal after black
stretch and dynamic γ.

1 kΩ
65
VCC pin for Y/C block.
75
Y/C VCC
76
NC
See “Maximum Ratings” about the
supply voltage.
This pin is not used.
Connect to GND.
77
VSM OUT
Outputs Y signal for VSM that
passed through HPF circuit (first
differential circuit).





See pin 57.
Output signals are muted
according to pins 1, 2, and 80.
7.05 V
16
Inputs ABL and ACL signals.
78
ABCL IN
Sets gain and start point of ABL
and dynamic ABL signal
according to bus controlling.
30 kΩ
5 kΩ
DC
78
10
11
2003-01-21
TA1360AFG
Pin
No.
Pin Name
Function
Input Signal/Output Signal
Interface Circuit
16
YM/P-MUTE/BLK
0 to 0.5 V
Enables picture mute and
blanking.
: Internal
1.2 V to 1.8 V : Half Tone
2.7 V to 4.0 V : P-Mute
7 V to 9 V
10 kΩ
79
300 Ω
79
80 kΩ
High-speed halftone switch for
internal RGB signal.
: Blanking
10
12
2003-01-21
TA1360AFG
Bus Control Map
Write Data
Slave Address: 88H
Sub-Add
D7
00
D6
H-FREQ1
D5
D4
D3
D2
D1
D0
H-DUTY
YUV-SW
DAC1
DAC2
SYNC-SW
H-FREQ2
1000
0000
CLP-PHS
1000
0000
1000
0000
1000
0000
1000
0000
1000
0000
1000
0000
1000
0000
01
HORIZONTAL POSITION
02
ACB-MODE
03
HBP-PHS1
TEST
VERTICAL FREQUENCY
COMPRESSION-BLK PHASE-1
COMPRESSION-BLK PHASE-2
P-MODE1
UNI-COLOR
06
07
SYNC SEP-LEVEL
V-BLK PHASE
04
05
SCP-SW
BRIGHTNESS
OSD-ACL
COLOR
Preset
08
TINT
HBP-PHS2
1000
0000
09
PICTURE SHARPNESS
BLS γ
1000
0000
0A
RGB BRIGHTNESS
DCRR-SW
1000
0000
1000
0000
Y-OUT γ
1000
0000
0B
HI BRT
RGB CONTRAST
0C
SUB CONTRAST
WPS
YUV MODE
0D
DRIVE GAIN1
DR-R
1000
0000
0E
DRIVE GAIN2
DR-B/G
1000
0000
0F
R CUT OFF
1000
0000
10
G CUT OFF
1000
0000
11
B CUT OFF
1000
0000
1000
0000
12
R-Y/B-Y GAIN
13
R-Y/B-Y PHASE
G-Y/B-Y GAIN
14
COLOR SRT TRAN
15
C.D.E.
C FREQ
G-Y/B-Y PHASE
Y/C GAIN COMP
1000
0000
CLT
1000
0000
H-SHIFT
1000
0000
COLOR γ
GREEN STRETCH
BL STRETCH GAIN
FLESH
16
VSM PHASE
VSM GAIN
APACON PEAK FREQ
1000
0000
17
DC REST POINT
DC REST RATE
DC REST LIMIT
1000
0000
18
BLACK STRETCH POINT
1000
0000
1000
0000
P-MODE2
1000
0000
ABL GAIN
RGB OUT MODE
1000
0000
STATIC γ GAIN-1
STATIC γ GAIN-2
1000
0000
19
APL VS BSP
B.L.C.
B.D.L
SRT-GAIN
1A
D-ABL POINT
1B
WPL-LEVEL
D-ABL GAIN
ABL POINT
1C
DYNC γ GAIN
1D
OSD BRIGHT
BS-AREA
BS-CHAR1
OSD CONTRAST
BL STRETCH POINT
Y/C-DL1
DYNC γ AREA
1000
0000
1E
Y DETAIL CONTROL
BS-CHAR2
WP BLUE POINT
1000
0000
1F
Y GROUP DELAY CORRECTION
Y/C-DL2
WP BLUE GAIN
1000
0000
Read Data
Slave Address: 89H
0
D7
D6
D5
D4
D3
D2
D1
D0
POR
IK-IN
RGB-OUT
YUV-IN
H-OUT
VP-OUT
RGB-IN
SYNC-IN
13
2003-01-21
TA1360AFG
Bus Control Features
Write Mode
Resister Name
H-FREQ1/2
H-DUTY
YUV-SW
Description
Switches horizontal oscillation frequency. (See the appendix 1)
Switches horizontal output duty.
33.75 kHz
41%
0: 41% 1: 47%
Switches YUV input.
0: INPUT-1 (Y1/Cb1/Cr1)
Preset Value
1: INPUT-2 (Y2/Cb2/Cr2)
INPUT-1
Switches DAC controlling output.
DAC 1
0: OPEN (high) 1: ON (low)
Controls 1-bit DAC of open-collector when TEST is 00.
OPEN
Outputs H/C-SYNC from pin 34 when TEST is 01.
Switches DAC controlling output.
DAC 2
0: ON (low),
1: OPEN (high)
Controls 1-bit DAC of open-collector when TEST is 00.
ON
Outputs ACB reference pulse from pin 23 when TEST is 01.
SYNC-SW
Switches sync input.
0: Selects HD/VD input.
1: Selects SYNC input.
HD/VD
Adjusts horizontal picture position (phase).
HORIZONTAL POSITION
0000000: −12.5%
1111111: +12.5%
CENTER
Note: VP output width (pin 35) varies with a change of horizontal position.
Switches clamp pulse phase.
0: 0.7-µs (2.5%) width, 1.1-µs (3.8%) delay from HD stop phase.
CLP-PHS
1: 0.7-µs (2.4%) width, 0.2-µs (0.7%) delay from HD stop phase
1.1-µs delay
when no signal, 0.8-µs (2.7%) width that is 1.2-µs (4.2%) delay from FBP start
phase.
Also switches CP phase of CP-OUT (pin 47).
Sets ACB mode; Sets converged reference level.
ACB MODE
00: ACB OFF (cutoff BUS control),
01: ACB ON (5 IRE),
10: ACB ON (10 IRE) 11: ACB ON (20 IRE)
SCP-SW
SCP (sand castle pulse) Switches modes.
0: Internal Mode 1: External input Mode
ACB ON
(10 IRE)
Internal Mode
Switches phase of black-stretch-detection stop pulse.
HBP-PHS1 = 0 and HBP-PHS2 = 0: FBP ± 3%
HBP-PHS1 = 0 and HBP-PHS2 = 1: FBP ± 8%
HBP-PHS1/2
HBP-PHS1 = 1 and HBP-PHS2 = 0: FBP ± 13%
±3%
HBP-PHS1 = 1 and HBP-PHS2 = 1: FBP ± 18%
Leaving Y open and setting the test circuit SW2 to C enable to monitor H/V-BPP
(black-stretch-detection stop pulse) width through pin 70.
SYNC SEP-LEVEL
Switches Sync SEP-level.
00: 16% 01: 24%
10: 32%
11: 40% (At 1125I/60)
16%
Test Mode:
Controls 1-bit DAC of open-collector when TEST is 00.
TEST
Outputs H/C-SYNC from pin 34, and ACB reference pulse from pin 23 when TEST 00
is 01.
Do not set TEST to 10/11 for that is shipment TEST Mode.
14
2003-01-21
TA1360AFG
Resister Name
Description
Preset Value
Switches vertical BLK stop phase.
V-BLK PHASE
00000: 16 H~ 11110: 46 H (1 H/STEP)
11111: Internal H/V-BLK OFF
32 H
Please set ACB Mode to OFF when internal H/V-BLK is OFF (11111).
V-FREQUENCY
Vertical free-run frequency: Sets V pull-in range. (See Appendix 2.)
1281 H
COMPRESSION-BLK
PHASE-1/2
Compression BLK phase: Sets BLK for upper and lower parts of screen. (See
Appendix 3.)
CENTER, OFF
P-MODE1/2
Picture Mode: Sets picture mute, halftone, blue background, and Y mute. (See
Appendix 4.)
P-MUTE 1
UNI-COLOR
BRIGHTNESS
OSD-ACL
Unicolor adjustment:
0000000: −16dB~ 1111111: 0dB
Brightness adjustment:
00000000: −40 IRE
11111111: +40 IRE
OSD-ACL;
min
CENTER
ON
0: OFF 1: ON
Color adjustment:
COLOR
0000000: COLOR MUTE,
C-MUTE
0000001: −20dB or more 1111111: +4dB
TINT
Tint adjustment:
0000000: −32 deg~ 1111111: +32 deg
±0 deg
Sharpness adjustment:
PICTURE-SHARPNESS
0000000: −10dB or more 1000000: +10dB
CENTER
1111111: +17.5dB (at peak FREQ)
BLSγ
RGB-BRIGHTNESS
DCRR-SW
HI BRT
RGB-CONTRAST
SUB-CONTRAST
WPS
Blue stretch γ correction: B-axis correction
0: OFF 1: ON
RGB brightness:
0000000; −20 IRE~ 1111111; +20 IRE
Switches DC restoration rate.
0: 100% or higher 1: 100%or lower
High-bright color:
RGB contrast:
0000000: −16.5dB
1111111: 0dB
Sub-contrast:
100% or higher
min
CENTER
11111: +2.5dB
WPS level:
0: 110 IRE
CENTER
ON
0: OFF 1: ON
00000: −3.3dB
OFF
110 IRE
1: 130 IRE
Y/color-difference input Mode:
YUV MODE
0: Y/Cb/Cr, 1: Y/Pb/Pr
Y/Cb/Cr
(Remarks) Y/Cb/Cr: ITU-R BT 601
Y/Pb/Pr: ITU-R BT 709 (1125/60/2:1)
Y-outγ
DRIVE GAIN1/2
DR-R
DR-B/G
Y-out gamma control:
OFF
0: OFF 1: ON
Drive gain 1/2;
0000000: −5dB 1111111: +3dB
Switches RGB drive gain base. (See Appendix 5.)
15
CENTER
R
2003-01-21
TA1360AFG
Resister Name
Description
Preset Value
R/G/B cutoff:
1) At ACB-OFF RGB-OUT
R/G/B CUT OFF
00000000: 1.9 V
11111111: 2.9 V
CENTER
2) At ACB-ON SENS-IN
00000000: 0.5 Vp-p 11111111: 1.5 Vp-p
R-Y/B-Y GAIN
R-Y/B-Y PHASE
G-Y/B-Y GAIN
G-Y/B-Y PHASE
COLOR SRT TRAN
C FREQ
GREEN STRETCH
COLOR γ
CLT
CDE
Y/C GAIN COMP
Switches R-Y/B-Y relative amplitude:
CENTER
0000: min (0.45) 1111: max (0.9)
Switches R-Y/B-Y relative phase:
min
0000: min (90 deg) 1111: max (111.5 deg)
Switches G-Y/B-Y relative amplitude:
CENTER
0000: min (0.25) 1111: max (0.48)
Switches G-Y/B-Y relative phase:
min
0000: min (232 deg) 1111: max (254 deg)
Color SRT transient: Color-difference transient improvement
00: C-SRT OFF~ 11: max
Color SRT peak frequency:
0: 4.5 MHz
4.5 MHz
1: 5.8 MHz
Green stretch:
OFF
00: OFF~ 11: max (+3dB)
Color γ correction point
00: OFF,
CENTER
01: 0.23 Vp-p, 10: 0.40 Vp-p,
11: 0.58 Vp-p
Color limiter level:
OFF
1.65 Vp-p
0: 1.65 Vp-p, 1: 2 Vp-p
Color detail enhancer:
CENTER
00: min 11: max
Dynamic Y/C compensation: Operated when luminance level is made up
according to dynamic Yγ.
OFF
00: OFF~ 11: max
BL STRETCH GAIN
FLESH
H-SHIFT
VSM-PHASE
VSM GAIN
APACON PEAK f0
DC REST POINT
DC REST RATE
DC REST LIMIT
Blue stretch gain: B-axis correction
OFF
00: OFF 11: max (+6.4dB)
Flesh color: Skin tone color correction
OFF
0: OFF 1: ON (Lead-in angle: ±33.7 deg)
Shifts a center of horizontal picture position (phase):
0: OFF 1: ON(FBP shifts 6.7% against HD)
VSM phase:
000: −37.5 ns 101: normal
CENTER
111: +15 ns
VSM gain:
000: OFF 001: 0 dB~ 111: +16dB (VSM gain is limitted 1.4 Vp-p)
APACON peak frequency:
00: 13.5 MHz
01: 9.5 MHz 10: 7.2 MHz
DC restoration rate correction point:
000: 0% 111: 49%
DC restoration correction rate:
11: 4.5 MHz
OFF
13.5 MHz
CENTER
min
000: 100% 111: 135% (70%)
DC restoration rate correction limit point:
00: 67% 01: 77%
OFF
10: 80% 11: 80%
16
min
2003-01-21
TA1360AFG
Resister Name
BLACK STRETCH POINT
APL VS BSP
B.L.C
B.D.L.
BS-AREA
SRT-GAIN
WPL-LEVEL
D-ABL POINT
D-ABL GAIN
BL STRETCH POINT
ABL POINT
ABL GAIN
RGB-OUT MODE
Description
Black stretch start point 1:
000: OFF 001: 25 IRE~ 111: 55 IRE
Black stretch start point 2:
00: 0 IRE
11: 46 IRE up (at APL 100%)
Black level automatic correction: Up to 6.5 IRE. (Black stretch takes priority.)
0: OFF 1: ON
Switches black detection level:
0: 3 IRE
CENTER
0 IRE
OFF
3 IRE
1: 0 IRE
Black stretch area reinforcement:
ON
0: ON 1: OFF
SRT gain; Y transient improvement (LTI)
00000: min 11111: max
White letters improvement amplitude;
000: min (21 IRE) ~ 110: max (102 IRE) 111: OFF
Dynamic ABL detection voltage
CENTER
min
CENTER
00: min 11: max
Dynamic ABL sensitivity
min
00: min 11: max
Blue stretch point; B-axis correction
min
00: min (28 IRE) 11: max (60 IRE)
ABL detection voltage
CENTER
000: min 111: max
ABL sensitivity
min
000: min 111: max
RGB output mode; RGB output mode SW for test and adjustment
00: Normal
Preset Value
01: R only 10: G only
11: B only
Normal
Dynamic Yγ gain vs dark area; dynamic γ-correction according to dark area.
DYNCγ GAIN
00:min~
11: max (Maximum gain is +6dB included Static Yγ gain for dark area.)
CENTER
Black stretch characteristic swich
BS-CHAR1/2
BS-CHAR1 = 0 and BS-CHAR2 = 0: OFF
BS-CHAR1 = 0 and BS-CHAR2 = 1: min
BS-CHAR1 = 1 and BS-CHAR2 = 0: mid
BS-CHAR1 = 1 and BS-CHAR2 = 1: max
OFF
Static Yγ dark area gain; γ correction for dark area
STATICγ GAIN-1
000: OFF 001: min (−5dB) ~ 11: max (+2.4dB)
OFF
Note: When STATIC γ GAIN-1 is 000(OFF), set DYNC γ GAIN to min (00),
STATIC γ GAIN-2 to OFF (11), and DYNC γ AREA to min (000).
Static Yγ light area gain; γ correction for light area
STATICγ GAIN-2
00: max (−8.8dB)~ 11: OFF
max
When 00~10 is set, light area static Yγ and light dynamic Yγ according to light area
is operated.
OSD BRIGHT
OSD-CONTRAST
OSD brightness:
00: 5 IRE
01: 0 IRE 10: −5 IRE
OSD contrast:
00: min (−9.5dB) 11: max (0dB)
17
11: −10 IRE
−5 IRE
min
2003-01-21
TA1360AFG
Resister Name
Description
Preset Value
Adjusts Y/C phase; adjusts the phase Y before passing through matrix circuit.
Y/C DL1/2
Y/C DL2 = 0 and Y/C DL1 = 0: −10 ns, Y/C DL2 = 0 and Y/C DL1 = 1: −5 ns
−10 ns
Y/C DL2 = 1 and Y/C DL1 = 0: 0 ns, Y/C DL2 = 1 and Y/C DL1 = 1: +5 ns
DYNCγAREA
Y DETAIL CONTROL
WP BLUE POINT
Dynamic γ dark area detection sensitivity; switches detection sensitivity of dynamic
Yγ of dark area.
min
000: min~ 111: max
Controls Y detail; corrects sharpness of 5.0-MHz peak frequency.
0000:min (trap)
1111: max(+6dB)
White peak blue point;
000: OFF 001: min (42 IRE) ~ 111: max (106 IRE)
CENTER
OFF
Y group delay correction; shoot balance correction.
Y-GROUP DELAY
CORRECTION
0000: Pre-shoot gain is lowered. (Overshoot gain is raised.)
CENTER
1111: Overshoot gain is lowered. (Pre-shoot gain is raised.)
WP BLUE GAIN
White peak blue gain.
000: min (+3dB) 111: max (+10dB)
18
min
2003-01-21
TA1360AFG
Appendix 1: Horizontal Frequency
Pin Voltages (V)
Pin 55
DEF GND
(0~1.0)
DEF VCC
(8.0~9.0)
Bus Data
H-Frequency (kHz)
Pin 41
00-D0
00-D7
00-D6
DEF VCC
(8.0~9.0)
0
0
0
28.125
6.0 (5.0~7.0)
0
0
1
31.5
3.0 (2.0~4.0)
0
1
0
33.75
DEF GND
(0~1.0)
0
1
1
37.9
DEF VCC
(8.0~9.0)
1
0
0
15.75
6.0 (5.0~7.0)
1
0
1
31.5
3.0 (2.0~4.0)
1
1
0
33.75
DEF GND
(0~1.0)
1
1
1
45
Note 1: Controlling pins prevails over BUS control. When the TA1360F is used for CRT, control horizontal oscillation
frequency by pins 41 and 55. (See the pin descriptions for details.)
Note 2: Horizontal output frequency may not be switched at once but may takes two steps if switching pins 41 and
55 is controlled at the same time. Switching horizontal output frequency may cause deterioration of the
horizontal transistor. Thus, be sure to take account of applications, included software.
Appendix 2; Vertical Frequency
V-BPP
Data
V Pull-in Range
000
48~1281 H
1100 H
1125P/30 Hz (33.75 kHz)
001
48~849 H
730 H
750P/60 Hz (45 kHz)
(750P/50Hz(37.5 kHz))
010
48~725 H
600 H
625P/50 Hz (31.5 kHz)
SVGA/60 Hz(37.9 kHz)
011
48~660 H
545 H
100
48~613 H
500 H
525P/60 Hz (31.5 kHz)
101
48~363 H
290 H
PAL/SECAM/50 Hz (15.625 kHz),
100 Hz (31.5 kHz)
110
48~307 H
240 H
NTSC/60 Hz (15.734 kHz),
120 Hz (31.5 kHz)
111
VP-OUT HI

Start Phase
Stop Phase
V-BLK P.
(C.BLK P.)
+20 H

19
Example of Format/V (H)-Frequency
1125I/50 Hz (28.125 kHz)
1125I/60 Hz (33.75 kHz)

2003-01-21
TA1360AFG
Appendix 3; Compression-BLK Phase
V-Frequency
Phase-1 (start phase) *
000
1088 H~1116 H
001
720 H~748 H
010
592 H~620 H
011
528 H~556 H
100
488 H~516 H
101
280 H~308 H
110
224 H~252 H
111
Phase-2 (stop phase)
50~78 H
(0000: C-BLK2 OFF)
C-BLK OFF
*: C-BLK1 = 1111: C-BLK1 OFF
Appendix 4; P-Mode
05-D7
1A-D1
1A-D0
MODE
Description
P-Mute and halftone the main signal by pin YM.
0
0
0
NORMAL 1
Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.
Analog RGB-IN > P-Mute
Full-screen-mute process is executed on Y of main signal by BUS.
0
0
1
Y-MUTE
Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.
Analog RGB-IN > P-Mute
Full-screen-halftone process is executed on main signal by BUS.
0
1
0
YM 1
Insert P-Mute by pin YM, and analog RGB-IN by Ys3.
Ys1/Ys2 blends OSD-IN and main halftone signal.
Analog RGB-IN > P-Mute
Blue background process is executed on main signal by BUS.
0
1
1
BB
Insert P-Mute by pin YM, analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2
Analog RGB-IN > P-Mute
Full-screen-mute process is executed on main signal by BUS.
1
0
0
P-MUTE 1
Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.
Analog RGB-IN > P-Mute
Full-screen-halftone process is executed on main signal by BUS.
1
0
1
YM 2
Insert P-Mute by pin YM, and analog RGB-IN by Ys3.
Ys1/Ys2 blends OSD-IN and main halftone signal
P-Mute > Analog RGB-IN
Full-screen-mute process is executed on main signal and analog RGB-IN by
BUS.
1
1
0
P-MUTE 2
Insert OSD-IN by Ys1/Ys2.
P-Mute > Analog RGB-IN
P-Mute and halftone process is executed on the main signal by pin YM.
1
1
1
NORMAL 2
Analog RGB-IN is inserted by Ys3, and OSD-IN by Ys1/Ys2.
P-Mute > Analog RGB-IN
Output priority;
(000)~(100): Main signal < BB < P-MUTE < RGB-IN < OSD-IN
(101)~(111): Main signal < BB < RGB-IN < P-MUTE < OSD-IN
20
2003-01-21
TA1360AFG
Appendix 5; DR-R, DR-B/G
DR-R
DR-B/G
Reference Axis
Drive Gain1
Drive Gain2
0
0
R
G
B
0
1
R
G
B
1
0
G
R
B
1
1
B
G
R
Read Function
Signal
Function
Power-on reset:
POR
0: RESISTER PRESET
1: Normal
After power on, 0 is returned at first read; 1, at second and subsequent reads.
IK-IN
Detects IK input; detects input through pin 8.
0: NG (no signal) 1: OK (signal detected)
Detects RGB-OUT self-check; detects output of pins 12, 13, 14.
RGB-OUT
0: NG (no signal) 1: OK (signal detected)
Detects signal when all three outputs hsve signals. Small signals are not detected.
Detects YUV-IN self-check; detects input of pins 60, 61 63 or pins 66, 67, 68.
YUV-IN
0: NG (no signal) 1: OK (signal detected)
Detects signal when all three inputs are AC signals. Small signals or signals like DC voltage are not
detected.
H-OUT
VP-OUT
Detects H-OUT self-check; detects output of pin 37.
0: NG (no signal) 1: OK (signal detected)
Detects VP-OUT self-check; detects output of pin 35.
0: NG (no signal) 1: OK (signal detected)
Detects RGB-IN self-check; detects input of pins 24, 25, 26.
RGB-IN
0: NG (no signal) 1: OK (signal detected)
Detects signal when all three inputs are AC signals. Small signals or signals like DC voltage are not
detected.
SYNC-IN
Detects SYNC-IN self-check; detects input of pin 53.
0: NG (no signal),
1: OK (signal detected)
21
2003-01-21
TA1360AFG
How to Transmit/Receive Via I2C Bus
Slave Address: 88H
A6
A5
A4
A3
A2
A1
A0
W/R
1
0
0
0
1
0
0
0/1
Start and Stop Conditions
SDA
SCL
S
P
Start condition
Stop condition
Bit Transfer
SDA
SCL
SDA must not be changed
SDA may be changed
Acknowledgement
SDA from transmitter
High impedance at bit 9
SDA from receiver
Low impedance only
at bit 9
SCL from master
1
8
9
S
Clock pulse for acknowledgement
22
2003-01-21
TA1360AFG
Data Transmit Format 1
S
Slave address
7 bit
MSB
S: Start condition
0 A
Sub address
8 bit
A
MSB
A: Acknowledgement
Transmit data
9 bit
A P
MSB
P: Stop condition
Data Transmit Format 2
S
Slave address
0 A
Sub address
・・・・・・
A
Transmit data 1
Sub address
A
A
・・・・・・
Transmit data n
A P
Data Receive Format
S
Slave address
7 bit
MSB
1 A
Transmit data 1
8 bit
A
Receive data 2
A P
MSB
To receive data, the master transmitter changes to the receiver immediately after the first acknowledgement.
The slave receiver changes to the transmitter.
The stop condition is always created by the master.
Details are provided in the Philips I2C specifications.
Optional Data Transmit Format
S
Slave address
7 bit
MSB
0 A 1
MSB
Sub address
7 bit
A
Transmit data 1
8 bit
MSB
・・・・
Transmit data n
8 bit
A P
MSB
In this way, sub addresses are automatically incremented from the specified sub address and data are set.
Purchase of TOSHIBA I2C components conveys a license under the Philips I2C Patent Rights to use these
components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by
Philips.
23
2003-01-21
TA1360AFG
Maximum Ratings (Ta = 25°C)
Characteristics
Supply voltage
Input pin signal voltage
Power dissipation
Symbol
Rating
Unit
VCCmax
12
V
einmax
9
Vp-p
2604
mW
20.8
mW/°C
PD (Note 3)
Power dissipation reduction rate
depending on temperature
1/θja
Operating temperature
Topr
Storage temperature
Tstg
Supply voltage (pins 16, 45 and 75)
−20 to 65
−20 to 70
°C
−55 to 150
°C
min
8.7
8.5
typ.
9.0
8.8
max
9.3
9.1
V
Note 3: See the following Figure A. (With device mounted on a PCB whose dimensions are 114.3 mm × 76.2 mm ×
1.6 mm and whose surface is 20% copper. Mount the device on a PCB of at least these dimensions and
whose surface is at least 20% copper.)
When using in −25 to 70°C of operating temperature, set the IC’s power supply voltage (pins 16, 45, 75) to
8.8 V (±0.3 V).
When designing a set, make sure that the IC can radiate heat because the TA1360AFG has low thermal
capacity. Note that the power dissipation varies greatly according to conditions of a board.
Power dissipation PD
(mW)
2604
1771
1667
0
0
25
65 70
150
Ambient temperature Ta (°C)
Figure A Power Dissipation Reduction Curve
24
2003-01-21
TA1360AFG
Note 4: Power supply sequence
At power-on, power should be supplied to the power supply pins according to the following sequence:
2
1. Pin 31 (I L VDD)
2. Pin 45 (DEF/DAC VCC)
3. Pins 16 and 75 (YC VCC/RGB VCC)
Supply power to pin 37 via zener diode through resistor from pin 45. (See “Application Circuit”.)
BUS preset value is become undefined and caused malfunction of the IC unless supplying power to all
supply pins or follow the power supply sequence described above. When the frequency of horizontal output
(pin 37) became undefined, horizontal transistor may be damaged. When the TA1360F is used for CRT,
control horizontal oscillation frequency by pins 41 and 55.
V
DEF/DAC VCC
Horizontal output 6.0 V (typ.)
POR release voltage (BUS operation) 4.6 V (typ.)
I2L VDD
Logic operation 1.3 V (typ.)
t
Figure B
Timing chart that indicates the timing from power-on
till horizontal output. (At Ta = 25 C°°)
25
2003-01-21
TA1360AFG
Operating Conditions
Characteristics
Description
Pin 16, 45, 75
Supply voltage (VCC)
Min
Typ.
Max
Topr = −20 to 65°C
(Note 5)
8.7
9.0
9.3
Topr = −20 to 70°C
(Note 5)
8.5
8.8
9.1
Unit
V
Pin 31
1.8
2.0
2.2
Y input level
Pins 63, 68: 100% color bar, including sync (Picture
period amplitude, 0.7 Vp-p)

1.0

Color-difference input level
Pins 60, 61 66, 67: 100% color bar, not including sync

0.7

HD/VD input level
Pins 50, 52
2.0
5.0
VCC
V
SYNC input level
Pin 53: 100% color bar, including sync
0.9
1.0
1.1
Vp-p
SCP input level
Pin 49
CP
4.2
5.0
VCC
BPP
2.2
2.5
2.8
At 28 k/31 k/33 k/37 kHz
0
0
1.0
At 15 k/31 k/33 k/45 kHz
8.0
VCC
VCC
28.125 kHz or 15.75 kHz
8.0
VCC
VCC
31.5 kHz
5.0
6.0
7.0
33.75 kHz
2.0
3.0
4.0
0
0
1.0
H-AFC
6.5
7.0
VCC
H-BLK
3.0
3.5
4.0
Vp-p
Pin 55
Horizontal frequency switching
voltage
V
Pin 41
37.9 kHz or 45 kHz
FBP input level
Pin 39
FBP input width
Pin 39
0.16

0.3
H-OUT input current
Pin 37

9.0
15.0
DAC input current
Pins 23, 34

0.3
1.0
SCL/SDA pull-up voltage
Pins 28, 30
3.3
5.0
VCC
V
SDA input current
Pin 28


2
mA
Analog RGB input level
Pins 24, 25, 26: White 100%

0.7

Analog OSD input level
Pins 18, 19, 21: White 100%

0.7

YS3 switching voltage
Pin 2
1.5
5.0
VCC
OSD
2.9
5.0
YS1/2 switching voltage
Pins 1, 80
VCC
VSM MUTE
1.1
1.5
1.7
BLK
7.0
VCC
VCC
P-MUTE
2.7
3.5
4.0
HALF TONE
1.2
1.5
1.8
0.78

1
H
mA
Vp-p
V
YM switching voltage
External V-BLK input current
Pin 79
Pin 35
mA
Note 5: See “Maximum Ratings” about Topr.
Electrical Characteristics (unless otherwise specified, VCC = 9 V/2 V, Ta = 25°C)
Current Dissipation
Symbol
Test
Circuit
Min
Typ.
Max
DEF/DAC VCC (9 V)
ICC1

19.2
24.0
28.2
RGB VCC (9 V)
ICC2

48.8
61.0
67.8
I L VDD (2 V)
ICC3

21.3
25.0
29.4
Y/C VCC (9 V)
ICC4

36.8
46.0
51.1
Pin Name
2
26
Unit
mA
2003-01-21
TA1360AFG
Pin Voltage
Test Condition
(1)
(2)
BUS = Preset
SW71 = B, SW70 = B, SW68 = C, SW67 = B, SW66 = B, SW64 = B, SW63 = B, SW60 to 61 = B,
SW53 = B, SW44 = ON, SW40 = B, SW39 = A, SW37 = A, SW24 to 26 = A, SW21 = A, SW18~19 = A,
SW77 = OFF, SW74 = ON
Pin No.
Pin Name
Symbol
Test
Circuit
Min
Typ.
Max
1
YS2
V1


0.1
0.2
2
YS3
V2


0.1
0.2
4
R S/H
V4

4.2
5.2
6.2
6
G S/H
V6

4.2
5.2
6.2
7
B S/H
V7

4.2
5.2
6.2
18
ANALOG OSD R IN
V18

3.65
3.95
4.25
19
ANALOG OSD G IN
V19

3.65
3.95
4.25
21
ANALOG OSD B IN
V21

3.65
3.95
4.25
24
ANALOG R IN
V24

3.65
3.95
4.25
25
ANALOG G IN
V25

3.65
3.95
4.25
26
ANALOG B IN
V26

3.65
3.95
4.25
40
H CURVE CORRECTION
V40

2.2
2.5
2.8
42
HVCO
V42

4.4
5.0
5.6
44
AFC FILTER
V44

5.4
6.2
7.0
49
CP IN
V49


0
0.3
50
HD IN
V50


0
0.3
52
VD IN
V52


0
0.3
53
SYNC IN
V53

1.8
2.1
2.4
57
VSM FILTER
V57

7.5
7.7
7.9
58
COLOR LIMITER
V58

6.65
6.9
7.15
60
Cr/Pr2 IN
V60

4.7
5.0
5.3
61
Cb/Pb2 IN
V61

4.7
5.0
5.3
63
Y2 IN
V63

4.7
5.0
5.3
64
LIGHT AREA DET FILTER
V64


0.09
0.15
66
Cr/Pr1 IN
V66

4.7
5.0
5.3
67
Cb/Pb1 IN
V67

4.7
5.0
5.3
68
Y1 IN
V68

4.7
5.0
5.3
70
BPH FILTER
V70

5.5
5.8
6.1
71
DARK AREA DET FILTER
V71


0.09
0.15
74
APL FILTER
V74

4.8
5.0
5.2
77
VSM OUT
V77

4.1
4.3
4.5
78
ABCL IN
V78

6.1
6.35
6.6
79
YM
V79


0.1
0.2
80
YS1
V80


0.1
0.2
27
Unit
V
2003-01-21
TA1360AFG
Picture Quality (Sharpness) Block
Characteristics
Y input dynamic range
Black detection level shift
Black stretch amp maximum gain
Black stretch start point 1
Black stretch start point 2
Black stretch characteristic switch
Black stretch area reinforcement
current
D.ABL detection voltage
D.ABL sensitivity
Black level correction
Dark area Yγ correction point
Dark area dynamic Yγ gain
Dark area static Yγ gain
Light area Yγ correction point
Light area dynamic Yγ gain
Light area static Yγ gain
Dark area detection sensitivity
DC restoration rate
DC restoration point
DC restoration limit
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
DRY


0.7
1.0
1.5
Vp-p
VB

−15
10
15
VB3

35
45
55
2.4
2.8
3.2
20
25
35
50
55
60
0
5
10
14
21
30
(Note P01)
mV
GBS

PBST1

PBST2

PBS1

PBS2

PBSC1

26
28
30
PBSC2

−8
−6
−4
PBSC3

26
28
30
PBSC4

−5.5
−3
−1
PBSC5

26
28
30
PBSC6

−3.5
−2
−0.5
IBSA

13
18
23
DV01

80
120
160
DV10

240
280
320
DV11

380
420
460
SDAMIN


0.01
0.02
SDAMAX

0.25
0.28
0.31
BLC

(Note P09)
4.5
6.5
8.5
IRE
PDGP

(Note P10)
25
28
33
IRE
GDDGMAX

(Note P11)
5.5
6
6.5
dB
GDSGMIN

GDSGMAX

LPG

GLDG

GLSGMIN

GLSGMAX

DAMIN

DACEN

DAMAX
(Note P02)
(Note P03)
IRE
(Note P04)
(Note P05)
(Note P06)
(Note P07)
(Note P08)
dB
IRE
IRE
µA
mV
V/V
−6.5
−5
−4
2
2.4
2.6
(Note P13)
64
74
80
IRE
(Note P14)
1.1
1.7
2.3
dB
0.3
0.6
0.9
1.4
1.7
2.3
0.25
0.3
0.37
0.88
0.98
1.08

0.95
1.05
1.15
ADT100

0.9
1.1
1.2
ADT135

1.2
1.35
1.5
ADT65

0.55
0.70
0.85
VDT0

−5
0
5
VDT1

47
49
55
PDTL60

64
67
70
PDTL75

74
77
80
PDTL87

74
80
82
PDTL100

74
80
82
(Note P12)
(Note P15)
(Note P16)
(Note P17)
(Note P18)
dB
V
times
%
(Note P19)
28
dB
%
2003-01-21
TA1360AFG
Characteristics
Sharpness control peak frequency
DC fluctuation at switching sharpness
control peak frequency
Sharpness control range
Sharpness control center
characteristic
2T pulse response SRT control
VSM peak frequency
VSM gain
VSM mute threshold voltage
VSM limit
Y input to R output delay time
Y delay time switch
Y group delay correction
Symbol
Test
Circuit
FAP00

FAP01

FAP10

FAP11

VRDC

GMAX00
Test Condition
Min
Typ.
Max
10.5
13.5
17
7
9.5
12
5
7.2
7.8
3.5
4.5
6.3

0.01
0.02

15
17.5
19
GMIN00

−4
−0.6
2.5
GMAX01

15
17.5
19
GMIN01

−5
−0.3
2.5
GMAX10

15
17.5
19
GMIN10

−7
−2.5
1.5
GMAX11

15
17.5
19
GMIN11

−12
−5
0
GCEN00

7
10
13
GCEN01

7
10
13
GCEN10

7
10
13

MHz
(Note P20)
(Note P21)
dB
GCEN11

7
10
13
TSRT00

0.9
1.6
2.7
TSRT01

3.5
4.8
7.1
TSRT10

6.7
8.5
11.3
TSRT11

11.5
12.5
15.5
FVSM

19
19.5
25.5
GV000


−40
−35
GV001

−2
−1.2
−0.4
GV010

3.7
4.6
5.5
GV011

7.1
8.2
9.3
GV100

8.9
10.5
12.1
GV101

11.4
12.6
13.8
GV110

13.5
14.4
15.3
GV111

14.8
15.7
16.6
VSR1

0.62
0.78
0.85
VSR2

0.62
0.78
0.85
VSR580

0.62
0.78
0.85
VLU

0.55
0.66
0.75
VLD

0.55
0.66
0.75
TYR

110
125
140
YDLA

3
5
10
YDLB

7
10
15
YDLC

10
15
25
GAMIN

−4
−2.5
−1
GBMIN

2.5
3
3.5
GAMAX

1
1.7
2.4
GBMAX

−5
−4
−2
(Note P23)

dB
(Note P24)
Pins 1, 2, 80
(Note P26)
MHz
dB
(Note P25)

V
dB
(Note P22)
V
Vp-p
(Note P27)
29
Unit
ns
ns
dB
2003-01-21
TA1360AFG
Characteristics
Color detail enhancer
Y detail frequency
Y detail control range
Symbol
Test
Circuit
GCDE00

GCDE01

GCDE10

GCDE11

FYD

GYDMAX

GYDCEN

GYDMIN

Test Condition
(Note P28)

(Note P29)
30
Min
Typ.
Max
9
10
11
9
10
11
9
10
11
9
10
11
4
5
6
11
13
15
8
10
12
3
5
7
Unit
dB
MHz
dB
2003-01-21
TA1360AFG
Color Difference Block 1: YUV input and matrix
Characteristics
Color difference input dynamic range
Color difference tint control
characteristic
Color SRT peak frequency
Color SRT gain
Cb1 input to B output delay time
Cr1 input to R output delay time
Dynamic Y/C compensation
YUV gain
Symbol
Test
Circuit
DRB

DRR

TRMAX

Test Condition

Min
Typ.
Max
0.7
0.9
1.0
0.7
0.9
1.0
25
29
33
−37
−33
−29
27
31
35
Unit
Vp-p
TRMIN

TBMAX

TBMIN

−36
−32
−28
FB00

3.6
4.5
5.4
FB01

4.6
5.8
7.0
FR00

3.6
4.5
5.4
FR01

4.6
5.8
7.0
GSB00CEN

1.5
2.8
4.1
GSB00MAX

2.9
4.2
5.5
GSB01CEN

2.0
3.3
4.6
GSB01MAX

3.5
4.8
6.1
GSR00CEN

3.4
4.7
6.0
GSR00MAX

5.4
6.7
7.0
GSR01CEN

3.1
4.4
5.7
GSR01MAX

5.2
6.5
7.8
TB


130
155
185
ns

130
155
185
ns
1.8
2.25
2.7
−1.65
−1.2
−0.75
1.8
2.25
2.7


MHz
(Note S01)
dB
TR

GCBDY1

GCBDY2

GCRDY1

GCRDY2

−1.65
−1.2
−0.75
GY00

2.4
3.4
4.4
GY01

2.4
3.4
4.4
GCBB

9.5
11.0
12.5
GPBB

9.9
11.4
12.9
GPBR

−18.0
−16.0
−14.0
GCRR

9.5
11.0
12.5
GPRB

−15.0
−13.5
−12.0
GPRR

10.0
11.5
13.0
(Note S02)
(Note S03)
31
°
dB
dB
2003-01-21
TA1360AFG
Characteristics
Green stretch
Symbol
Test
Circuit
GrA01
Test Condition
Min
Typ.
Max

0.98
1
1.02
GrA10

0.95
1
1.05
GrA11

0.93
1
1.07
GrB01

1.01
1.05
1.10
GrB10

1.05
1.1
1.15
GrB11

1.12
1.19
1.26
GrC01

1.10
1.14
1.18
GrC10

1.23
1.27
1.31
GrC11

1.35
1.42
1.49
GrD01

1.09
1.13
1.17
GrD10

1.21
1.25
1.29
GrD11

1.32
1.39
1.46
GrE01

0.98
1
1.02
GrE10

0.95
1
1.05
GrE11

0.93
1
1.07
(Note S04)
32
Unit
times
2003-01-21
TA1360AFG
Color Difference Block 2
Characteristics
Color difference contrast adjustment
characteristic
Color adjustment characteristic
R-Y relative phase and amplitude
G-Y relative phase and amplitude
Color difference halftone
characteristic
Color γ characteristic
Color limiter characteristic
High-bright color gain
Symbol
Test
Circuit
∆VuCY

∆vcCY+

∆vcCY−

θRMAX
Test Condition
Min
Typ.
Max
Unit
14.5
16.0
17.5
dB
3.0
4.0
5.0
−35
−22
−17

109
111.5
114
θRCNT

98.5
101
103.5
θRMIN

88
90
92
VR/VBMAX

0.86
0.90
0.94
VR/VBCNT

0.65
0.69
0.73
VR/VBMIN

0.42
0.45
0.49
θGMAX

251
254
257
θGCNT

244
247
250
θGMIN

229
232
235
VG/vBMAX

0.43
0.48
0.53
VG/vBCNT

0.33
0.37
0.41
VG/vBMIN

0.22
0.25
0.28
GHTRY

0.47
0.50
0.53
GHTGY

0.47
0.50
0.53
GHTBY

0.47
0.50
0.53
Vγ1

0.09
0.23
0.37
Vγ2

0.26
0.40
0.54
Vγ3

0.44
0.58
0.72
∆γ

0.60
0.70
0.80
CLT0

1.45
1.65
1.85
CLT1

1.80
2.00
2.20
HBC1

0.02
0.04
0.06
(Note A01)
(Note A02)


(Note A03)
dB
°
times
°
times
times
Vp-p
(Note A04)
(Note A05)
(Note A06)
33

Vp-p
times
2003-01-21
TA1360AFG
Text Block
Symbol
Test
Circuit
GR

GG

GB

GG/R

GB/R

GfR

GfG

GfB

Frequency characteristic
(Cb1/Cr1in~R/G/B out)
GfCb

GfCr

Unicolor adjustment characteristic
∆Vu

VbrMAX

VbrCNT

VbrMIN

Vwps1

Vwps2

Vbps

N12

N13

Characteristics
AC gain (Y1in~R/G/B out)
AC gain axis difference
Frequency characteristic
(Y1in~R/G/B out)
Brightness adjustment characteristic
White peak slice level
Black peak slice level
RGB output S/N
Halftone characteristic
Halftone on voltage
V-BLK pulse output level
H-BLK pulse output level
BLK pulse delay time
Sub-contrast variable range
RGB output voltage 3-axis difference
(Note T01)

At −3dB, sharpness
characteristic is flat

(Note T02)
(Note T03)
Min
Typ.
Max
3.08
3.45
3.90
3.08
3.45
3.90
3.08
3.45
3.90
0.94
1.00
1.06
0.94
1.00
1.06
30
60

30
60

30
60

10
12.5

10
12.5

15.0
16.0
17.0
4.10
4.45
4.80
3.05
3.40
3.75
1.95
2.30
2.65
2.20
2.32
2.44
2.59
2.74
2.89
(Note T05)
1.15
1.35
1.45
(Note T06)

−52
−46

−52
−46
N14


−52
−46

0.45
0.50
0.55
GHT2

0.45
0.50
0.55
VHT

0.65
0.85
1.05
VVR

0.30
0.80
1.30
VVG

0.30
0.80
1.30
VVB

0.30
0.80
1.30
VHR

0.30
0.80
1.30
VHG

0.30
0.80
1.30
VHB

0.30
0.80
1.30
tdON


0.00
0.30
tdOFF


0.08
0.30
∆vsu+

1.95
2.45
2.95
∆vsu−

−3.8
−3.3
−2.8
CUT+

0.42
0.47
0.52
CUT−

0.42
0.47
0.52
∆V#12

2.05
2.30
2.55
∆V#13

2.05
2.30
2.55
∆V#14

2.05
2.30
2.55
∆VOUT


0
150
(Note T07)
Pin 79


(Note T08)




34
Unit
times
MHz
MHz
dB
V
Vp-p
(Note T04)
GHT1
Cut-off voltage variable range
RGB output voltage
Test Condition
V
dB
times
V
V
V
µs
dB
V
V
mV
2003-01-21
TA1360AFG
Characteristics
Drive adjustment variable range
Output voltage at P-mute
P-mute ON voltage
Output voltage at blue background
Input impedance of #78
ACL characteristic
ABL point
ABL gain
Symbol
Test
Circuit
DRR1+
Test Condition
Min
Typ.
Max

2.5
3.0
3.5
DRR1−

−5.5
−5.0
−4.5
DRR2+

2.5
3.0
3.5
Unit
DRR2−

−5.5
−5.0
−4.5
DRG1+

2.5
3.0
3.5
DRG1−

−5.5
−5.0
−4.5
DRG2+

2.5
3.0
3.5
DRG2−

−5.5
−5.0
−4.5
DRG3+

2.5
3.0
3.5
DRG3−

−5.5
−5.0
−4.5
DRB1+

2.5
3.0
3.5
DRB1−

−5.5
−5.0
−4.5
DRB2+

2.5
3.0
3.5
DRB2−

−5.5
−5.0
−4.5
DRB3+

2.5
3.0
3.5
DRB3−

−5.5
−5.0
−4.5
MURD

1.7
1.85
2.0
MUGD

1.7
1.85
2.0
MUBD

1.7
1.85
2.0
VMUTE

1.90
2.15
2.40
BBR

1.0
1.2
1.4
BBG

1.0
1.2
1.4
BBB

1.1
1.25
1.4
Vp-p
Zin

24
30
36
kΩ
ACL1

−6.5
−4.5
−2.5
ACL2

−15.0
−13.5
−11.0
ABLP1

−0.21
−0.16
−0.11
ABLP2

−0.28
−0.23
−0.18
ABLP3

−0.37
−0.32
−0.27
ABLP4

−0.45
−0.40
−0.35
ABLP5

−0.54
−0.49
−0.44
ABLP6

−0.62
−0.57
−0.52
ABLP7

−0.70
−0.65
−0.60
ABLP8

−0.75
−0.70
−0.65
ABLG1

−0.06
−0.02
0.00
ABLG2

−0.17
−0.12
−0.07
ABLG3

−0.34
−0.29
−0.24
ABLG4

−0.52
−0.47
−0.42
ABLG5

−0.68
−0.63
−0.59
ABLG6

−0.85
−0.80
−0.75
ABLG7

−1.01
−0.96
−0.91
ABLG8

−1.09
−1.04
−0.99
(Note T09)

Pin 79
V
V
V

(Note T10)
(Note T11)
(Note T12)
(Note T13)
35
dB
dB
V
V
2003-01-21
TA1360AFG
Characteristics
RGB output mode
Y-OUT γ characteristic
White-peak blue characteristic
Forced BLK input threshold voltage
ACB insertion pulse phase and
amplitude
IK input amplitude
IK input cover range
Symbol
Test
Circuit
V12R
Test Condition
Min
Typ.
Max

2.15
2.40
2.65
V13R

0.30
0.80
1.30
V14R

0.30
0.80
1.30
V12G

0.30
0.80
1.30
V13G

2.15
2.40
2.65
V14G

0.30
0.80
1.30
V12B

0.30
0.80
1.30
V13B

0.30
0.80
1.30
V14B

2.15
2.40
2.65
γ1

56
66
76
γ2

72
82
92
∆1

0.49
1.24
1.99
∆2

−1.67
−0.92
−0.17
∆3

−4.59
−3.84
−3.09
BSPmin

37
42
47
BSPcnt

72
77
82
BSPmax

101
106
111
BSGmin

2.1
3.1
4.1
BSGcnt

6.4
7.4
8.4
BSGmax

VBLKIN

θACBR
(Note T14)
Unit
V
IRE
(Note T15)
dB
IRE
(Note T16)
9
10
11
5.1
5.6
6.1


1

θACBG


2

θACBB


3

VACB1R

0.15
0.20
0.25
VACB1G

0.15
0.20
0.25
VACB1B

0.15
0.20
0.25
VACB2R

0.27
0.32
0.37
VACB2G

0.27
0.32
0.37
VACB2B

0.27
0.32
0.37
VACB3R

0.52
0.57
0.62
VACB3G

0.52
0.57
0.62
VACB3B

0.52
0.57
0.62
IKR

0.73
0.93
1.13
IKG

0.73
0.93
1.13
Pin 79
dB
V
H
(Note T17)
(Note T18)
IKB

0.73
0.93
1.13
DIKin+

3.00
3.30
3.60
DIKin−

−0.50
−0.30
−0.10
(Note T19)
36
Vp-p
Vp-p
V
2003-01-21
TA1360AFG
Characteristics
Analog RGB gain
Analog RGB gain 3-axis difference
Analog RGB frequency characteristic
Analog RGB input dynamic range
Analog RGB white peak slice level
Analog RGB black peak limit level
RGB contrast adjustment
characteristic
Analog RGB bright adjustment
characteristic
Analog RGB mode switching voltage
Analog RGB mode switching transfer
characteristic
Text ACL characteristic
Analog OSD gain
Analog OSD gain 3-axis difference
Analog OSD frequency characteristic
Analog OSD input dynamic range
Symbol
Test
Circuit
GTXR

GTXG

GTXB

GTXG/R

GTXB/R

GfTXR

GfTXG

GfTXB
Test Condition
(Note T20)
Min
Typ.
Max
3.03
3.40
3.83
3.03
3.40
3.83
3.03
3.40
3.83
0.94
1.00
1.06
0.94
1.00
1.06
30
35

30
35


30
35

DR24

0.80
1.20
1.50
DR25

0.80
1.20
1.50
DR26

0.80
1.20
1.50
TXVWPSR

2.45
2.70
2.95
TXVWPSG

2.45
2.70
2.95
TXVWPSB

2.45
2.70
2.95
VBPSR

1.15
1.30
1.45
VBPSG

1.15
1.30
1.45
VBPSB

1.15
1.30
1.45
∆vuTXR

15.5
16.5
18.5
∆vuTXG

15.5
16.5
18.5

At −3dB

(Note T21)
(Note T22)
(Note T23)
∆vuTXB

15.5
16.5
18.5
VbrTXmax

3.0
3.2
3.4
VbrTXcnt

2.6
2.8
3.0
VbrTXmin

2.1
2.3
2.5
VTXON

0.65
0.85
1.05
τRYS


15
50
tPRYS


20
50
∆tRYS


0
10
τFYS


10
50
tPRYS


30
50
∆tRYS


0
10
TXACL1

−6.7
−4.7
−2.7
TXACL2

−16.5
−14.5
−12.5
GOSDR

2.95
3.30
3.70
GOSDG

2.95
3.30
3.70
GOSDB

2.95
3.30
3.70
GOSDG/R

GOSDB/R

GfOSDR

GfOSDG

GfOSDB
(Note T24)
Pin 2
(Note T25)
(Note T26)
(Note T27)
0.94
1.00
1.06
1.00
1.06
35
40

35
40


35
40

DR18

0.80
1.20
1.50
DR19

0.80
1.20
1.50
DR21

0.80
1.20
1.50
At −3dB

37
times

MHz
Vp-p
Vp-p
V
dB
V
V
ns
0.94

Unit
dB
times

MHz
Vp-p
2003-01-21
TA1360AFG
Characteristics
Analog OSD input white peak slice
level
Analog OSD black peak limit level
OSD contrast adjustment
characteristic
Analog OSD bright adjustment
characteristic
Analog OSD mode switching voltage
Analog OSD mode switching transfer
characteristic
OSD ACL characteristic
Symbol
Test
Circuit
OSDVWPSR

OSDVWPSG

OSDVWPSB

Test Condition
(Note T28)
Min
Typ.
Max
2.45
2.70
2.95
2.45
2.70
2.95
2.45
2.70
2.95
1.30
1.45
1.60
1.30
1.45
1.60
OSDVBPSR

OSDVBPSG

OSDVBPSB

1.30
1.45
1.60
VUOSDR11

0.58
0.64
0.71
VUOSDG11

0.58
0.64
0.71
VUOSDB11

0.58
0.64
0.71
VUOSDR10

0.47
0.53
0.59
VUOSDG10

0.47
0.53
0.59
VUOSDB10

0.47
0.53
0.59
VUOSDR01

0.31
0.37
0.45
VUOSDG01

0.31
0.37
0.45
VUOSDB01

0.31
0.37
0.45
VUOSDR00

0.19
0.22
0.24
VUOSDG00

0.19
0.22
0.24
VUOSDB00

0.19
0.22
0.24
VbrOSD0

2.20
2.40
2.60
VbrOSD1

2.05
2.25
2.45
VbrOSD2

1.95
2.15
2.35
VbrOSD3

1.80
2.00
2.20
(Note T29)
Unit
Vp-p
V
Vp-p
(Note T30)
V
(Note T31)
VOSDON1

Pin 80
2.05
2.30
2.55
VOSDON2

Pin 1
2.05
2.30
2.55
V
τRYS1


15
50
tPRYS1


20
50
∆tPRYS1


0
10
τFYS1


10
50
tPRYS1


30
50
∆tPRYS1


0
10
τRYS2


15
50
tPRYS2


20
50
∆tPRYS2


0
10
τFYS2


10
50
tPRYS2


30
50
(Note T32)
ns
∆tPRYS2


0
10
OSDACL1


0.00

OSDACL2


0.00

OSDACL3

−6.7
−4.7
−2.7
OSDACL4

−16.5
−14.5
−12.5
(Note T33)
38
dB
2003-01-21
TA1360AFG
Characteristics
Test
Circuit
α41TV1
Min
Typ.
Max

−7
−6
−5
α42TV1

−7
−6
−5
α43TV1

−7
−6
−5
α41TV2

−4
−3
−2
α42TV2

−4
−3
−2
α43TV2

−4
−3
−2
α41TV3


−55
−50
α42TV3


−55
−50
α43TV3


−55
−50
α41OSD1

−6.5
−5.5
−4.5
α42OSD1

−6.5
−5.5
−4.5
α43OSD1

−6.5
−5.5
−4.5
α41OSD2

−12.0
−10.5
−9.0
α42OSD2

−12.0
−10.5
−9.0
α43OSD2

−12.0
−10.5
−9.0
α41OSD3


−40
−30
α42OSD3


−40
−30
α43OSD3


−40
−30
Y → RGB input
VV → A


−50
−45
Y → OSD input
VV → O


−55
−45
RGB input → Y
VA → V


−50
−45
RGB input →
OSD input
VA → O


−50
−45
OSD input → Y
VO → V


−45
−40
OSD input →
RGB input
VO → A


−50
−45
RGB input in
three axes



−50
−40
OSD input in
three axes



−50
−40
BLPmin

23
28
33
BLPmax

55
60
65
BLGmin

2.4
2.9
3.4
BLGmax

5.4
6.4
7.4
BLγ1

84
89
94
BLγ2

89
94
99
93
98
103
98
103
108
16
21
25
51
56
61
97
102
107
OSD blending characteristic
Input crosstalk
Symbol
Blue stretch point/gain
Blue stretch γ correction
White letters improvement
BLγ3

BLγ4

WPL1

WPL2

WPL3

Test Condition
(Note T34)
Input: Signal 1
(fo = 4 MHz,
Amplitude 0.7 Vp-p)
Input: Signal 1
(fo = 1 MHz,
Amplitude 0.7 Vp-p)
Unit
dB
dB
IRE
(Note T35)
dB
(Note T36)
(Note T37)
39
IRE
Vp-p
2003-01-21
TA1360AFG
Sync Block
Characteristics
Symbol
Test
Circuit
SPH

HDPH

HDDUTY1

HDDUTY2

HDDUTY3

HDDUTY4
Min
Typ.
Max
Unit
(Note HA01)
0.55
0.65
0.75
µs
(Note HA02)
0.58
0.68
0.78
µs

0.5
2.0
62
67
72

99.5
98

47.5
52.5
57.5
VthS00

10
16
22
VthS01

18
24
30
VthS10

26
32
38
VthS11

34
40
46
VthHD

0.65
0.75
0.85
∆HSFT−

11
12.5
14
∆HSFT+

11
12.5
14
Horizontal picture position (phase)
shift switching amount
HSFT

5.2
6.7
9.2
%
Curve correction variable amount
∆H#40

2.9
3.4
3.9
%
CPS0

3.1
3.8
4.5
CPW0

2.0
2.5
3.0
CPV0

4.7
5.0
5.3
CPS1

0
0.7
1.5
CPW1

1.9
2.4
2.9
CPV1

4.7
5.0
5.3
CPS2

3.2
4.2
5.2
CPW2

2.2
2.7
3.2
Sync input horizontal sync phase
HD input horizontal sync phase
Polarity detecting rage
Sync input threshold amplitude
HD input threshold voltage
Horizontal picture position (phase)
adjustment variable range
Clamp pulse phase/width/level
Test Condition
(Note HA03)
%
%
(Note HA04)
(Note HA05)
(Note HA06)

(Note HA07)
Vp-p
%
%
V
%
(Note HA08)
V
%
CPV2

4.7
5.0
5.3
HBPS00a

1.2
3.0
5.9
HBPS00b

1.2
3.0
5.9
HBPS01a

6.0
8.0
11.0
HBPS01b

6.0
8.0
11.0
HBPs10a

10.0
13.0
15.0
HBPs10b

10.0
13.0
15.0
HBPs11a

16.0
18.0
21.0
HBPs11b

16.0
18.0
21.0
FBP threshold
VthFBP

4.8
5.3
5.8
V
HVCO oscillation start voltage
VVCO

Pin 42: Monitor, VCC voltage
3.0
4.0
5.0
V
H-OUT start voltage
VHON

Pin 37: Monitor, VCC voltage
5.0
6.0
7.0
V
H-OUT stop voltage
VHOFF

Pin 37: Monitor, VCC voltage
4.3
5.3
6.3
V
THA

38
41
43
THB

44
47
49
Black peak detection pulse phase
H-OUT pulse duty
(Note HA09)
(Note HA10)
%
(Note HB01)
40
V
%
2003-01-21
TA1360AFG
Characteristics
Horizontal free-run frequency
Horizontal oscillation frequency
variable range
Horizontal oscillation control
sensitivity
Min
Typ.
Max

15.59
15.75
15.91
F28K

27.90
28.125
28.35
F31K

31.19
31.5
31.82
F33K

33.41
33.75
34.09
F37K

37.60
37.9
38.40
F45K

44.52
45.0
45.48
F15KMIN

14.78
15.08
15.38
F15KMAX

16.37
16.70
17.03
F28KMIN

26.00
26.90
27.80
F28KMAX

28.90
29.70
30.60
F31KMIN

29.47
30.06
30.65
F31KMAX

32.72
33.39
34.06
F33KMIN

31.41
31.94
32.57
F33KMAX

34.91
35.62
36.33
F37KMIN

36.50
37.30
38.20
F37KMAX

40.20
41.10
42.10
F45KMIN

43.20
44.00
44.80
F45KMAX

47.85
48.65
49.45
BH15K

176
220
264
BH28K

320
400
480
BH31K

352
440
528
376
470
564
(Note HB02)
Hz/0.1 V (Note HB04)

390
480
570
BH45K

520
650
780
VHOH

4.8
5.1
5.2
VHOL


0.1
0.3
VfHSW1

1.7
2.0
2.3
VfHSW2L

1.3
1.5
1.7
VfHSW2M

4.3
4.5
4.7
VfHSW2H

7.3
7.5
7.7
VDAC1H

TEST = (00), DAC1 = (0)
8.5
9.0

VDAC1L

TEST = (00), DAC1 = (1)

0.3
0.7
VDAC2H

TEST = (00), DAC2 = (1)
8.5
9.0

VDAC2L

TEST = (00), DAC2 = (0)

0.3
0.7
VPW

4
4.5
5
000
VPt0

1278
1281
1284
001
VPt1

846
849
852
010
VPt2

722
725
728
011
VPt3

657
660
663
100
VPt4

610
613
616
101
VPt5

360
363
366
110
VPt6

304
307
310
TVPULL

47
48
49
Pin 41
DAC switch voltage
DAC2
VP output pulse width
(Note HB05)

kHz

V
V
(Note V01)

(Note V02)
41
Unit
kHz
(Note HB03)
BH37K
DAC1
Vertical minimum pull-in range
F15K
Test Condition

Pin 55
Vertical free-run
(maximum pull-in range)
Test
Circuit
BH33K
H-OUT output voltage
Horizontal oscillation
frequency control voltage
threshold
Symbol
V
H
H
H
2003-01-21
TA1360AFG
Characteristics
000
001
010
Vertical black peak detection
pulse
011
100
101
110
Vertical blanking end phase
High
VP output voltage
Low
Symbol
Test
Circuit
VBPP0E

VBPP0S

VBPP1E

51
52
53
001
010
Compression BLK 1
(start phase)
011
100
101
110
Min
Typ.
Max
51
52
53
Unit
1099.5 1100.5 1101.5
VBPP1S

729.5
730.5
731.5
VBPP2E

49.5
50.5
51.5
VBPP2S

599.5
600.5
601.5
VBPP3E

49.5
50.5
51.5
VBPP3S

544.5
545.5
546.5
VBPP4E

51
52
53
VBPP4S

499.5
500.5
501.5
VBPP5E

51
52
53
VBPP5S

289.5
290.5
291.5
VBPP6E

51
52
53
VBPP6S

239.5
240.5
241.5
VBLKMIN

15
16
17
VBLKMAX

45
46
47
VVPH

4.6
5.0
5.4
VVPL


0.1
0.5
15.75 kHz

10.0
11.6
13.4
28.125 kHz

5.4
6.4
8.8
31.5 kHz

4.8
5.8
7.6
33.75 kHz

4.4
5.4
7.2
37.9 kHz

3.9
4.8
6.6
45 kHz

3.1
4.1
5.9
CBLK1000min

1087
1088
1089
CBLK1000max

1117
1118
1119
CBLK1001min

719
720
721
CBLK1001max

749
750
751
CBLK1010min

591
592
593
CBLK1010max

621
622
623
CBLK1011min

527
528
529
CBLK1011max

557
558
559
CBLK1100min

487
488
489
CBLK1100max

517
518
519
CBLK1101min

279
280
281
CBLK1101max

309
310
311
CBLK1110min

223
224
225
CBLK1110max

253
254
255
SYNC input to VP output delay time
000
Test Condition
(Note V03)
H
(Note V04)
pin 35 voltage


42
H
V
µs
H
2003-01-21
TA1360AFG
Characteristics
000
001
010
Compression BLK 2
(end phase)
011
100
101
110
External V-BLK input current
Symbol
Test
Circuit
CBLK2000min
Test Condition
Min
Typ.
Max

49
50
51
CBLK2000max

77
78
79
CBLK2001min

49
50
51
CBLK2001max

77
78
79
CBLK2010min

49
50
51
CBLK2010max

77
78
79
CBLK2011min

49
50
51
CBLK2011max

77
78
79
CBLK2100min

49
50
51
CBLK2100max

77
78
79
CBLK2101min

49
50
51
CBLK2101max

77
78
79
CBLK2110min

49
50
51
CBLK2110max

77
78
79
IEXTBLK

520
625
780

Pin 35 input current
43
Unit
H
µA
2003-01-21
TA1360AFG
Test Condition for Picture Quality (Sharpness) Block
Common Test Condition for Picture Quality (Sharpness) Block
1.
2.
3.
4.
Note No.
SW67 = SW66 = B, SW63 = B, SW60 to SW61 = B, SW44 = ON, SW40 = B, SW18 to SW26 = A, SW77 = OPEN
Send bus control data as preset values, turn ACB operation switching to ACB OFF (00), select Sync input (1), turn P-MODE to Normal 1(000), WPL-LEVEL to
max (111), and change subaddress (1C) to (03).
Input sync signal, which is in sync with input signal for testing except “Sweep”, to #53 (Sync input). “H-Freq.” should be the same frequency as the one of #53.
Set Y/color difference input mode to (0), sync separator level to 20 % (01), and vertical free-running frequency to 307H (110).
Characteristics
SW71
P01
Black detection level shift
B
Test Conditions
SW Mode
SW70 SW68 SW64
C
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1. Connect external power supply PS to #68, and monitor #70 and #74.
2.
Set black stretch point 1 to OFF (000), and black detection level to 0 IRE (1).
3.
Increase PS voltage from 4.95 V in steps of 1 mV. At the moment when #70 picture period (High) drops to
Low level, monitor DC difference on #74 VB.
4.
Set black detection level to 3 IRE (0).
5.
Repeat the step 3 above and monitor DC difference, VB3 on #74.
#74 waveform
VB, VB3
#70 waveform
P02
Black stretch amp maximum
gain
B
A
A
B
OPEN
1.
Set SW70 to A (maximum gain), and input 500-kHz sine wave to TPA.
2.
Adjust signal amplitude to 0.1 Vp-p on #68.
3.
Set black stretch point 1 to OFF (000), and measure #74 amplitude VA.
4.
Set black stretch point 1 to 001 (black stretch ON), and measure #74 amplitude VB.
5.
Calculate GBS using a following equation.
GBS = 20 × log (VB ÷ VA) [dB]
44
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P03
Black stretch start point 1
A
Test Conditions
SW Mode
SW70 SW68 SW64
A
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1.
Set SW70 to A (maximum gain), and black stretch point 1 to OFF (000). Apply 0 V to #71.
2.
Connect external power supply PS to #68, increase voltage from V3, and plot #74 voltage change S1. The
#74 voltage is set as V0 when V3 is applied, and as V100 when V3 + 0.7 V is applied.
3.
Set black stretch point 1 to minimum (001), increase PS voltage from V3, and then plot #74 voltage change
S2.
4.
Set black stretch point to maximum (111), repeat 3 above, then plot #74 voltage change S3.
5.
Determine intersection points of S1, S2 (VBST1), and S3 (VBST2) as shown in the figure below. Also
calculate PBST1 and PBST2 using following equations.
VZ [V] = V100 [V] − V0 [V]
PBST1 [(IRE)] = [(VBST1 [V] − V74 [V]) ÷ VZ] × 100 (IRE)
PBST2 [(IRE)] = [(VBST2 [V] − V74 [V]) ÷ VZ] × 100 (IRE)
#74
S3
VBST2
S1
VBST1
S2
V74
#68
45
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P04
Black stretch start point 2
A
Test Conditions
SW Mode
SW70 SW68 SW64
A
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set black stretch point 1 to OFF (000), apply 0 V to #71, input TG7 LINEARITY to TPA, adjust amplitude on
#68 as shown in the figure below, set unicolor to center (1000000), and measure amplitude of #12 (R OUT),
VP12.
2.
Set black stretch point 1 to 001 (black stretch ON), connect external power supply PS to #74, and monitor
#12 (R OUT).
3.
Set black stretch start point 2 data to minimum (00). When PS is V74 (APL 0%), and V74 + 1.0 V (APL
100%), determine black stretch start point difference ∆V00 as shown in the figure below. (Monitor input
waveform and output waveform with an oscilloscope, adjust the both waveforms to have the same amplitude
(gradient), and compare them to determine the bend point of the output.)
4.
Set black stretchstart point 2 data to maximum (11), determine black stretch start point difference ∆V11.
5.
Calculate following equations.
PBS1 = (∆V00/VP12) × 100
PBS2 = (∆V11/VP12) × 100
LINEARITY
APL 100%
0.7 Vp-p
∆V***
APL 0%
0.3 Vp-p
#68 waveform (linearity)
46
#12 (R OUT)
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P05
Black stretch characteristic
switch
A
Test Conditions
SW Mode
SW70 SW68 SW64
A
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1.
Set SW70 to A (maximum gain), black stretch point 1 (18) to maximum (E0), subaddress (1C) data to (00)
and (1E) data to (08).
2.
Apply 0 V to #71 and connect external power supply PS to #68. Set PS to V68 + 0.7 V, and adjust unicolor so
that DC level of #12 is +1.0 V. Plot voltage change S4 of #12 (voltage in picture period).
3.
Determine intersection points (VBSC1 and VBSC2) of S2 and S4 obtained from the plot in black stretch start
point 1. Then calculate PBSC1 and PBSC2 using following equation.
4.
Set black stretch characteristic switch subaddress data (1C)/(1E) to (20)/(00) and (20)/(08) respectively. As
described in steps 2 and 3, determine intersection points (VBSC3, VBSC4, VBSC5 and VBSC6) and calculate
PBSC3, PBSC4, PBSC5 and PBSC6.
PBSC* = (VBSC* [V] − V12 [V]) ÷ 1.0 × 100 [(IRE)]
#12
VBSC2
V12
V68
S2
V68 + 0.7 V
#68
VBSC1
S4 Black stretch characteristic switch ON
47
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P06
Black stretch area
reinforcement current
B
Test Conditions
SW Mode
SW70 SW68 SW64

C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1. Connect external power supply PS1 to #68.
2. Leave SW70 open, put an ammeter between SW70A and #70, connect external power supply PS2 to SW70A,
set PS1 to 5.7 V, and set PS2 to 5 V.
3. Measure current value IBSA0 and IBSA1 when bus data of black stretch area reinforcement [18] is set to ON
[80] and OFF [81]. Calculate IBSA using the following equation.
IBSA = IBSA0−IBSA1
SW70
A
µ Ammeter
P07
D.ABL detection voltage
B
A
C
B
OPEN
PS2
5V
1.
Set D.ABL sensitivity to maximum (11), and black stretch point 1 to OFF (000).
2.
Connect external power supply PS to #78 and decrease voltage from 6.5 V.
3.
Repeat 2 when D.ABL detection voltage is changed to 00, 01, 10, and 11. At the moment when #74 picture
period changes to Low, measure respective PS voltages V00, V01, V10, and V11.
4.
Calculate voltage differences between V00 and V01 (DV01), between V00 and V10 (DV10), and between V00
and V11 (DV11)
DV*** = V00 − V01 (V10, V11)
#74 undetected
#74 detected
#70 waveform
48
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P08
D.ABL sensitivity
B
Test Conditions
SW Mode
SW70 SW68 SW64
A
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set black stretch point 1 to OFF (000), and connect external power supply to #78.
2.
Set D.ABL detection voltage to minimum (00). Interrelation between #78 voltage and #74 voltage when
D.ABL sensitivity is set to minimum (00) and maximum (11) can be plotted as figure shown below.
3.
Measure gradients SDAMIN and SDAMAX using the figure below.
SDAMIN = ∆Y/∆X SDAMAX = ∆Y/∆X
#74
10%
∆Y
100%
10%
∆X
49
#78
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P09
Black level correction
B
Test Conditions
SW Mode
SW70 SW68 SW64
A
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1.
Set black stretch point 1[18] to OFF (00).
2.
Input signal of 0.7-V picture period amplitude to #68, and measure #12 picture period amplitude VB [V].
3.
Set black level correction [18] to ON [04], determine DC change VBLC [V], and calculate BLC [V] using the
following equation
BLC = (VBLC/VB)] × 100 [(IRE)]
#12
VBLC
VB
Black level correction OFF
Black level correction ON
50
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P10
Dynamic Yγ correction point
A
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1.
Connect external power supply PS1 to #68, PS2 to TP1, and set PS2 to 0 V.
2.
Set dark area dynamic Yγ gain VS dark area to MIN (00), static Yγ gain1 to OFF (000).
3.
Increase PS1 from V68 [V] to V68 [V] + 0.7 V and plot voltage change of #12 picture period. Take 0 for V68
[V] when the change is plotted. (V68 is pin voltage of pin 68)
4.
Set dark area dynamic Yγ gain VS dark area max (11), static Yγ gain1 to max (111) and PS2 to 1.2 V.
5.
Increase PS1 from V68 [V] to V68 [V] + 0.7 V and plot voltage change of #12 picture period.
6.
Measure VDGP by the following figure, and PDGP using the following equation.
DGP = (VDGP [V] − V68 [V])/0.7 [V] × 100
#12 voltage [V]
ON
OFF
V68
51
VDGP
#68 voltage [V]
V68 + 0.7V
(100 IRE)
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P11
Dark area dynamic Yγ gain
A
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1.
Connect external power supply PS1 to #68, external power supply PS2 to TP1, and set PS2 to 0 V.
2.
Set dark area dynamic Yγ gain [1C] to MIN [03], and dark area static Yγ gain [1C] to 0dB [17].
3.
Set PS1 to V68 [V], and measure #12 picture period voltage VDDGV68 [V].
Set PS1 VDGP [V], and measure #12 picture period voltage VDDGMIN [V].
4.
Set dark area dynamic Yγ gain [1C] to MAX [D7], PS2 to 1.2 V, measure voltage VDDGMAX [V] of #12
picture period when PS1 is VDGP [V], and calculate the following equations.
VDDGMAX − VDDGMIN = A
VDDGMIN − VDDGV68 = B
GDDGMAX = 20 log [B/(B-A)] [dB]
#12 voltage [V]
OFF
VDDGMAX
ON
VDDGMAX − VDDGMIN = A
VDDGMIN
VDDGV68
52
V68 VDGP
VDDGMIN − VDDGV68 = B
#68 voltage [V]
V68 + 0.7 V
(100IRE)
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P12
Dark area static Yγ gain
A
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1. Connect external power supply PS1 to #68, external power supply PS2 to TP1, and set PS2 to 0 V.
2. Set dark area dynamic Yγ gain [1C] to MIN [03], and dark area static Yγ gain [1C] to OFF [03].
3. Set PS1 to V68 [V], and measure #12 picture period voltage VSGOFF1 [V].
4. Set PS1 to VDGP [V], and measure #12 picture period voltage VSGOFF2 [V].
5. Set dark area static Yγ gain [1C] to MAX [1F], PS1 to VDGP [V], measure #12 picture period voltage
VSGMAX, and calculate GDSGMAX using the following equations.
VSGMAX − VSGOFF2 = A
VSGOFF2 − VSGOFF1 = B
GDSGMAX = 20 × log [B/(B - A)] [dB]
#12 voltage [V]
OFF
VSGMAX
ON
VSGMAX − VSOFF2 = A
VSGOFF2
VSGOFF1
V68 VDGP
#68 voltage [V]
V68 + 0.7 V
(100IRE)
6. Set dark area static Yγ gain [1C] to MIN [07], PS1 to VDGP [V], measure #12 picture period voltage VSGMIN,
and calculate GDSGMIN using the following equation.
GDSGMIN = 20 × log [(VSGMIN − VSGOFF1)/(VSGOFF2 − VSGOFF1)] [dB]
#12 voltage [V]
OFF
VSGOFF2
VSGMIN
VSGOFF1
53
ON
V68 VDGP
VSGOFF2 − VSGOFF1
VSGMIN − VSGOFF1
#68 voltage [V]
V68 + 0.7 V
(100IRE)
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P13
Light area Yγ correction point
A
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
A
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1. Connect external power supply PS1 to #68, external power supply PS2 to TP1, and set PS2 to 0 V.
2. Set dark area static Yγ gain [1C] to 0dB [17], and bright area static Yγ gain [1C] to 0dB [17].
3. Increase PS1 from V68 [V] to V68 [V] + 0.7 [V], and plot the voltage change of #12 picture period. Take 0 for
V68 [V] when the change is plotted. (V68 is pin voltage of pin 68)
4. Set light area static Yγ gain [1C] to MAX [04].
5. Increase PS1 from V68 [V] to V68 [V] + 0.7 [V], and plot the voltage change of #12 picture period.
6. Measure VLGP using the following figure, and PLGP using the following equation.
LGP = (VLGP [V] − V68 [V])/0.7 [V] × 100 (IRE)
#12 voltage [V]
ON
OFF
V68
54
VLGP
#68 voltage
V68 + 0.7 V
(100IRE)
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P14
Light area dynamic Yγ gain
A
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
A
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1.
Connect external power supply PS1 to #68, external power supply PS2 to TP7, and set PS2 to 1.2 V.
2.
Set dark area static Yγ gain [1C] to 0dB [17], and light area static Yγ gain [1C] to 0dB [17].
3.
Set PS1 to V68 [V], and measure #12 picture period voltage VLDGOFF1.
4.
Set PS1 to VLGP [V], and measure #12 picture period voltage VLDGOFF2.
5.
Set light area static Yγ gain [1C] to MAX [14], PS2 to 0 V, PS1 to VLGP [V], determine #12 picture period
voltage VLDGMAX [V] using the following equations.
VLDGMAX − VLDGOFF2 = A
VLDGOFF2 − VLDGOFF1 = B
GLDG = 20 × log [B/(B − A)]
#12 voltage [V]
VLDGMAX
VLDGMAX − VLDGOFF2 = A
ON
VLDGOFF2
VLDGOFF2 − VLDGOFF1 = B
OFF
VLDGOFF1
55
V68
VLGP
V68 + 0.7 V
(100IRE)
#68 voltage
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P15
Light area static Yγ gain
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
A
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1.
Connect external power supply PS1 to #68, external power supply PS2 to TP7, and set PS2 to 0 V.
2.
Set dark area static Yγ gain [1C] to 0dB [17], and light area static Yγ gain [1C] to 0dB [17].
3.
Set PS1 to V68 [V], and measure #12 picture period voltage VLSGOFF1 [V].
4.
Set PS1 to VLGP [V], and measure #12 picture period voltage VLDGOFF2 [V].
5.
Set light area static Yγ gain [1C] to MAX [14], PS1 to VLGP [V], measure #12 picture period voltage
VlSGMAX, and calculate GLASGMAX [dB] using the following equations.
VLSGMAX − VLSGOFF2 = A
VLSGOFF2 − VLSGOFF1 = B
GLSGMAX = 20 × log [B/(B − A)] [dB]
#12 voltage [V]
VLSGMAX
VLSGMAX − VLDGOFF2 = A
ON
VLSGOFF2
VLSGOFF2 − VLSGOFF1 = B
OFF
VLSGOFF1
6.
V68
VLGP
#68 voltage [V]
V68 + 0.7 V
(100IRE)
Set light area static Yγ gain [1C] to MIN [16], PS1 to VLGP [V], measure #12 picture period voltage
VLSGMIN, and calculate GLASGMIN [dB] using the following equations.
VLSGMIN − VLSGOFF2 = C
VLSGOFF2 − VLSGOFF1 = B
GLSGMIN = 20 × log [B/(B − C)] [dB]
#12 voltage [V]
VLSGMIN
VLSGMIN − VLDGOFF2 = C
ON
VLSGOFF2 − VLSGOFF1 = B
OFF
VLSGOFF1
56
V68
VLGP
#68 voltage [V]
V68 + 0.7 V
(100IRE)
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P16
Dark area detection
sensitivity
A
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
A
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
OPEN
1. Input the signal whose picture period amplitude is 0.18 V to #68 as shown in the figure below.
2.
Measure #71 pin voltage DAMIN, DACEN, and DAMAX [V] when dark area detection sensitivity [1D] is set to
MIN [00], CEN [04] and MAX [07].
#68
0.18 V
#71
DAMIN・CEN・MAX [V]
57
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P17
DC restoration rate correction
gain
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set DC restoration rate correction point to minimum (000), DC restoration rate correction limit point to 80%
(11), and connect external power supply PS1 to #68.
2.
Monitor DC level of #12 picture period. Set PS1 to V68 + 0.7 V, and adjust uncolor so that DC level is + 0.7.
3.
Set DC restoration correction rate to minimum (000), and measure VDT1 and VDT2 of V68 [V] and V68 + 0.1
V as shown in the figure below.
4.
Set #68 to V68 + 0.1 V, DC restoration correction rate to maximum (111), and measure VDT3.
5.
Set DC restoration correction rate SW to less than 100 % (1), #68 to V68 + 0.1 V, DC restoration correction
rate to maximum (111), and measure VDT4.
6.
Calculate ADT100, ADT135, and ADT65 using following equations.
ADT100 = (VDT2 [V] − VDT1 [V]) ÷ 0.1 [V]
ADT135 = (VDT3 [V] − VDT1 [V]) ÷ 0.1 [V]
ADT65 = 1 − ( (VDT2 [V] − VDT4 [V]) ÷ 0.1 [V])
V68 [V]
Picture period
V68 + 0.1 V
58
#12 waveform
VDT1
VDT2 VDT3
VDT4
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P18
DC restoration rate correction
point
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
C
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set DC restoration rate correction point to minimum (000), DC restoration rate correction limit point to 80%
(11), and connect external power supply PS1 to #68.
2.
Monitor DC level of #12 picture period. Set PS1 to V68 + 0.7 V, and adjust unicolor so that DC level is + 1.0.
3.
Set DC restoration correction rate to minimum (000), and increase PS1 from V68. Plot relation between #74
(DC voltage) and #12 (voltage in picture period).
4.
Set DC restoration correction rate to maximum (111), and increase PS1 from V68. Plot relation between #74
and #12.
5.
Set DC restoration correction rate to maximum (111), DC restoration rate correction point (111), and increase
PS1 from V68. Plot relation between #74 and #12.
6.
Determine VDT0, and VDT1 using the following equations.
VDT0 = [(VSP0 − V74)/1 V] × 100%
VDT1 = [(VSP1 − V74)/1 V] × 100%
#12
DC restoration rate
correction point 000
DC restoration rate correction
point 111
DC restoration correction
rate 000
VSP0
VSP1
VPC
59
#74
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P19
DC restoration rate correction
limit point
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
B
C
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set unicolor to maximum (1111111), DC restoration rate correction point to minimum (000), and connect
external power supply PS1 to #74.
2.
Set DC restoration correction rate to maximum (111).
3.
Increase PS from 5 V. Monitor #12, and plot DC restoration correction amount.
4.
Repeat the step 3 above by changing data at DC restoration rate correction limit point. Measure the value
using the figure below. Calculate PDTL60, PDTL75, PDTL87, and PDTL100 using following equations.
PDTL60 = [(VL60 − V74)/1.0] × 100%
PDTL75 = [(VL75 − V74)/1.0] × 100%
PDTL87 = [(VL87 − V74)/1.0] × 100%
PDTL100 = [(VL100 − V74)/1.0] × 100%
#12
100% (00)
87% (01)
73% (10)
60% (11)
VL60
VL75
60
VL100
VL87
#74
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P20
DC fluctuation at switching
sharpness control peak
frequency
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set unicolor [05] to MAX [7F], SRT gain [19] to MIN [00], and CDE [15] to CEN [80]. Input setup signal
(0.2 Vp-p) to TPA as shown in the figure below.
2.
Set sharpness [09] to MIN [00] and MAX [80]. Monitor #43, measure DC level VRDCMIN and VRDCMAX [V].
Calculate VRDC [V] using the following equation.
VRDC = VRDCMIN − VRDCMAX [V]
#68
0.2 V
#12
VRDC*
61
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P21
Sharpness control range
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Input sine wave to TPA. (The frequency is variable.)
2.
Set #68 amplitude to 20 mVp-p.
3.
Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), APACON peak frequency to 13.5 M
(00), and color detail enhancer (CDE) to center (10).
4.
Set picture mute to OFF (P-MODE: Normal 1, 000), and monitor #12.
5.
Set picture sharpness to center (1000000). Set input frequency to 100 kHz, and measure the amplitude V100.
6.
Set picture sharpness to maximum (1111111). Set input frequency to FAP00, measure the amplitude VMAX00,
and calculate GMAX00 using the following equations.
7.
Set picture sharpness to minimum (0000000). Set input frequency to FAP00, measure the amplitude VMIN00,
and calculate GMIN00 using the following equations.
8.
Set APACON peak frequency to 9.5 M (01). Set input frequency to FAP01, measure VMAX01/VMIN01 and
calculate GMAX01/GMIN01.
9.
Set APACON peak frequency to 6.4 M (10). Set input frequency to FAP10, measure VMAX10/VMIN10 and
calculate GMAX10/GMIN10.
10. Set APACON peak frequency to 4.5 M (11). Set input frequency to FAP11, measure VMAX11/VMIN11 and
calculate GMAX11/GMIN11.
GMAX*** = 20 × log (VMAX*** ÷ V100)
GMIN*** = 20 × log (VMIN*** ÷ V100)
[dB]
[dB]
Note: When a spectrum analyzer is used, measure gain for low frequency.
62
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P22
Sharpness control center
characteristic
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Input sine wave to TPA. (The frequency is variable.)
2.
Set the amplitude of #68 to 20 mVp-p.
3.
Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), APACON peak frequency to 13.5 M
(00), and color detail enhancer (CDE) to center (10).
4.
Set picture mute to OFF (P-MODE: Normal 1, 000), and monitor #12.
5.
Set picture sharpness to center (1000000). Set input frequency to 100 kHz, and measure the amplitude
V100.
6.
Set picture sharpness to center (1000000). Set input frequency to FAP00, measure #12 amplitude VCEN00,
and calculate GCEN00 using the following equations.
7.
Set APACON peak frequency to 9.5 M (01). Set input frequency to FAP01, measure VCEN01 and calculate
GCEN01.
8.
Set APACON peak frequency to 6.4 M (10). Set input frequency to FAP10, measure VCEN10 and calculate
GCEN10.
9.
Set APACON peak frequency to 4.5 M (11). Set input frequency to FAP11, measure VCEN11 and calculate
GCEN11.
GCEN*** = 20 × log (VCEN*** ÷ V100)
[dB]
Note: When a spectrum analyzer is used, measure gain for low frequency.
63
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P23
2T pulse response SRT
control
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
2.
Input 2T pulse (0.7 Vp-p) signal to TPA. Set unicolor to maximum (1111111), SRT-GAIN to minimum
(00000), CDE to center (10) picture sharpness control to center (1000000).
Set APACON peak frequency to13.5 M (00), and monitor #12.
3.
Measure TSRTMIN00 and VSRTMIN00 as shown in the figure below.
4.
Set SRT-GAIN to maximum (11111), and measure TSRTMAX00 and VSRTMAX00.
5.
Set APACON peak frequency to 9.5 M (01). Set SRT-GAIN to minimum (00000) and maximum (11111).
Measure TSRTMIN01/VSRTMIN01 and TSRTMAX01/ VSRTMAX01.
6.
Set APACON peak frequency to 6.4 M (10). Set SRT-GAIN to minimum (00000) and maximum (11111).
Measure TSRTMIN10/VSRTMIN10 and TSRTMAX10/ VSRTMAX10.
7.
Set APACON peak frequency to 4.5 M (11). Set SRT-GAIN to minimum (00000) and maximum (11111).
Measure TSRTMIN11/VSRTMIN11 and TSRTMAX11/VSRTMAX11.
8.
Calculate the following equations.
TSRT00 = 20 × log [((VSRTMAX00/TSRTMAX00)/(VSRTMIN00/TSRTMIN00))
TSRT01 = 20 × log [(VSRTMAX01/TSRTMAX01)/(VSRTMIN01/TSRTMIN01)]
TSRT10 = 20 × log [(VSRTMAX10/TSRTMAX10)/(VSRTMIN10/TSRTMIN10)]
TSRT11 = 20 × log [(VSRTMAX11/TSRTMAX11)/(VSRTMIN11/TSRTMIN11)]
T***
20%
V***
100%
20%
64
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P24
VSM gain
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Input sine wave of FVSM frequency to TPA. Set #68 amplitude to 0.02 Vp-p.
2.
Turn on SW77 and change VSM gain from minimum (001) to maximum (111). Measure #77 amplitude, V001,
V011, V100, V101, V110, and V111. Set input amplitude to 0.7 Vp-p, and VSM gain to OFF (000). Measure
TP77 amplitude V000.
3.
Calculate the following equations.
GV000 = 20 × log (V000/0.7) [dB]
GV001 = 20 × log (V001/0.02) [dB]
GV010 = 20 × log (V010/0.02) [dB]
GV011 = 20 × log (V011/0.02) [dB]
GV100 = 20 × log (V100/0.02) [dB]
GV101 = 20 × log (V101/0.02) [dB]
GV110 = 20 × log (V110/0.02) [dB]
GV111 = 20 × log (V111/0.02) [dB]
P25
VSM limit
B
B
B
A
ON
1.
Input sine wave of frequency FVSM to TPA.
2.
Set VSM gain to 111, and #68 amplitude to 0.7 Vp-p.
3.
Turn on SW77 and measure TP77 amplitude VLU and VLD [Vp-p] as shown in the figure below.
VLU
VLD
65
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P26
Y delay time switching
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), and input 2T pulse signal
(approximately 0.7 V (p-p)) to TPA.
2.
Set picture sharpness to center (1000000).
3.
Monitor #68 and #12 as shown in the figure below. Measure YDL00 that is the time difference between
signals #68 and #12.
4.
Set Y/C-DL1 to +5 ns (1), and
measure YDL01 as shown in the
figure below.
5.
Set Y/C-DL1 to 0 ns (0),
Y/C-DL2 to +10 ns (1) and
measure YDL10 as shown in the
figure below.
6.
Set Y/C-DL1 to +5 ns (1),
Y/C-DL2 to +10 ns (1) and
measure YDL11 as shown in the
figure below.
7.
2T pulse
Approximately
0.7 Vp-p
#12
#68
50%
Determine YDLA, YDLB, and
YDLC using the following
equations.
YDLA = YDL01 − YDL00
50%
YDLB = YDL10 − YDL00
YDLC = YDL11 − YDL00
YDL00
YDL01
YDL10
YDL11
66
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P27
Y group delay correction
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Input Multi Burst signal (4.2-MHz frequency, 0.1 Vp-p at #68) of A signal in TPA. Set unicolor to maximum
(1111111), SRT-GAIN to minimum (00000), and Color detail enhancer (CDE) to minimum (00000).
2.
Set sharpness to flat (DEC [30]),
APACON peak frequency to 4.5
M (11), and monitor #12.
3.
Sine wave signal A input
becomes like signal B on #12 as
shown in the figure on the right.
Measure SA and SB.
4.
When group delay correction is
set to minimum (0000), signal A
becomes like signal C on #12.
Measure SAMIN and SBMIN.
5.
When group delay correction is
set to maximum (1111), signal A
becomes like signal D on #12.
Measure SAMAX and SBMAX.
6.
Calculate the following equations.
GAMIN = 20 × log (SAMIN/SA) [dB]
GBMIN = 20 × log (SBMIN/SB) [dB]
Signal
A
SA
Signal
B
SB
Signal
C
SAMIN
GAMAX = 20 × log (SAMAX/SA) [dB]
SBMIN
GBMAX = 20 × log (SBMAX/SB) [dB]
SAMAX
Signal
D
SBMAX
Note: Sine wave input starts and ends within the picture period such as a burst signal. The wave is not
continuous.
67
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P28
Color detail enhancer (CDE)
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), color to center (1000000), and color
limiter level to 2 Vp (1). Input SWEEP signal to TPA so that #68 amplitude is 20 mVp-p. Set SW67 to A, and
input signal as shown in the figure below (#67 amplitude is 0.2 Vp-p) to TP67.
2.
Set picture sharpness to center (1000000), Y detail control to center (1000), and monitor #14 with a spectrum
analyzer.
3.
When CDE is at minimum (00), set low frequency area to 0dB, and determine peak level GCDEMIN.
4.
When CDE is at maximum (11), set low frequency area to 0dB, and determine peak level GCDEMAX.
5.
Calculate the following equation.
GCDE00 = GCDEMAX00 − GCDEMIN00
6.
When APACON peak frequency is 13.5 M (00), 9.5 M (01), 6.4 M (10), and 4.5 M (11), calculate GCDE00,
GCDE01, GCDE10, and GCDE11 respectively using above equation.
Output gain [dB]
max
0.2 Vp-p
min
0dB
BLK
period
picture period
Input frequency [MHz]
68
2003-01-21
TA1360AFG
Note No.
Characteristics
SW71
P29
Y detail control range
B
Test Conditions
SW Mode
SW70 SW68 SW64
B
A
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW74
ON
1.
Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), CDE to center (10), and APACON
peak frequency to 4.5 M (11). Input SWEEP signal to TPA.
2.
Set #68 amplitude to 20mVp-p.
3.
Set picture sharpness to center (1000000), Y detail control to maximum (1111), and monitor #12 with a
spectrum analyzer.
4.
Set low frequency area to 0dB, and measure each peak level GYDMAX.
5.
Set Y detail control to center (1000), and measure peak level GYDCEN.
6.
Set Y detail control to minimum (0000), and measure peak level GYDMIN.
69
2003-01-21
TA1360AFG
Test Conditions for Color Difference Block 1: YUV input and matrix
Common Test Condition for Color Difference Block 1: YUV input and matrix
1.
2.
3.
4.
Note No.
SW71 = B, SW70 = B, SW44 = ON, SW18 to SW26 = A, SW77 = OPEN, SW74 = OPEN
Transfer BUS control data with preset values.
Turn ACB operation switching to ACB OFF (0), and turn high blight color OFF
(0).
Input sync signal [must be sync with input signal for testing except Sweep.] to #53 (sync input), and set SYNC-IN-SW to 1.
Characteristics
SW68
S01
Color SRT gain
Test Conditions
SW Mode
SW67 SW66
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW64
C
A
A
B
SW63
SW61
SW60
―
B
B
B
―
1.
Set Y mute ON (P-MODE: Y-MUTE, 001), brightness to center (10000000), color to center (1000000),
unicolor to maximum (1111111).
2.
Input 2T pulse signal to TP67 so that #67 amplitude is 423 mVp-p.
3.
Monitor #14 output waveform. When color SRT peak frequency is 4.5 MHz (0), measure gradients of color
SRT gain for minimum (00), center (10), and maximum (11) that are SB00MIN, SB00CEN, and SB00MAX as
shown in the figure below. Set SB00MIN to 0dB, calculate GSB00CEN = 20 × log (SB00CEN/SB00MIN) and
GSB00MAX = 20 × log (SB00MAX/SSB00MIN).
4.
When color SRT peak is 5.8 MHz (1), measure gradients of color SRT gain for minimum (00), center (10), and
maximum (11). Calculate GSB01CEN and GSB01MAX.
5.
Input 2T pulse signal to TP66 so that #66 amplitude is 300 mVp-p.
6.
Monitor #12 output waveform. When color SRT peak frequency is 4.5 MHz (0), measure gradients of color
SRT gain for minimum (00), center (10), and maximum (11) that are SR00MIN, SR00CEN, and SR00MAX as
shown in the figure below. Set SR00MIN to 0dB, calculate GSB00CEN = 20 × log (SB00CEN/SB00MIN) and
GSB00MAX = 20 × log (SB00MAX/SSB00MIN).
T***
When color SRT peak is
7.
5.8 MHz (1), measure
gradients of color SRT
gain for minimum (00),
center (10), and
maximum (11). Calculate
GSR01CEN and
GSR01MAX.
Gradient
S*** = V***/T***
20%
V***
100%
20%
70
2003-01-21
TA1360AFG
Note No.
Characteristics
SW68
S02
Dynamic Y/C compensation
Test Conditions
SW Mode
SW67 SW66
C
A
A
SW63
SW61
SW60
B
B
B
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW64
B
1.
SW74 2.
OPEN
Input 100-kHz sync signal to TP67, and set #67 amplitude to 0.2 Vp-p.
Set Y mute OFF (P-MODE: Normal 1, 000), brightness to center (1000000), color to center (1000000),
unicolor to maximum (1111111), and Y/C Gain Comp to minimum (00). Set black stretch point 1 to OFF (000),
dark area static Yγ gain to minimum (00), light area static Yγ gain to maximum (11), and SW1 to B. Apply 5.16
V to #68 from external power supply PS1.
3.
Monitor #14 output waveform, and measure amplitude VBDY0.
4.
Set Y/C Gain Comp to maximum (11). Set SW1 to B. Set black stretch point 1 to OFF (000), dark area static
Yγ gain to maximum (11), light area static Yγ gain to maximum (00), and monitor #14 amplitude VBDY1.
5.
Set Y/C Gain Comp to maximum (11). Switch SW1 to A, and TPI to GND. Set black stretch point 1 to
maximum (111), dark area static Yγ gain to minimum (00), bright area static Yγ gain to maximum (11), and
monitor #14 amplitude VBDY2.
6.
Calculate the following equations.
GCBDY1 = 20 × log (VBDY1/VBDY0), GCBDY2 = 20 × log (VBDY2/VBDY0)
7.
Input 100-kHz sync signal to TP5, and repeat the procedure above. Calculate the following equations.
GCRDY1 = 20 × log (VRDY1/VRDY0), GCRDY2 = 20 × log (VRDY2/VBDY0)
71
2003-01-21
TA1360AFG
Note No.
Characteristics
SW68
S03
YUV gain
Test Conditions
SW Mode
SW67 SW66
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW64
A/C
A/B
A/B
B
SW8
SW9
SW10
SW56
B
B
B
OPEN
1.
Set picture mute to OFF (P-MODE: Normal 1, 000), brightness to maximum (11111111), color to center
(1000000), and unicolor to maximum (1111111).
2.
Set SW68 to A. Set SW67 and SW66 to B, and input 100-kHz sine wave to TPA. Set #68 amplitude to
0.2 Vp-p.
3.
Set SW74 open. Measure #74 amplitude VY00 and VY01 when Y/color difference input mode is set to
Y/Cb/Cr (0) and Y/Pb/Pr (1).
4.
Set SW68 to C, SW67 to A, and SW66 to B. Input 100-kHz sine wave to TP67, and set #67 amplitude to
0.2 Vp-p.
5.
Measure #14 amplitude VB00 when Y/color difference input mode is set to Y/Cb/Cr (0).
6.
Measure #14 and #12 amplitude VBB01 and VBR01 when Y/color difference input mode is set to Y/Pb/Pr (1).
7.
Set SW68 to C, SW67 to B, and SW66 to A. Input 100-kHz sine wave to TP66, and set #66 amplitude to
0.2 Vp-p.
8.
Measure #12 amplitude VR00 when Y/color difference input mode is set to Y/Cb/Cr (0).
9.
Measure #14 and #12 amplitude VRB01 and VRR01 when Y/color difference input mode is set to Y/Pb/Pr (1).
10. Calculate the following equations.
GY00 = 20 × log (VY00/0.2), GY01 = 20 × log (VY01/0.2)
GCBB = 20 × log (VB00/0.2), GPBB = 20 × log (VBB01/0.2),
GPBR = 20 × log (VBR01/0.2)
GCRR = 20 × log (VR00/02), GPRB = 20 × log (VRB01/0.2),
GPRR = 20 × log (VRR01/0.2)
72
2003-01-21
TA1360AFG
Note No.
Characteristics
SW68
S04
Green stretch
Test Conditions
SW Mode
SW67 SW66
C
A
A
SW26
SW25
SW24
A
A
A
Test Method (Test condition: VCC = 9 V/2 V, Ta = 25 ± 3°C)
SW64

1.
SW21 2.
Input signal B as shown in the figure below from TP67 (Cb/Pb1 input), and signal A from TP66 (Cr/Pr input).
Set brightness [06] to maximum (FF).
A
3.
Measure amplitudes A, B, C, D, and E at #13 (Gout) as shown in the figure below. (A00 to E00)
Set green stretch [14] data to (08), and repeat the step 3 above. (A01 to E01)
SW19
SW18


4.
A
A


5.
Set green stretch [14] data to (10), and repeat the step 3 above. (A10 to E10)
6.
Set green stretch [14] data to (18), and repeat the step 3 above. (A11 to E11)
7.
Green stretch gain is calculated by the following equations
A01
A00
B01
GrB01=
B00
C01
GrC01 =
C00
D01
GrD01 =
D00
E01
GrE01=
E00
A10
A00
B10
GrB10 =
B00
C10
GrC10 =
C00
D10
GrD10 =
D00
E10
GrE10 =
E00
GrA01 =
GrA10 =
A11
A00
B11
GrB11 =
B00
C11
GrC11 =
C00
D11
GrD11 =
D00
E11
GrE11=
E00
GrA11=
0.05 Vp-p
±0 Vp-p
−0.05 Vp-p
Signal A
−0.087 Vp-p
−0.1 Vp-p
±0 Vp-p
Signal B
−0.07 Vp-p
−0.122 Vp-p
−0.122 Vp-p
−0.14 Vp-p
B
C
A
Pin 13
73
150° 180°
D
210° 240°
E
270°
2003-01-21
TA1360AFG
Test Conditions for Color Difference Block 2
Common Test Conditions for Color Difference Block 2
1.
2.
3.
Note No.
SW71 = B, SW70 = B, SW61 to SW63 = B, SW44 = ON, SW40 = B
Unless otherwise specified, measure each bus data with preset values.
Set the following data.
Subaddress (00)
Data (02)
Subaddress (02)
Data (0C)
Subaddress (05)
Data (7F)
Subaddress (06)
Data (6C)
Subaddress (07)
Data (40)
Subaddress (0B)
Data (7F)
Subaddress (0C)
Data (84)
Subaddress (12)
Data (F0)
Subaddress (13)
Data (F0)
Subaddress (15)
Data (00)
Subaddress (18)
Data (00)
Subaddress (1A)
Data (C0)
Subaddress (1B)
Data (E0)
Subaddress (1C)
Data (03)
Subaddress (1D)
Data (78)
Characteristics
SW68
A01
Color difference contrast
adjustment
characteristic
C
SW67
SW66
Test Conditions
SW Mode
SW26 SW25 SW24
Test Method
SW21
SW19
SW18
A
A
A
A
A
1.
Set brightness to maximum, and subaddress (12) data to (F0).
or
or
2.
Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.23 Vp-p) from pin 66.
B
B
3.
Change unicolor data to maximum (7F), center (40), and minimum (00), and
measure pin 12 picture period amplitude VuCYMAX, VuCYCNT, and VuCYMIN
respectively.
4.
Determine unicolor amplitude ratio between maximum and minimum in
decibels. (∆VuCY)
5.
Repeat the steps 2 to 4 above with the following pins: Input (picture period
amplitude 0.2 Vp-p) from pin 67, and measure pin 14.
A
A
A
74
2003-01-21
TA1360AFG
Note No.
A02
Characteristics
Color adjustment
characteristic
SW68
SW67
SW66
C
A
A
or
B
A03
Color difference halftone
characteristic
C
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Set brightness to maximum, and subaddress (12) data to (F0).
or
2.
Input signal 3 (f0 = 100 kHz, picture period amplitude = 0.115 Vp-p) from pin 66.
B
3.
Change color data to maximum (7F), center (40), and minimum (01), and
measure pin 12 picture period amplitudes VCCYMAX、VCCYCNT, and VCCYMIN
respectively.
4.
Calculate amplitude ratios of maximum and minimum against color center in
decibels. (∆VCCY)
5.
Repeat the steps 2 to 4 above with the following pins: Input (picture period
amplitude 0.1Vp-p) from pin 67 and measure pin 14.
A
A
1.
Input signal 3 (f0 = 100 kHz, picture period amplitude 0.2 Vp-p) from pin 66.
or
or
2.
Measure pin 12 output picture period amplitude vHTARY.
B
B
3.
Apply 1.5 V to pin 79 from external power supply.
A
A
A
A
A
75
A
4.
Measure pin 12 output picture period amplitude vHTBRY.
5.
Calculate GHTRY = vHTBRY/vHTARY
6.
Repeat the steps 1 to 5 above and measure pin 13.
Calculate GHTGY = vHTBGY/vHTAGY
7.
Repeat the steps 1 to 5 above and measure pin 67. Calculate GHTBY =
vHTBBY/vHTABY.
2003-01-21
TA1360AFG
Note No.
A04
Characteristics
Color γ characteristic
SW68
SW67
SW66
C
B
A
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input signal 2 from pin 66.
2.
Increase signal 2 amplitude A. Determine gamma correction point Vγ1, Vγ2,
and Vγ3 of subaddress data (14). Set subaddress (14) data as follows:
(01) − γOFF
(03) −γ1ON
(05) −γ2ON
(07) −γ3ON
Measure #12 output signal amplitude levels and chart a characteristic diagram.
3.
Determine Vγ where γ starts applying and gradient ∆ at γ ON when linearity at γ
OFF is 1.
#12 output
amplitude
γOFF
Vγ
γON
#66 input
amplitude
76
2003-01-21
TA1360AFG
Note No.
A05
A06
Characteristics
SW68
SW67
SW66
Color limiter
characteristic
C
B
A
High-bright color gain
C
B
A
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
A
A
77
A
1.
Input signal 2 (picture period amplitude = 0.56 Vp-p) from pin 67.
2.
Set subaddress (14) to (00)/(01), and measure pin 12 output signal picture
period amplitude, CLT0/CLT1.
1.
Input signal 2 (picture period amplitude = 0.28 Vp-p) from pin 67.
2.
3.
Adjust color so that pin 14 output picture period amplitude is 1.2 Vp-p.
Set subaddress (0B) data to (80) and measure pin 14 output signal picture
period amplitude v14.
4.
Calculate the following equation. HBC1 = (1.2 − v14)/1.2
2003-01-21
TA1360AFG
Test Conditions for Text Block
Common Test Conditions for Text Block
1.
2.
3.
SW71 = B, SW70 = B, SW60 to SW64 = B, SW44 = ON, SW40 = B
Unless otherwise specified, measure each bus data with preset values.
Set the following data.
Subaddress (00) Data (02)
Subaddress (02) Data (0C)
Subaddress (05) Data (7F)
Subaddress (06) Data (6C)
Subaddress (07) Data (40)
Subaddress (0B) Data (7F)
Subaddress (0C) Data (84)
Subaddress (12) Data (F0)
Subaddress (13) Data (F0)
Subaddress (15) Data (00)
Subaddress (18) Data (00)
Subaddress (1A) Data (C0)
Subaddress (1B) Data (E0)
Subaddress (1C) Data (03)
Subaddress (1D) Data (78)
Note
Characteristics
No.
T01
AC gain
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68.
2.
Measure pins 12, 13, and 14 picture period amplitude, V12, V13, and V14.
3.
Calculate AC gain using the following equations.
GR = V12/0.2 GG = V13/0.2 GB = V14/0.2
T02
T03
Unicolor
adjustment
characteristic
Brightness
adjustment
characteristic
A
A
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
78
1.
Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68.
2.
Change unicolor data to maximum (7F), center (40), and minimum (00) and measure pin 12
picture period amplitude, VuMAX, VuCNT, and VuMIN respectively.
3.
Calculate amplitude ratio of VuMAX and VuMIN in decibels (∆Vu)
1.
2.
Input signal 2 from pin 68 and adjust pin 12 picture period output amplitude to 1 Vp-p.
Change brightness data to maximum (7F), center (80), and minimum (00) and measure pin
12 voltages, VbrMAX, VbrCNT, and VbrMIN respectively.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T04
T05
T06
White peak
slice level
SW68
SW67
SW66
C
B
B
Black peak
slice level
C
RGB output
S/N
C
B
B
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
A
A
A
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
A
A
A
A
A
A
1.
Set subcontrast to maximum.
2.
Apply external power supply to pin 68 and gradually increase voltage from 5.8 V.
3.
When picture period of pin 12 is clipped, measure pin 12 picture period amplitude voltage,
Vwps1.
4.
Change subaddress (0C) data to (FC) and repeat the steps 1 to 3 above. (Vwps2)
1.
Apply external power supply to pin 68 and gradually decrease voltage from 5.8 V.
2.
When picture periods are clipped, measure pins 14, 13, and 12 voltage, Vbps.
1.
Adjust brightness data so that picture period voltage of pin 14 is 2.4 V.
2.
Set color data to minimum.
3.
Measure noise levels n14-, n13-, and n12-Vp-p in picture period of pin 14, 13, and 12 with an
oscilloscope.
4.
Calculate S/N.
N14 = −20 × log [2.3/(0.2 × n14)]
N13 = −20 × log [2.3/(0.2 × n13)]
N12 = −20 × log [2.3/(0.2 × n12)]
T07
Halftone
characteristic
A
B
B
A
A
A
A
A
A
79
1.
Input signal 1 (f0 = 100 kHz, picture period amplitude 0.2 Vp-p) from pin 68.
2.
Measure pin 14 picture period amplitude v14A.
3.
Apply 1.5 V to pin 79 from external power supply.
4.
Measure pin 14 picture period amplitude v14B
5.
Calculate the following equation. GHT1 = v14B/v14A
6.
Stop applying voltage to pin 79. Set subaddress (1A) to data (E2) and measure pin 14-picture
period amplitude, v14C.
7.
Calculate the following equation. GHT2 = v414C/v14A
2003-01-21
TA1360AFG
Note
Characteristics
No.
T08
BLK pulse
delay time
SW68
SW67
SW66
C
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Apply signal shown in the figure (A) below to pin 39 (BLK input), and measure tdON and
tdOFF of output signals from pins 12, 13, and 14 shown in the figure (B) below.
63.5 µs
(A) Appling signal
to pin 39
tdON
tdOFF
(B) Output signal from
pins 12, 13, and 14
80
2003-01-21
TA1360AFG
Note
Characteristics
No.
T09
Drive
adjustment
variable range
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input signal 1 (f0 = 100 kHz, picture period amplitude 0.2 Vp-p) from pin 68.
2.
Measure picture period amplitude of pin 13 when subaddress (0D) data is changed to
maximum (FE), center (80), and minimum (00).
3.
Use picture period amplitude at center as the base. Determine amplitude ratio DRG1+ and
DRG1− at maximum and minimum in decibels.
4.
Repeat the steps 1 to 3 above to measure amplitude ratio of pin 14, DRB1+ and DRB1− in
decibels when subaddress (0E) data is changed.
5.
Repeat the steps 1 to 3 above to measure amplitude ratio of pin 13, DRG2+ and DRG2− in
decibels when subaddress (0E) center data is set to (81) used as the base.
6.
Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 14, DRB2+
and DRB2− in decibels when subaddress (0E) data is changed to maximum (FF), center (81),
and minimum (01).
7.
Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12, DRR1+
and DRR2− in decibels when subaddress (0D) data is changed to maximum (FF), center (81),
and minimum (01).
8.
Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 14, DRB3+
and DRB3− in decibels when subaddress (0D) data is set to (81), and subaddress (0E) data
is changed.
9.
Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 13, DRG3+
and DRG3− in decibels when subaddress (0E) data is set to (81), and subaddress (0D) data
is changed to maximum (FF), center (81), and minimum (01).
10. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12, DRR2+
and DRR2− in decibels when subaddress (0D) data is set to (81), and subaddress (0E) data
is changed to maximum (FF), center (81), and minimum (01).
T10
#78 input
impedance
C
B
B
A
A
A
A
A
A
1.
Connect external power supply, an ammeter, and a voltmeter to pin 78. Adjust voltage so that
current value is set to zero.
2.
Measure the current when voltage of pin 78 is increased by 0.2V. (lin)
3.
Calculate the following equation.Zin53 = 0.2 V/Iin (Ω)
78
−
A
+
Ammeter (µA)
81
V
Voltmeter
2003-01-21
TA1360AFG
Note
Characteristics
No.
T11
ACL
characteristic
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input signal 1 (f0 = 100 kHz, picture period amplitude 0.2 Vp-p) from pin 68.
2.
Measure pin 12 picture period amplitude, vACL1.
3.
Apply “DC voltage of pin 78 − 0.8 V” to pin 78 from external power supply and measure pin
12-picture period amplitude, vACL2.
4.
Apply “DC voltage of pin 78 − 1.3 V” to pin 78 from external power supply and measure pin
12-picture period amplitude, vACL3.
5.
Calculate the following equations.
ACL1 = −20 × log (vACL2/vACL1)
ACL2 = −20 × log (vACL3/vACL1)
T12
ABL point
C
B
B
A
A
A
A
A
A
1.
Measure DC voltage of pin 78, VABL1.
2.
Set subaddress (1B) data to (1C).
3.
Apply external voltage to pin 78, and decrease voltage from 6.5 V. When voltage of pin 12
starts changing, measure pin 78 voltage, VABL2.
4.
Change subaddress (1B) data to (3C), (5C), (7C), (9C), (BC), (DC), and (FC) under the
status of the step 3 above. Measure pin 78 voltage: VABL3, VABL4, VABL5, VABL6, VABL7,
VABL8, and VABL9.
5.
ABLP1 = VABL2 − VABL1 ABLP5 = VABL6 − VABL1
ABLP2 = VABL3 − VABL1 ABLP6 = VABL7 − VABL1
ABLP3 = VABL4 − VABL1 ABLP7 = VABL8 − VABL1
ABLP4 = VABL5 − VABL1 ABLP8 = VABL9 − VABL1
82
2003-01-21
TA1360AFG
Note
Characteristics
No.
T13
ABL gain
SW68
SW67
SW66
C
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Apply 6.5-V external voltage to pin 78.
2.
Set subaddress (1B) data to (00).
3.
Set brightness data to maximum.
4.
Apply 4.5-V external voltage to pin 78.
5.
Change subaddress (1B) data to (00), (04), (08), (0C), (10), (14), (18), and (1C).
Repeat the step 3 above, and measure VABL11, VABL12, VABL13, VABL14, VABL15,
VABL16, VABL17, and VABL18.
6.
ABLG1 = VABL11 − VABL10
ABLG2 = VABL12 − VABL10
ABLG3 = VABL13 − VABL10
ABLG4 = VABL14 − VABL10
ABLG5 = VABL15 − VABL10
ABLG6 = VABL16 − VABL10
ABLG7 = VABL17 − VABL10
ABLG8 = VABL18 − VABL10
T14
RGB output
mode
C
B
B
A
A
A
A
A
A
83
1.
Adjust brightness data so that picture period voltage of pin 12 is 2.4 V.
2.
Set subaddress (1B) data to (01).
3.
Measure pins 12, 13, and 14 picture period voltage, V12R, V13R, and V14R.
4.
Set subaddress (1B) data to (02), and repeat the step 3 above. Measure pins 12, 13, and 14
picture period voltage, V12G, V13G, and V14G.
5.
Set subaddress (1B) data to (03), and repeat the step 3 above. Measure pins 12, 13, and 14
picture period voltage, V12B, V13B, and V14B.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T15
Y-OUT γ
characteristic
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input RAMP waveform from pin 68. Adjust input amplitude so that picture period amplitude of
pin 12 is 2.3 Vp-p.
2.
Set subaddress (0C) data to (81).
3.
Adjust input amplitude so that picture period amplitude of pin 12 is 2.3 Vp-p.
4.
Monitor pin 12. According to the figure below, determine Y-OUT γ correction start points γ1
and γ2. Also determine ratios of gradients at Y-OUT ON to Y-OUT OFF in decibel. (∆1, ∆2,
and ∆3)
Output amplitude (Y-OUT)
100 IRE
∆3
γ2
∆2
γ1
2.3 Vp-p
∆1
Note: Solid line indicates gamma OFF.
Dotted line indicates gamma ON.
Input amplitude
84
2003-01-21
TA1360AFG
Note
Characteristics
No.
T16
White-peak
blue
characteristic
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input 0.7-Vp-p RAMP signal from pin 68.
2.
Set subcontrast data to maximum.
3.
Set subaddress (1F) data to (04).
4.
Set subaddress (1E) data to (01), and monitor pin 14. Determine blue stretch start point
BSPmin using the figure below.
5.
Repeat the step 4 above by changing subaddress (1E) data to (04) and (07). Determine blue
stretch start point BSPCNT and BSPmax.
6.
Set subaddress (1E) data to (04).
7.
Monitor pin 14 and calculate ratio of blue stretch ON gradient in relative to blue stretch OFF
gradient in decibel (BSGCNT) using the figure below.
8.
Repeat the step 7 above by changing subaddress (1F) data to (00) and (07). Calculate
gradient ratio in decibel (BSGmin and BSGmax).
Note: Calculate white-peak blue start point in IRE as setting positive amplitude at pedestal level
of output signal to 2.3 Vp-p = 100 IRE.
ON
Output
(Output from pin 14)
OFF
Start point
Input amplitude
85
2003-01-21
TA1360AFG
Note
Characteristics
No.
T17
ACB insertion
pulse phase
and amplitude
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
2.
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
Set brightness data to 108.
Measure pins 4, 6, and 7 voltage. Apply measured voltages from external power supply.
3.
Set subaddress (02) data to (40).
4.
Use output signals from pins 12, 13, and 14, and measure ACB insertion pulse phase as
shown in the Figure 1.
or
C
Note: Take picture period following FBP input fall after V・BLK ends as phase 1H. After next H・
BLK, count the phase as 2H, 3H, and so on.
ACB insertion pulse
V・BLK period
Figure 1: RGB Output
1H
2H
3H
4H
Figure 2: FBP Input (#39)
86
5.
Monitor pins 12, 13, and 14. Measure ACB insertion pulse amplitudes (level from picture
period amplitude at quiescent.): VACB1R, VACB1G, and VACB2B.
6.
Set subaddress (02) data to (80), and repeat the step 5 above: VACB2R, VACB2G, and
VACB2B.
7.
Set subaddress (02) data to (C0), and repeat the step 5 above: VACB3R, VACB3G, and
VACB3B.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T18
IK input
amplitude
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
2.
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
Set subaddress (02) data to (40).
3.
Measure voltage amplitude of pin-8 input signal in ACB insertion period.
or
C
1H = IKR
T19
T20
T21
IK input cover
range
Analog RGB
gain
Analog RGB
white peak
slice level
C
A
A
B
B
B
B
B
B
A
A
A
A
A
A
or
or
or
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
87
2H = IKG 3H = IKB
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
2.
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
Set subaddress (02) data to (40).
3.
Measure pin 8 DC voltage in V・BLK period. (#8VBLK)
4.
Apply the current externally to pin 8.
5.
Measure DC voltage of pin 8 in V・BLK period when pin-12 picture period voltage begins to
be decreased. (#8VBLK+)
6.
Apply current outward from pin 8.
7.
Measure DC voltage of pin 8 in V・BLK period when pin-12 picture period voltage begins to
be increased. (#8VBLK−)
8.
DIKin+ = (#8VBLK+) − (#8VBLK)
DIKin− = (#8VBLK−) + (#8VBLK)
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
2.
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
Apply 5-V external voltage to pin 2.
3.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 24.
4.
Measure pin 12 picture period amplitude, v12R.
5.
Repeat the steps 3 and 4 above with the following pins:
Input from pin 25, and measure output from pin 13 (v13G).
Input from pin 26, and measure output from pin 14 (v14B).
6
Calculate the following equations. GTXR = v12R/0.2 GTXG = v13G/0.2 GTXB = v14B/0.2
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pin 2.
3.
Set RGB contrast data to maximum (7F).
4.
Input signal 2 to pin 24. Gradually increase picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
5.
Repeat the steps 3 and 4 above with following pins: Input from pin 25 and measure output
from pin 13. Input from pin 26 and measure output pin 14.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T22
T23
T24
T25
Analog RGB
black peak
limit level
RGB contrast
adjustment
characteristic
Analog RGB
brightness
adjustment
characteristic
Analog RGB
mode
switching
transfer
characteristic
SW68
SW67
SW66
A
B
B
A
A
C
B
B
B
B
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
A
A
A
or
or
or
B
B
B
A
A
A
or
or
or
B
B
B
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
A
A
A
A
A
A
A
A
A
88
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pin 2.
3.
Set RGB contrast data to maximum (7F).
4.
Input signal 2 to pin 24. Gradually decrease picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
5.
Repeat the step 4 above with the following pins: Input from pin 25 and measure output from
pin 13. Input from pin 26 and measure output pin 14.
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pin 2.
3.
Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 24.
4.
RGB contrast data to maximum (7F), center (40), and minimum (00). Measure pin 12 picture
period amplitudes VuTXR (maximum, center, and minimum) respectively.
5.
Calculate amplitude ratio of maximum and minimum in decibels.
6.
Repeat the steps 4 and 5 above with the following pins: Input from pin 25 and measure pin
13. Input from pin 26 and measure pin 14.
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Input signal 2 from pins 26, 25, and 24.
3.
Apply 5-V external voltage to pin 2.
4.
Adjust amplitude A of signal 2 so that picture period amplitude of pin 12 is 0.5 Vp-p.
5.
Change RGB brightness data to maximum (FE), center (80), and minimum (00). Measure
pins 12, 13, and 14 picture period voltage VbrTX (maximum, center, and minimum)
respectively.
1.
Set RGB brightness data to maximum (FE).
2.
Input signal 4 (signal amplitude = 1.5 Vp-p) from pin 2.
3.
Measure input/output transfer characteristics using pin 12 according to the figure T-2.
4.
Repeat the steps 2 and 3 above with the following pins: Input from pin 25 and measure pin
13. Input from pin 24 and measure pin 14.
5.
Calculate maximum inter-axial rise/fall transfer delay time, using the data measured above.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T26
Text ACL
characteristic
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
B
Test Method
SW21
SW19
SW18
A
A
A
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pin 2.
3.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 24.
4.
Measure pin 12 picture period amplitude, vTXACL1.
5.
Apply “pin 78 DC voltage − 0.8 V” to pin 78 from external power supply, and measure pin
12-picture period amplitude, vTXACL2.
6.
Apply “pin 78 DC voltage − 1.3 V” to pin 78 from external power supply, and measure pin
12-picture period amplitude, vTXACL3.
7.
TXACL1 = −20 × log (vTXACL2/vTXACL1)
TXACL2 = −20 × log (vTXACL3/vTXACL1)
T27
T28
T29
Analog OSD
gain
Analog OSD
input white
peak slice
level
Analog OSD
black peak
limit level
A
A
A
B
B
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
or
or
or
B
B
B
A
A
A
A
A
A
89
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pins 1 and 80.
3.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 18.
4.
Measure pin 12 picture period amplitude, v12R.
5.
Repeat the steps 3 and 4 above with the following pins: Input from pin 19, and measure pin
13. Input from pin 21 and measure pin 14. (v13G and v14B)
6.
Calculate the following equations.
GOSDR = v12R/0.2 GOSDG = v13G/0.2 GOSDB = v14B/0.2
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pins 1 and 80.
3.
Input signal 2 from pin 18. Gradually increase picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
4.
Repeat the step 3 above with the following pins: Input from pin 19, and measure pin 13. Input
from pin 21, and measure pin 14.
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pins 1 and 80.
3.
Input signal 2 from pin 18. Gradually decrease picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
4.
Repeat the step 3 above with the following pins: Input from pin 19, and measure pin 13. Input
from pin 21, and measure pin 14.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T30
T31
OSD contrast
adjustment
characteristic
Analog OSD
brightness
adjustment
characteristic
SW68
SW67
SW66
A
B
B
C
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
or
or
or
B
B
B
A
A
A
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pins 1 and 80.
3.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 18.
4.
Change OSD contrast data to (11), (10), (01), and (00). Measure pin 12 picture period
amplitude VuOSDR (11), (10), (01), and (00) respectively.
5.
Repeat the steps 3 and 4 above with the following pins: Input from pin 19, and measure pin
13, VuOSDG (11), (10), (01), and (00). Input from pin 21, and measure pin 14, VuOSDB
(11), (10), (01), and (00).
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Apply 5-V external voltage to pins 1 and 80.
3.
Change OSD brightness data (subaddress 1D) to (38), (78), (B8), and (F8), and measure
picture period voltage of pins 12, 13, and 14 respectively.
Data (38) = VbrOSD0
Data (78) = VbrOSD1
Data (B8) = VbrOSD2
Data (F8) = VbrOSD3
T32
Analog OSD
mode
switching
transfer
characteristic
C
B
B
A
A
A
A
A
A
90
1.
Set OSD brightness data to maximum (11).
2.
Input signal 4 (signal amplitude = 4.5 Vp-p) from pin 1.
3.
Measure input/output transfer characteristics using pin 12 according to the figure T-2.
4.
Repeat the steps 2 and 3 above, and measure pins 13 and 14.
5.
Calculate maximum inter-axial rise/fall transfer delay time, using the data measured above.
6.
Repeat the steps 1 to 5 above with the following pin. Input signal 4 (signal amplitude 4.5
Vp-p) from pin 80.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T33
OSD ACL
characteristic
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
B
91
1.
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2.
Set subaddress (07) data to (01).
3.
Apply 5-V external voltage to pins 1 and 80.
4.
Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 18.
5.
Measure pin 12 picture period amplitude, vOSDACL1.
6.
Apply “pin 78 DC voltage − 0.8 V” to pin 78 from external power supply, and measure pin
12-picture period amplitude, vOSDACL2.
7.
Apply “pin 78 DC voltage − 1.3 V” to pin 78 from external power supply, and measure pin
12-picture period amplitude, vOSDACL3.
8.
OSDACL1 = −20 × log (vOSDACL2/vOSDACL1)
OSDACL2 = −20 × log (vOSDACL3/vOSDACL1)
9.
OSDACL3、OSDACL4 Change subaddress (07) data to (80), and repeat the steps 6 to 8
above to measure OSDACL3 and OSDACL4.
2003-01-21
TA1360AFG
Note
Characteristics
No.
T34
OSD blending
characteristic
SW68
SW67
SW66
A
B
B
↓
C
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
B
1.
↓
↓
↓
2.
Measure pins 14, 13, and 12 picture period amplitude, v14a, v13a, and v12a.
B
3.
Apply 5-V external voltage to pin 80.
4.
Measure pins 14, 13, and 12 picture period amplitude, v14b, v13b, and v12b.
5.
Calculate v14b amplitude in relation to v14a, v13b amplitude in relation to v13a, and v12b
amplitude in relation to v12a in decibel: α14TV1, α13TV1, and α12TV1.
6.
Apply 5-V external voltage to pin 1, and repeat the steps 3 to 5 above: α14TV2, α13TV2, and
α12TV2.
7.
Apply 5-V external voltage to pins 1 and 80, and repeat the steps 3 to 5 above: α14TV3,
α13TV3, and α12TV3.
8.
Set SW68 to C. Set SW21, 19, and 18 to B.
9.
Input signal 1 (f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pins 21, 19, and 18.
B
B
Input signal 1(f0 = 100 kHz, picture period amplitude = 0.2 Vp-p) from pin 68.
10. Apply 5-V external voltage to pins 1 and 80.
11. Measure pins 14, 13, and 12 picture period amplitude, v14c, v13c, and v12c.
12. Apply 5-V external voltage to pin 1.
13. Measure pins 14, 13, and 12 picture period amplitude, v14d, v13d, and v12d.
14. Calculate v14d amplitude in relation to v14c, v13d amplitude in relation to v13c, and v12d
amplitude in relation to v12c in decibel: α14OSD1, α13OSD1, and α12OSD1.
15. Apply 5-V external voltage to pin 80, and repeat the steps 12 to 14 above: α14OSD2,
α13OSD2, and α12OSD2.
16. Apply 5-V external voltage to pins 1 and 80, and repeat the steps 12 to 14 above: α14OSD3,
α13OSD3, and α12OSD3.
92
2003-01-21
TA1360AFG
Note
Characteristics
No.
T35
Blue stretch
point/gain
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input RAMP signal 0.7 Vp-p from pin 68.
2.
Set subcontrast data to maximum.
3.
Set subaddress (15) data to (0C).
4.
Set subaddress (1A) data to (C0), monitor pin 14, and measure blue stretch start point using
the figure below (BLPmin).
5.
Set subaddress (1A) data to (CC), and repeat the step 4 above. (BLPmax)
6.
Set subaddress (1A) data to (C4).
7.
Monitor pin 14 and measure gradient at blue stretch ON in decibel in relation to the one at
blue stretch OFF according to the figure below. (BLGmax)
8.
Set subaddress (15) data to (04), and repeat the step 7 above. (BLGmin)
Note: Calculate blue stretch start point in IRE as setting positive amplitude at pedestal level of
output signal to 2.3 Vp-p = 100 IRE.
Output amplitude
Blue stretch ON
Blue stretch OFF
Input amplitude
93
2003-01-21
TA1360AFG
Note
Characteristics
No.
T36
Blue stretch
gamma
correction
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Input RAMP signal 0.7 Vp-p from pin 68.
2.
Set subcontrast data to maximum.
3.
Set subaddress (15) data to (08).
4.
Set subaddress (09) data to (81).
5.
Monitor pin 14 and measure amplitude of the intersection point of blue stretch γ OFF and
blue stretch γ ON according to the figure below. Calculate pin 14 output amplitude in IRE as
setting positive amplitude at pedestal level of output signal to 2.3 Vp-p = 100 IRE.
6.
Set subaddress (1A) data to (C4), (C8), and (CC). Repeat the step 5 above. (BLγ2, BLγ3, and
BLγ4)
Output amplitude
Blue stretch γ OFF
Blue stretch γ ON
BLγ
Intersection
poiint
Input amplitude
94
2003-01-21
TA1360AFG
Note
Characteristics
No.
T37
White
letters
improvement
SW68
SW67
SW66
A
B
B
Test Conditions
SW Mode
SW26 SW25 SW24
A
A
A
Test Method
SW21
SW19
SW18
A
A
A
1.
Apply a pulse to pin 68 as shown in Figure A.
2.
Monitor # 12 output waveform. Plot # 12 output amplitude when changing # 68 input signal
amplitude from 0 to 120 IRE (0.857 Vp-p) (See Figure B below).
3.
Set subaddress (19) data to (80).
4.
Monitor # 12 output waveform. Plot # 12 output amplitude when changing # 68 input signal
amplitude from 0 to 120 IRE (0.857 Vp-p). Then, compare to the plot in the step 2, calculate
a point where a gradient changes (WPL1).
5.
Repeat the step 4 above by changing subaddress (19) data to (83) and (86). Calculate
points where gradients change (WPL2, WPL3).
80 ns
Figure A
# 12 output
amplitude
Data 87
Data 86
WPL3
Data 83
WPL2
Data 80
WPL1
# 68 input amplitude
Figure B
95
2003-01-21
TA1360AFG
Test Condition for Synchronization Block
Common Test Conditions for Synchronization Block: unless otherwise specified,
VCC = 9 V, Ta = 25°C, bus data; preset value, SW68 = A, SW53 = A, SW INPUT = B,
SW44 = ON, SW41 = OPEN, SW40 = B, SW39a = B, SW39b = OPEN, SW37 = B
Note
Characteristics
Test Conditions
HA01 Sync input horizontal 1.
sync phase
2.
Input signal A (as shown in the figure below) to TPA. Set subaddress (00) data to 82H.
Monitor # 53 (Sync input) and #44 (AFC filter) waveforms. Measure phase difference (SPH).
29.36 µs
Signal A
0.285 V
0.593 µs
SPH
#44 waveform
HA02 HD input horizontal
sync phase
1.
Set subaddress (00) data to 40H.
2.
Input signal B (as shown in the figure below) to TP50.
3.
Monitor #50 (Sync input) and #44 (AFC filter) waveforms. Measure phase difference (HDPH).
31.75 µs
Signal B
1.5 V
2.35 µs
HDPH
#44 waveform
96
2003-01-21
TA1360AFG
Note
Characteristics
HA03 Polarity detection
range
Test Conditions
1.
Set subaddress (00) data to 40H.
2.
Input signal B (as shown in the figure below) to TP50 pin.
3.
Decrease signal B duty from 10% (to shorter negative polarity period) and measure signal B
duty (HDDUTY1) when #50 input signal phase no longer locks with that of #37 (H-OUT).
4.
Increase signal B duty from 10% (to longer negative polarity period) and measure signal B duty
(HDDUTY2) when #39 (FBP input) phase changes in relation to signal B.
5.
Further increase signal B duty (to longer negative polarity period) and measure signal B duty
(HDDUTY3) when #50 input signal phase no longer locks with that of #37 (H-OUT).
6.
Decrease signal B duty from 90 % (to shorter negative polarity period) and measure signal B
duty (HDDUTY4) when #39 (FBP input) phase changes in relation to signal B.
31.75 µs
Signal B
1.5 V
A
B
Duty = A/B × 100% (0 to 100%)
HA04 Sync input threshold
amplitude
1.
Set subaddress (00) data to 82H, and TEST mode to 01.
2.
Connect variable power supply to #53 via 20-kΩ resistor.
3.
Set variable power supply voltage to 0 V, and measure #53 voltage. (SYNC_TIP_00) Also
check that #34 voltage is set to Low (GND level).
4.
Increase variable power supply voltage so that #34 voltage becomes High (VCC level).
Measure #53 voltage. (SYNC_OFF_00)
5.
Calculate the following equation to determine SYNC input separation level at SYNC separation
level is 00. VthS00 = (SYNC_OFF_00 − SYNC_TIP_00)/0.286 × 100
6.
Change SYNC separation level to 01, 10, and 11. Calculate following equations to determine
VthS01, VthS10, and VthS11.
VthS01 = (SYNC_OFF_01 − SYNC_TIP_01)/0.286 × 100
VthS10 = (SYNC_OFF_10 − SYNC_TIP_10)/0.286 × 100
VthS11 = (SYNC_OFF_11 − SYNC_TIP_11)/0.286 × 100
#53
1H
40IRE
(= 286 mVp-p)
0.08H
Sync separation level
Sync tip level
#34
(SYNC output mode)
97
2003-01-21
TA1360AFG
Note
Characteristics
HA05 HD input threshold
amplitude
Test Conditions
1.
Set subaddress (00) data to 40H.
2.
Input signal B (as shown in the figure below) to TP50.
3.
Increase signal B amplitude from 0 Vp-p. When #37 (H-OUT) phase locks with that of signal B,
measure signal B amplitude VthHD.
31.75 µs
Signal B
VthDH
2.35 µs
HA06 Horizontal picture
phase adjustment
variable range
1.
Set subaddress (00) data to 40H.
2.
Input signal B (the figure is shown below) to TP50.
3.
Change subaddress (01) data from 80H to 00H, and measure phase change amount ∆HSFT−
of #39 (H-OUT) waveform.
4.
Change slave address (01) data from 80H to FEH, and measure phase change amount
∆HSFT+ of #39 (H-OUT) waveform.
31.75 µs
Signal B
1.5 V
2.35 µs
#39 waveform
Data: 00H
∆HSFT−
#39 waveform
Data: 80H
∆HSFT+
#39 waveform
Data: FEH
98
2003-01-21
TA1360AFG
Note
Characteristics
HA07 Curve correction
amount
Test Conditions
1.
Set subaddress (00) data to 40H.
2.
Input signal B (as shown in the figure below) to TP50.
3.
Connect external voltage to #40 (curve correction), and measure phase change amount
(∆H#40) of #37 (H-OUT) output waveform at 1.5 V and 3.5 V.
31.75 µs
Signal B
1.5 V
2.35 µs
#37 waveform
(#40 voltage; 1.5 V)
∆H#40
#37 waveform
(#40 voltage; 3.5 V)
HA08 Clamp pulse phase,
width and level
1.
Set subaddress (00) data to 40H.
2.
Input signal B (as shown in the figure below) to TP50.
3.
Measure #47 (SCP output) clamp pulse phase (CPS0), width (CPPW0), and output level
(CPV0) in relation to signal B.
4.
Set subaddress (01) data to 81H, and repeat the step 3 above to measure (CPS1), (CPW1),
and (CPV1).
5.
Apply no signal input to TP50.
6.
Measure #47 clamp pulse phase (CPS2), width (CPW2), and output level (CPV2) in relation to
#39.
31.75 µs
Signal B
1.5 V
2.35 µs
CPS0/1
#47 waveform
CPV0/1
CPW0/1
#39 waveform
CPS2
#47 waveform
CPV2
CPW2
99
2003-01-21
TA1360AFG
Note
Characteristics
HA09 Black peak detection
pulse phase and
level
Test Conditions
1.
Set subaddress (00) data to 40H.
2.
Set SW70 to C, SW68 to C, and SW39A to OPEN
3.
Input signal C (as the figure shown below) to #39 (FBP input).
4.
Measure #70 (BPH filter) black peak detection pulse phase (HBPS00a and HBPS00b) in relation
to signal C.
5.
Set HBP-PHS 1/2 to (01), (10), and (11). Measure black peak detection pulse phase.
31.5 µs
4.13 µs
2V
Signal C
0V
HBPS**a
HBPS**b
#70 waveform
HA10 FBP input threshold
1.
Set subaddress (00) data to 40H.
2.
Input signal B (as shown in the figure below) to TP50.
3.
Increase amplitude of FBP signal to be input to #39 (FBP input) from 0 Vp-p. When #37
(H-OUT) phase locks with that of signal B, measure #39 input amplitude VthFBP.
31.75 µs
1.5 V
2.35 µs
100
2003-01-21
TA1360AFG
Note
Characteristics
HB01 H-OUT pulse duty
Test Conditions
1.
No signal input.
2.
Measure T1 and T2 (as shown in the figure below) from #37 (H-OUT) output waveform when
subaddress (00) data is 80H and A0H. Calculate duties (THA and THB) using the following
equation:
TH = T1/(T1 + T2) × 100 %
T1
T2
#37 waveform
HB02 Horizontal free-run
frequency
HB03 Horizontal oscillation
frequency variable
range
HB04 Horizontal oscillation
control sensitivity
HB05 H-OUT output
voltage
1.
Set SW44 to open.
2.
Set subaddress (00) data to 01H and measure horizontal free-run frequency (F15K) according
to #37 (H-OUT) output waveform.
3.
Set subaddress (00) data to 00H, 41H, 81H, C0H, and C1H. Measure horizontal free-run
frequency F28K, F31K, F33K, F37K, and F45K as in the step 2 above.
1.
Set subaddress (00) data to 01H.
2.
Connect 10-kΩ resistor between #44 and VCC. Measure horizontal frequency (F15KMIN)
according to #37 (H-OUT) output waveform.
3.
Connect 68-kΩ resistor between #44 and GND. Measure horizontal frequency (F15KMAX)
according to #37 (H-OUT) output waveform.
4.
Set subaddress (00) data to 00H, 41H, 81H, C0H, and C1H. Repeat the steps 2 and 3 above
and measure horizontal frequencies F28KMIN, F28KMAX, F31KMIN, F31KMAX, F33KMIN,
F33KMAX, F37KMIN, F37KMAX, F45KMIN, and F45KMAX.
1.
Set SW44 to open.
2.
Connect external power supply to TP44, and set subaddress (00) data to 01H.
3.
Apply V44 + 0.05 V, and V44 − 0.05 V to TP44. Measure frequencies FA and FB according to
#37 (H-OUT) output waveform. Calculate frequency change rate (BH15K) using the following
equation.
BH15K = (FB − FA)/0.1
4.
Set subaddress (00) data to 00H, 41H, 81H, C0H, and C1H. Repeat the step 2 above, and
measure frequency change rate BH28K, BH31K, BH33K, BH37K, and BH45K
1.
Set SW37 to open.
2.
Measure voltage at High (V37H) and Low (V37L) of #37 (H-OUT) output waveform.
101
2003-01-21
TA1360AFG
Note
V01
Characteristics
VP output pulse
width, Vertical
free-run (maximum
pull-in range)
Test Conditions
1.
Input signal D (shown in the figure below) to TP50, and signal E (shown in the figure below) to
#39 (FBP input).
2.
Measure VP output pulse width (VPw) according to TP35 output waveform.
3.
Measure VP pull-in range (VPt0) according to TP35 output waveform.
4.
Set subaddress (03) data to 01H, 02H, 03H, 04H, 05H, and 06H. Measure pull-in range VPt1,
VPt2, VPt3, VPt4, VPt5, and VPt6 as in the step 3 above.
2.35 µs
29.63 µs
Signal D
(TP50 input signal)
4V
5.6 µs
9V
Signal E
(#39 input waveform)
GND
#39
input waveform
TP35 waveform
VPw
VPt
V02
Vertical minimum
pull-in range
1.
Repeat the step 1 of Note #V01.
2.
Input signal F (shown in the figure below) to TP52.
3.
Increase signal-F cycle from 30 H. Measure the cycle (TVPULL) when phase locks with that of
TP35.
Signal F (TP 52
waveform input)
3H
TVPULL
#39
input waveform
TP 35 waveform
102
2003-01-21
TA1360AFG
Note
V03
Characteristics
Vertical black peak
detection pulse
Test Conditions
1.
Repeat the step 1 of Note #V01. Set SW70 to C, and SW68 to C.
2.
Input signal F (shown in the figure below) to TP52.
3.
Measure phase differences VBPP0E and VBPP0S according to #47 output waveform.
4.
Set subaddress (03) data to 01H, 02H, 03H, 04H, 05H, and 06H. Measure phase differences
VBPP1E, VBPP1S, VBPP2E, VBPP2S, VBPP3E, VBPP3S, VBPP4E, VBPP4S, VBPP5E,
VBPP5S, VBPP6E, and VBPP6S as in the step 3 above.
Signal F (TP 52
waveform input)
3H
262.5H to 1125H
#39
input waveform
VBPPS
VBPPE
#70 waveform
V04
Vertical blanking stop 1.
phase
2.
3.
Repeat the step 1 of Note #V01.
Input signal F (shown in the figure below) to TP52.
Set subaddress (03) data to 00H and F0H. Measure blanking stop phase VBLKMIN and
VBLKMAX according to #12 output waveform.
Signal F (TP 52
waveform input)
3H
1125H
#39
input waveform
VBLK
#12
input waveform
103
2003-01-21
TA1360AFG
(1)
Video signal
63.5 µs
Sine wave of frequency f0
(2)
Input signal 1
(3)
Input signal 2
Amplitude A
Sine wave of frequency f0
(4)
Input signal 3
Figure T-1
Signals for Text/Color Difference Signal 2
104
2003-01-21
TA1360AFG
63.5 µs
20 µs
20 µs
20 µs
20 ns
20 ns
(1) Input signal 4
50%
tPF
tPR
(2)
0%
10%
50%
90%
100%
τF
τR
tPR
(3)
tPF
0%
10%
50%
90%
100%
τR
Figure T-2
τF
Test Pulses for Text/Color Difference Signal 2
105
2003-01-21
TA1360AFG
Test Circuit
VCC (9 V)
TP35
#35
I2L VDD 31
74 APL FILTER
#31
SCL 30
#75
TP78
14
3
15
2
16
1
9
8
50 kΩ
1000 pF
5.1 kΩ
31.5/33.75 kHz
10 µF
51 kΩ
TP30
470 Ω
TP28
#28
I L GND 27
7
11
6
#24
0.1 µF
10 kΩ
0.1 µF
#23
A
B SW21
TP21
A
0.1 µF
#21
24
TP25
4
14
3
15
2
16
1
51 kΩ
10 µF
51 kΩ
10 kΩ
10 kΩ
10 kΩ
10 kΩ
10 kΩ
10 kΩ
#19
23
13
5
10 kΩ
#2
#18
TP19
#16
22
12
TP26
A
21
ANALOG R IN
20
B SW24
ANALOG OSD B IN
19
SW26
A
0.1 µF B
SW25
#26
A
ANALOG G IN 25
0.1 µF B
#25
ANALOG B IN 26
TP24
NC
18
NC
ANALOG OSD G IN
17
DAC2 (ACP PULSE)
ANALOG OSD R IN
16
0.1 µF
A
B SW19
100 Ω
300 pF
6.8 V
#1
15
B SW18
#8
#7
0.01 µF
#6
0.01 µF
#4
12
13
14
#12
#13
#14
TP18
11
NC
10
0.01 µF
9
RGB VCC
NC
8
NC
RGB GND
7
100 µF
NC
6
B OUT
IK IN
5
G OUT
B S/H
4
100 Ω
G S/H
3
100 Ω
NC
2
R OUT
R S/H
1
0.01 µF
80 Ys1
(ANALOG OSD)
NC
#80
YS3 (ANALOG RGB)
79 YM/P-MUTE/BLK
YS2 (ANALOG OSD)
#78
10
2
78 ABCL IN
100 kΩ
#79
15.75 kHz
NC 29
SDA 28
77 VSM OUT
50 kΩ
SW77
0.01 µF #77
4
51 kΩ
2.0 V
0.1 µF
470 Ω
5
#30
76 NC
1 kΩ
6
1000 pF
TP77
7
11
13
NC 32
75 Y/C VCC
100 µF
8
5.1 kΩ
SW74
0.01 µF #74
9
10
30 kΩ
NC 33
73 NC
10 µF
1
#34
TA1360AFG
72 NC
2
16
TC4538BP
20 kΩ
DAC1 (SYNC OUT) 34
B
SW71 #71
15
12
50 kΩ
7.5 kΩ
1200 pF
TP71
A
1 kΩ
VP OUT 35
3
50 kΩ
70 BPH FILTER
71 DARK AREA DET FILTER
30 pF
SW37
NC 36
0.47 µF #70
A
1 µF
14
10 µF
51 kΩ
B
3.9 kΩ
#37
69 NC
1 µF
100 kΩ B A SW70
C
H-OUT 37
50 kΩ
7.5 kΩ
1200 pF
2 kΩ
4
51 kΩ
1000 pF
H-FREQ SW2
100 Ω
A
TP40b
1 µF B
C
SW40
#40
10 kΩ
B
FBP IN 39
10 kΩ
SW39a
A
#39 SW39B
DEF/DAC GND 38
5.1 kΩ
H CURVE
40
CORRECTION
5
5.1 kΩ
41
NC
#41
42
HVCO
#42
43
50 kΩ
7.5 kΩ
1200 pF
13
67 Cb1/Pb1 IN
B SW67
0.1 µF
#67
A
B
68 Y1 IN
SW68
0.1 µF C
20 kΩ
6
TC4538BP
15 kΩ 15 kΩ 15 kΩ
CSBLA503KECZF30
470 Ω
3 kΩ 1 µF
0.01 µF
1 k Ω TP44
100 µF
SW44
#44
44
AFC FILTER
0.01 µF
45
DEF/DAC VCC
CP OUT
46
NC
100 Ω
#47
47
NC
48
SCP IN
HD IN
NC
SYNC IN
TP47
470 Ω
TP49
TP50
100 Ω
100 Ω
TP52
A
30 kΩ TP53
TP55
#55 #54
#53
#52
#51
#50
#49
55
54
53
52
51
50
49
NC
NC
56
H-FREQ SW1
#57
57
7
11
TC4538BP
66 Cr1/Pr1 IN
100 Ω
0.01 µF
2.2 µF
58
VSM FILTER
Cr2/Pr2 IN
#58
59
COLOR LIMITER
Cb2/Pb2 IN
SW61
B
#60
60
NC
Y2 IN
#61
61
8
10
12
1/2W 220 Ω
B SW66
#66
TP67 A 0.1 µF
62
NC
TP66 A 0.1 µF
LIGHT AREA
DET FILTER
65 Y/C GND
#63
63
0.1 µF A
TP61
SW60
B
0.1 µF A TP60
SW64 TP64
A
B
0.47 µF
0.1 µF
A
B
SW63 0.1 µF
TPB
#64
64
VD IN
TPD
5.1 kΩ 3.9 kΩ
2 kΩ
5.1 kΩ 3.9 kΩ
75 Ω
TPA 10 µF
A
2 kΩ
75 Ω
TPC 10 µF
B
0.1 µF
SW53b
100 Ω TP53b
9
SW INPUT
B
45 kHz
VCC (9 V)
106
2003-01-21
TA1360AFG
75 Ω
M 0.1 µF
○
46
45
44
43
HD IN
SCP IN
NC
CP OUT
NC
DEF/DAC VCC
AFC FILTER
NC
NC
COLOR LIMITER
VSM FILTER
M 0.01 µF
○
0.01 µF
0.1 µF
560 Ω
47
NC
Cr2/Pr2 IN
0.1 µF
48
42
41
HVCO
49
B
VCC
470 Ω
H-FREQ SW2
50
CSBLA503KECZF30
51
VD IN
57
100 µF
3 kΩ 1 µF
SCP-IN
52
SYNC IN
58
CP-OUT
HD-IN
53
NC
59
VD-IN
54
NC
60
A
1.5 kΩ
1 kΩ
5.1 kΩ 3.9 kΩ
75 Ω
55
H-FREQ SW1
2.2 µF
56
0.01 µF
0.1 µF
61
66 Cr1/Pr1 IN
1 kΩ
5.1 kΩ 3.9 kΩ
1 kΩ
62
Cb2/Pb2 IN
M 0.1 µF
○
75 Ω
63
NC
M 0.1 µF
○
64
Y2 IN
M
○
5.1 kΩ 3.9 kΩ
SYNC IN
VCC
47µ H
H CURVE
40
CORRECTION
FBP IN 39
67 Cb1/Pb1 IN
CURVE CORR
10 kΩ
FBP-IN
DEF/DAC GND 38
68 Y1 IN
H-OUT 37
H-OUT
69 NC
1 kΩ
75 Ω
5.1 kΩ 3.9 kΩ
Y1 IN
10 µF
1 kΩ
M 0.1 µF
○
10 µF
1 kΩ
75 Ω
0.47 µF
M 0.1 µF
○
1 kΩ
10 µF
5.1 kΩ 3.9 kΩ
65 Y/C GND
Cb1 /Pb1 IN
Cr2/Pr2 IN 10 µF
LIGHT AREA
DET FILTER
75 Ω
1 kΩ
10 µF
Cr1/Pr1 IN
5.1 kΩ 3.9 kΩ
75 Ω
Y2-IN
Cb2/Pb2 IN 10 µF
1 kΩ
10 µF
5.1 kΩ 3.9 kΩ
Application Circuit
1 µF
0.47 µF
NC 36
70 BPH FILTER
VP OUT 35
71 DARK AREA DET FILTER
DAC1 (SYNC OUT) 34
DAC1-OUT
TA1360AFG
72 NC
NC 33
73 NC
NC 32
2.2 µF
I2L VDD 31
74 APL FILTER
47 µH
VP-OUT
30 kΩ
0.01 µF
2.0 V
0.01 µF
75 Y/C VCC
SCL 30
100 µF
76 NC
470 Ω
SCL
NC 29
VSM OUT
100 kΩ
77 VSM OUT
SDA 28
470 Ω
SDA
0.01 µF
ABCL
2
78 ABCL IN
I L GND 27
NC
ANALOG OSD B IN
NC
DAC2 (ACP PULSE)
ANALOG R IN
15
16
17
18
19
20
21
22
23
24
OSD B-IN
OSD R-IN
ANALOG B IN 26
0.1 µF
ANALOG B IN
ANALOG G IN
ANALOG R-IN
30 kΩ
0.1 µF
ANALOG G IN 25
0.1 µF
M : Mylar capacitor
○
DAC2-OUT
100 µF
100 Ω
100 Ω
B OUT
100 Ω
G OUT
R OUT
IK-IN
30 kΩ
6.8 V
300 pF
107
0.1 µF
ANALOG OSD G IN
14
0.1 µF
ANALOG OSD R IN
13
0.1 µF
12
OSD G-IN
11
NC
10
0.01 µF
NC
9
47 µH
RGB GND
8
RGB VCC
NC
7
NC
IK IN
6
B OUT
B S/H
5
R OUT
G S/H
4
G OUT
NC
3
2.2 µF
R S/H
2
2.2 µF
NC
1
2.2 µF
YS3 (ANALOG RGB)
80 Ys1
(ANALOG OSD)
Ys3
Ys1
Ys2
79 YM/P-MUTE/BLK
YS2 (ANALOG OSD)
100 kΩ
YM
Application of H-FREQ switching (31.5 k/33.75 k/45 kHz)
Tr.
Pin 55 voltage Pin 41 voltage
A
B
31.5 kHz
L
L
9V
6V
33.75 kHz
L
H
9V
3V
45 kHz
H
*
9V
0V
H-FREQ
*: Don’t care
2003-01-21
TA1360AFG
ACB Application Circuit
+B
CRT
R
G
CRT
CRT
B
1 Vp-p
R
G
B
0~3.0 V (DC)
108
20~51 kΩ
8
51~330 pF
CLAMP
6.8 V Z
IK IN
2003-01-21
TA1360AFG
Package Dimensions
Weight: 1.6 g (typ.)
109
2003-01-21
TA1360AFG
RESTRICTIONS ON PRODUCT USE
000707EBA
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
• The products described in this document are subject to the foreign exchange and foreign trade laws.
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
• The information contained herein is subject to change without notice.
110
2003-01-21