TA1383AFG TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA1383AFG NTSC Chroma Decoder, Multi-Point Scan Sync Processor, H/V Frequency Counter IC for Color TV TA1383AFG integrates an NTSC chroma decoder, multi-point scan sync processor (equivalent to pin D4), and H/V frequency counter in a 30-pin flat package. The IC is ideal for double scan TVs. The baseband signal processing block incorporates sub adjustment circuits and a RGB/Y color difference matrix. The sync processor block supports 525I/P, 750P, and 1125I. TA1383AFG incorporates the I2C bus. The device can control various functions via the bus line. Weight: 0.63 g (typ.) Features Luminance block • Chroma trap • Y delay line Chroma block • NTSC decoder • TOF Baseband block • Sub contrast • Sub tint • Sub color • Y delay line • Offset adjustment • ADC pre-filter (LPF) • +6dB amp (ON/OFF) • YCbCr/YPbPr/RGB input supported • YCbCr/YPbPr output switchable Sync block • High-performance sync separator (at NTSC (525I) ) • Horizontal sync (15.734 k, 31.5 k, 33.75 k, 45 kHz) • Vertical sync playback function (525I/P, 750P, 1125I) • 2- and 3-level sync separator circuit • HD/VD input (positive and negative polarities) • HD/VD output (positive and negative polarities switchable) • Horizontal/vertical frequency counting function • Copy guard 1 2005-09-05 TA1383AFG TEST fsc CW 22 21 20 19 3.58 VCXO APC C SW DEMO TOF ACC C1 IN 23 HD OUT 24 DIGITAL GND 25 C2 IN 26 APC FILTER 27 3.58 X’tal 28 Cr/Pr OUT Cb/Pb OUT CLAMP Y OUT CLAMP VCC2 (5 V) CLAMP fsc OUT 29 GND2 Cb/Pb/B IN 30 Cr/Pr/R IN D-SYNC1/Y3/G IN Block Diagram 18 17 16 HD OUT SW TEST U SW V YUV MATRIX V U LPF SUB-CONT /AMP SUB-COLOR /AMP OFFSET OFFSET HD PHASE Y Y-DL1 LPF YCbCr/ YPbPr MATRIX SUB TINT INTEG H/V-FREQ COUNTER SW HD (RGB MODE) NTSC SYNC SEPA NOISE DET 525i: 8fH OTHERS:2fH V SW H-RAMP SYNC SEPA H-AFC 1 2 3 4 5 6 7 SYNC OUT Y2/SYNC2 IN VD IN D-SYNC2 IN (for freq. det.) HD IN SYNC TIP CLAMP 2 I C BUS MONITOR OUT 2 VCO 8 9 10 11 12 13 14 15 VD OUT SYNC TIP CLAMP SCL SYNC OUT H-C/D SDA SYNC TIP CLAMP Y1/SYNC1 IN PULSE REMAKE VCC1 (9 V) PULSE REMAKE ADDRESS Y SW 525i GND1 SYNC SW VD OUT SW V-C/D HVCO C TRAP TEST H SW AFC FILTER 525p 750p 1125i H/ V-SEPA MONITOR OUT Y-DL2 2005-09-05 TA1383AFG Pins (unless otherwise specified, VCC1 = 9 V, VCC2 = 5 V, Ta = 25°C) Pin No. 1 Symbol VCC1 (9 V) Function Interface I/O Signal ⎯ ⎯ VCC for sync separation block, outputs, and interface. Connects 9 V (typ.). Y signal input pin. 30 kΩ 9 pF 1 Vp-p (with Sync) 1 Inputs NTSC (525I) signal via clamp capacitor. Sync signal is separated from Y signal input to this pin. 1 kΩ Y2/SYNC2 IN 2 4 1 kΩ 1 kΩ Can also be used for sync-only input pins. When not used, leave open. 1 kΩ 2V Y1/SYNC1 IN 4 1 kΩ 5 µA 2 Sync-Tip: 2.0 V 11 1 3 SYNC OUT 100 Ω Outputs sync-separated C-SYNC. Open collector output. High/Low 3 11 25 µA 1 Th: 0.7 V Inputs vertical sync VD signal. VD IN Inputs positive- and negative-polarity signals. or 1 kΩ 5 45 kΩ When not used, leave open. 1.5 V 5 Th: 0.7 V 11 1 Vp-p (with Sync) Sync-Tip: 2.0 V 1 D-SYNC2 IN (for freq. det.) Inputs Y signals such as 525IP, 720P, and 1125I via clamp capacitor. 1 kΩ 6 1 kΩ 6 1 kΩ Inputs Y signal for identifying frequency. When not used, leave open. or 11 1 Th: 0.7 V Inputs horizontal sync HD signal. HD IN Inputs positive- and negative-polarity signals. When not used, leave open. 500 Ω or 7 50 kΩ 7 Th: 0.7 V 11 3 2005-09-05 TA1383AFG Pin No. Symbol Function Interface I/O Signal 500 Ω 1 Monitor output pin. 8 MONITOR OUT Emitter follower output. 500 Ω ⎯ 8 5 kΩ Selects output signal according to bus setting. 11 1 Connects horizontal AFC filter. Voltage of this pin determines horizontal output frequency. 300 Ω 9 ⎯ 36 kΩ AFC FILTER 6.3 V 9 11 1 Connects ceramic oscillator for horizontal oscillation. 4 kΩ HVCO Use Murata CSBLA503KECZF30 or CSBFB503KJCZF60. ⎯ 1 kΩ 2 kΩ 10 1 kΩ 10 10 kΩ 11 11 GND1 ⎯ GND pin for 9-V block. ⎯ Switches slave addresses. Slave addresses are set according to voltage of this pin. 12 ADDRESS VCC (9 V): DEH/DFH 7.5 V 1 kΩ 4.5 V 12 1.5 V 6 V: DCH/DDH 3 V: DAH/DBH GND: D8H/D9H 30 kΩ 60 kΩ 60 kΩ 15 kΩ 1 VCC: DEH/DFH 6 V: DCH/DDH 3 V: DAH/DBH GND: D8H/D9H VCC (9 V) 7.5 V 4.5 V 1.5 V GND 11 1 SDA 2 I C bus SDA pin. 50 Ω 5 kΩ SDA 13 ⎯ 2.25 V 13 ACK 11 1 SCL 2 I C bus SCL pin. 5 kΩ 14 SCL ⎯ 2.25 V 14 11 4 2005-09-05 TA1383AFG Pin No. Symbol Function Interface I/O Signal 500 Ω 1 Vertical sync VD output pin. Emitter follower output. or 15 Sets polarity of output signal according to bus setting. 5 kΩ VD OUT 50 kΩ 50 kΩ 15 11 25 16 19 C2 IN Burst: 300 mVp-p 1 kΩ 1 kΩ 19 When not used, leave open. 18 kΩ C1 IN 18 kΩ 16 Inputs chroma signal via clamp capacitor. 27 500 Ω 1 Horizontal sync HD output pin. Emitter follower output. or 17 Sets polarity of output signal according to bus setting. 5 kΩ HD OUT 50 kΩ 50 kΩ 17 11 ⎯ GND pin for digital block. 25 1 kΩ ⎯ 20 3 kΩ Connects APC filter for chroma demodulation. 2.4 V APC FILTER APC Del 2 kΩ 20 ⎯ 2.4 V DIGITAL GND 1.8 kΩ 18 27 21 3.58 MHz X’tal Connects recommended 3.58-MHz oscillator for chroma demodulation. 2.5 kΩ 25 21 ⎯ 500 Ω 27 5 2005-09-05 TA1383AFG Pin No. Symbol Function Interface I/O Signal 1 Output Y, Cb, and Cr, or Y, Pb, and Pr signals. 23 Cb/Pb OUT Emitter follower output. 24 Y OUT Set output format and amplitude according to bus setting. 500 Ω Cr/Pr OUT Cb/Pb 22 23 24 2 mA 22 Cr/Pr Y 11 25 VCC2 (5 V) VCC for Y, chroma, and baseband processing block. Connects 5 V (typ.). ⎯ ⎯ 200 Ω 25 200 Ω fsc carrier wave (CW) output pin. 26 CW OUT Emitter follower output. AC: 600 mVp-p Color: 3.0 V 26 1 mA B/W: 1.3 V 27 27 GND2 ⎯ GND pin for 5-V block ⎯ 1 700 mVp-p Cr/Pr/R IN 29 Cb/Pb/B IN Set input format according to bus setting. 28 29 Cr/Pr 1 kΩ 1 kΩ 28 1 kΩ Inputs 525I/P, 1125I, and 750P Cr/Pr/R and Cb/Pb/B signal via clamp capacitor. Cb/Pb 2.3 V When not used, connect 0.1 µF between this pin and GND. 11 1 Inputs 525I/P, 750P, and 1125I Y signal or G signal via clamp capacitor. 30 Y 1 kΩ 2V 2.3 V When not used, connect 0.1 µF between this pin and GND. 5 µA 1 kΩ 1 kΩ Set input format according to bus setting. 1 kΩ Sync signal is separated from Y (G) signal input to this pin. 1 kΩ D-SYNC1/Y3/G IN 1 kΩ 30 1 Vp-p (with Sync) 11 6 2005-09-05 TA1383AFG Bus Control Map Write Data Slave Address: D8/DA/DC/DEH SA D7 00 READ SW 01 D6 D5 525I-SEP 04 GAIN SW D2 V-SEP LVL HD-POL VD-POL V-MODE C-TRAP TOF f0 TOF Q SUB-TINT 08 TEST HD POSI SUB-COLOR 07 AFC-RAN MONITOR BANDWIDTH SUB-CONT 06 D0 D-SY2 SEP LVL NOISE LVL MATRIX SW 05 D1 H/V FREQ H-SEP LVL AFC-MODE 03 D3 INPUT SW FREQ DET SW 02 D4 Y-DL1 Y-DL2 Y BLACK ADJ Preset 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 09 Cr BLACK ADJ 1000 0000 0A Cb BLACK ADJ 1000 0000 Note 1: SA: Sub-Address Read Data Slave Address: D9/DB/DD/DFH Read Mode 1 (read SW = 1) D7 D6 D5 D4 D3 D2 D1 D0 0 POR COLOR C-GUARD N-DET V-STD H-LOCK HD-OUT VD-OUT 1 SYNC-IN Y1/2-IN Y3-IN D-SYNC2 H-STAB V-SYNC ACC V-SKEW D5 D4 D3 D2 D1 D0 Read Mode 2 (read SW = 0) D7 0 1 C-SYNC D6 V FREQUENCY DET H FREQUENCY DET 7 2005-09-05 TA1383AFG Bus Control Functions Write Function Signal READ SW Function Switches Read Mode. Switches Read Mode. Power-On Initial Value Self diagnosis 0: READ MODE 2 (counts frequency) 1: READ MODE 1 (self diagnosis) (1) Switches luminance, chroma, and sync signals. INPUT SW 000: SYNC1/Y1/C1 001: SYNC2/Y1/C1 010: SYNC2/Y2/C2 011: SYNC2/Y3/CbCr (PbPr) 100: D-SYNC1/Y3/CbCr (PbPr) 101: D-SYNC1/RGB 110: HD/VD/Y3/CbCr (PbPr) 111: HD/VD/RGB SYNC1/Y1/C1 (000) Switches horizontal oscillation frequency and vertical pull-in range. 000: Horizontal oscillation frequency 15.734 kHz, vertical pull-in range 224.5H to 297H (262.5H at quiescent) 001: Horizontal oscillation frequency 31.5 kHz, vertical pull-in range 48H to 612H (525H at quiescent) 010: Horizontal oscillation frequency 33.75 kHz, vertical pull-in range 48H to 636H (562.5H at quiescent) 011: Horizontal oscillation frequency 45 kHz, vertical pull-in range 48H to 848H (750H at quiescent) 100: Horizontal oscillation frequency 15.734 kHz, forced vertical pull-in range 262.5H 101: Horizontal oscillation frequency 15.734 kHz, vertical pull-in range 32.5H to 297H (at multi-windows) H/V FREQ 110: D5 (1125P/60 Hz) input mode (H: 33.75 kHz Free-run, V: 48H to 636H) Internal clamping pulse, internal H-BLK and HD output are generated by inputted sync. When no-signal inputted, the clamp pulse, the H-BLK and VD output are switched to free-run signals of 33.75 kHz/562.5H. And then, HD output is gone. Set AFC-Mode = (111) and INPUT SW = (100), when this mode used. H: 15.734 kHz V: 224.5H to 297H (000) 111: RGB Input Mode (H frequency 33.75 kHz Free-run, V pull-in range 48H to 740H) Input HD signal is used as clamp pulse. HD/VD-OUT outputs are remade of input signals. (H-pull-in range: 5.7 kHz to 120 kHz, V-pull-in range: 47 Hz to 688 Hz, HD input width: 0.2 µs to 10 µs, VD input width: 3 µs to 1.45 ms) When no-signal inputted, the clamp pulse, the H-BLK and VD output are switched to free-run signals of 33.75 kHz/562.5 H. And then, HD output is gone. Set AFC-Mode = (111) and INPUT SW = (111), when this mode used. In this mode, when TEST = 01, V-pull-in range becomes 0 to 688 Hz. Then, VD output is gone when no-input. AFC-RAN Switches horizontal AFC pull-in range. Switches pull-in range of 525I/P, 750P, and 1125I horizontal frequencies. 0: NORMAL NORMAL (0) 1: Narrow Switches frequency counting input. Switches input pin for counting frequency. 00: 525I1 (rejects pulse of 1.75 µs or less.) (pins 2, 4, and 30) 01: 525I2 (inputs H-sync for AFC. (and rejects pulse of 0.3 µs or less.) ) (pins 2, 4, and 30) FREQ DET SW 10: D-SYNC2 (pin 6) D-SYNC2 (10) 11: HD/VD (pins 5 and 7) Note: To count frequency, use Bus Mode (10/11). However, note that in Bus Mode (00/01), frequencies such as 525P, 750P, and 1125I cannot be counted. In this mode (00/01), frequencies may not be counted accurately due to weak electric fields or ghosts. 8 2005-09-05 TA1383AFG Signal Function Power-On Initial Value Switches sync separation level of horizontal sync signal. Switches sync separation level of horizontal sync signal input to sync input pins. H-SEP LVL At 525I 00: 20% 01: 27% 10: 34% 11: 40% At 525P 00: 20% 01: 30% 10: 40% 11: 50% 20% (00) Three-level sync 00: 25% 01: 35% 10: 45% 11: 55% Switches sync separation level of vertical sync signal. Switches sync separation level of vertical sync signal input to sync input pins. 40% V-SEP LVL At 525I 00: 40% 01: 50% 10: 60% 11: 70% At 525P 00: 20% 01: 30% 10: 40% 11: 50% Three-level sync 00: 25% 01: 35% 10: 45% 11: 55% Switches sync separation level of D-SYNC2 IN (pin 6). D-SY2 SEP LVL Switches sync separation level of sync signal input to pin 6. 00: 20% 01: 30% 10: 40% (00) 20% (00) 11: 50% Switches AFC gain. Switches AFC gain setting mode. 000: AUTO1 (normal: 0dB, at skew: +6dB, at noise: −12dB) 001: AUTO2 (AUTO1 + prevention against AFC disoperation at noise + stabilization of AFC in weak electric field + ghost prevention) 010: AUTO3 (Video input mode: AUTO2 + 0dB at V-SKEW detected) AFC-MODE 011: AUTO4 (RF input mode: AUTO2 + 0dB at V-SKEW detected, however, −12dB at normal. Also, AFC gain is not controlled by noise detection result) Forced +6dB (100) 100: Forced +6dB 101: Forced 0dB 110: Forced −12dB 111: Forced Off (horizontal free running) Note: Set AUTO1 to 4 according to input signal status. Switches noise detection level. NOISE LVL Switches noise detection level. Noise is detected only in NTSC signals (525I). Noise detection result is reflected in BUS READ and AFC-GAIN operation (as in AUTO1 to 3 modes). 00: max max (00) 11: min Switches MONITOR output. Switches signal output from MONITOR OUT (pin 8). Field identification output is valid for 525I and 1125I standard signal. 000: 1-bit DAC output (high) 001: 1-bit DAC output (low) MONITOR DAC HIGH 010: Field identification output (ODD: low, EVEN: high) (000) 011: Noise detection output 100: V sync separation output at 525I 101: Skew detection output 110: Clamp pulse output 111: H/V-SYNC at D-SYNC2 input 9 2005-09-05 TA1383AFG Signal Function Power-On Initial Value Switches 525I SEP Mode Switches H-SEP Mode. (Countermeasure ghost signal) 525I-SEP 0: ON Automatically controls that H-SEP level does not go higher than V-SEP level, the initial value is 40%. (1) OFF 1: OFF Switches matrix. Sets I/O signal format for input pins (28, 29, and 30) and output pins (22, 23, and 24). 00: MODE-1 (YC1/YC2 → YCbCr, Y3/CbCr → YCbCr, RGB → YCbCr) MATRIX SW 01: MODE-2 (YC1/YC2 → YCbCr, Y3/PbPr → YCbCr, RGB → YCbCr) (00) 10: MODE-3 (YC1/YC2 → YPbPr, Y3/CbCr → YPbPr, RGB → YPbPr) 11: MODE-4 (YC1/YC2 → YPbPr, Y3/PbPr → YPbPr, RGB → YPbPr) Note: Set this function together with INPUT SW, H/V FREQUENCY for each input signal. Switches bandwidth limiting filter (ADC pre-filter). Sets bandwidth of bandwidth limiting filter and image mute. BANDWIDTH 00: OFF (through) OFF 01: Filter 1 (Y: 10.3 MHz/−3dB, Cb/Cr: 4.2 MHz/−3dB) (00) 10: Filter 2 (Y: 14.6 MHz/−3dB, Cb/Cr: 6.5 MHz/−3dB) 11: Image mute (Y: −20IRE, CbCr: 0IRE) Switches vertical sync playback mode. Switches VD OUT (pin 15) sync playback mode. 0: PLL Mode for standard signals V-MODE 1: Direct Sync Mode Note 1: Setting 0 is valid only for standard signals. For other signals, set to Direct Sync Mode. In PLL Mode for standard signals, VD output starts with 4-µs delay in relation to V-SYNC. For other signals, 0.25-H delay. PLL for standard signals (0) Note 2: Set this register to (1) except inputting the NTSC and 525I composite sync format. TEST Shipment Test Mode. When TEST = 01 and H/V FREQ = 111, V-pull-in range is expanded (Refer to H/V FREQ function explanation). In other case, set to 00. (00) Switches output gain. 0dB GAIN SW Sets output amp gain for pins 22, 23, and 24. 0: +6dB Switches HD output polarity. HD-POL Positive polarity Sets HD OUT (pin 17) polarity. 0: Positive polarity (0) 1: Negative polarity Switches VD output polarity. VD-POL Positive polarity Sets VD OUT (pin 15) polarity. 0: Positive polarity (0) 1: Negative polarity Switches chroma trap. C-TRAP (1) 1: 0dB OFF Switches chroma trap for image signals input to pins 2 and 4. (0) 0: OFF 1: ON Adjusts HD output phase. Sets output phase of HD OUT (pin 17). HD POSI 0000: 800 ns (2.7% of H cycle) ahead of sync center (0000) 1111: Sync center Note: Sync center is based on 33.75 kHz/3-level sync. 10 2005-09-05 TA1383AFG Signal Function Power-On Initial Value Adjusts subcontrast. SUB-CONT CENTER Adjusts amplitude of output Y signal (pin 24). 00000: min (−3dB) (10000) 11111: max (+3dB) Switches TOF center frequency. Controls center frequency of chroma filter for chroma signals input to pins 16 and 19. TOF f0 000: OFF 001: min (0.56 fsc) (000) 111: max (1.05 fsc) Adjusts sub color. SUB-COLOR OFF CENTER Adjusts amplitude of output Cb/Cr (Pb/Pr) signals (pins 22 and 23). 00000: min (−3dB) (10000) 11111: max (+3dB) Switches TOF Q characteristic. Controls center frequency of chroma filter for chroma signals input to pins 16 and 19. TOF Q 000: min (0.6) min (000) 111: max (1.2) Adjusts sub tint. CENTER SUB-TINT Adjusts tint for output Cb/Cr (Pb/Pr) signals (pins 22 and 23). 0000: min (−7 deg) (1000) 1111: max (+7 deg) Adjusts Y delay time 1 (baseband block). Switches delay amount of Y signal in baseband block. Y-DL1 00: −10 ns 01: 0 ns 10: +10 ns 11: +10 ns −10 ns (00) Note: Sets delay amount according to settings such as BANDWIDTH. Adjusts Y delay time 2 (NTSC Y processing block). Switches delay amount of Y signal in NTSC Y processing block. Y-DL2 00: OFF 01: +40 ns 10: +80 ns 11: +120 ns OFF (00) Note: Sets delay amount according to settings such as TOF f0/Q. Adjusts Y black level. Y BLACK ADJ Adjusts black level offset of Y OUT (pin 24). CENTER 00000000: OFF 00000001: min (−140 mV) (10000000) 11111111: max (+140 mV) Adjusts Cb (Pb) black level. Cb BLACK ADJ Adjusts black level offset of Cb (Pb) OUT (pin 23). 00000000: OFF 00000001: min (−140 mV) CENTER (10000000) 11111111: max (+140 mV) Adjusts Cr (Pr) black level. Adjusts black level offset of Cr (Pr) OUT (pin 22). CENTER Cr BLACK ADJ 00000000: OFF 00000001: min (−140 mV) (10000000) 11111111: max (+140 mV) Read Function Signal Function Power-on reset POR 0: RESISTER PRESET 1: NORMAL After power on, 0 is returned at first read; 1, at second and subsequent reads. Detects NTSC color or BW (Black and White). COLOR 0: BW 1: NTSC color 11 2005-09-05 TA1383AFG Signal Function Detects copy guard (pseudo SYNC). C-GUARD 0: No copy guard detected 1: Copy guard detected Detects whether input signal has copy-guard signal in the systems of 60-Hz 525 I/P, 60-Hz 1125 I, and 60-Hz 750 P, but does not detect copy-guard of HD/VD input signal. Detects noise. N-DET 0: Small amount detected 1: Large amount detected Set noise detection level in NOISE LEVEL. N-DET is detected only when 525I Y or CVBS signal is input. Detects NTSC standard/non-standard. V-STD 0: Standard detected 1: Non-standard detected Detects vertical-sync-signal input in standard cycle. V-STD is detected only when 525I Y or CVBS signal is input. Detects H-LOCK. 0: Unlock detected H-LOCK 1: Lock detected Detects lock/unlock of input signal and H-AFC. H-LOCK is detected in the systems of 60-Hz 525 I/P, 60-Hz 1125 I, and 60-Hz 750 P. Note: This register may show UN-LOCK, when H-SYNC width of 525I Y or CVBS input is narrow. HD-OUT Detects HD-OUT (pin 17) self-diagnosis. 0: NG (no signal) 1: OK (signal detected) Detects VD-OUT (pin 15) self-diagnosis. VD-OUT 0: NG (no signal) 1: OK (signal detected) Detects SYNC IN (pins 2 and 4 or 30) self-diagnosis. SYNC-IN 0: NG (no signal) 1: OK (signal detected) At small signal, NG. Detects Y1/2 IN (pin 2 or 4) self-diagnosis. Y1/2-IN 0: NG (no signal) 1: OK (signal detected) At small signal, NG. Detects Y3 IN (pin 30) self-diagnosis. Y3-IN 0: NG (no signal) 1: OK (signal detected) At small signal, NG. Detects D-SYNC2 IN (pin 6) self-diagnosis. D-SYNC2 0: NG (no signal) 1: OK (signal detected) At small signal, NG. Detects stability of horizontal signal. H-STAB 0: Stable 1: Not stable Determines not stable when fluctuation of horizontal signal is detected within one field. H-STAB is detected only when 525I Y or CVBS signal is input. Detects vertical sync of input signal. V-SYNC 0: No vertical sync detected 1: Vertical sync detected Detects whether input signal has vertical sync. V-SYNC is detected in the systems of 60-Hz 525 I/P, 60-Hz 1125 I, and 60-Hz 750 P. Detects status of automatic color control (ACC) circuit. ACC 0: Maximum 1: Other ACC is detected only when NTSC signal is input. 12 2005-09-05 TA1383AFG Signal Function Detects vertical skew of VCR. V-SKEW 0: no skew 1: skew V-SKEW is detected only when NTSC signal is input. Detects 2-/3-level sync of D-SYNC2 IN (pin 6). 0: 2-level sync C-SYNC 1: 3-level sync Detects sync width per 1H. Note: If 525I/P 60-Hz signal has half SYNC width or less, 3-level sync may be determined. Counts vertical frequency of signal selected by FREQ DET SW. 0000000 to 0011100: No VD 0011101: Vicinity of 195 Hz 1111111: Vicinity of 44.6 Hz How to calculate vertical frequency (X); V FREQUENCY DET Converts data read from V-FREQ DET into decimal value and calls value Y. Z = 176.54 µs. Vertical frequency (X) = 1 ÷ (Y × Z) [Hz] Vertical frequency error is Y = −1 to +1. When vertical frequency is 195 Hz or more, frequency cannot be counted accurately. Note that time constant used to integrate C.SYNC then separate V-SYNC is 9 µs (error ±1 µs). Data read first time after power on are undefined. Counts horizontal frequency of signal selected by FREQ DET SW. 00000000: Quiescent 11111111: 120 kHz or more How to calculate horizontal frequency (X); X, Y, and Z are defined the same as those for vertical frequency. Horizontal frequency (X) = Y ÷ (12 × Z) H FREQUENCY DET [kHz] Horizontal frequency error is Y = −1 to +2. When horizontal frequency is 120 kHz or more, frequency cannot be counted accurately. When horizontal frequency is approx. 142 kHz to approx. 200 kHz, data are read as 00000000 by the timing of counting. When V-SYNC or VD is not input, horizontal frequency cannot be counted. Data are read as 00000000. Data read first time after power on are undefined. Note 1: To count horizontal or vertical frequency, data are read between the first V-SYNC/VD and the second V-SYNC/VD following the reset pulse generated at the second byte as the start trigger. To stabilize data, set the bus read interval to 3 V or longer. Discard the data read the first time because they are undefined. However the frequency is counted when BUS is read at Read Mode 1. Therefore the data that is BUS read at Read Mode 2 is valid. Note 2: Even when Read Mode 1 is switched to Read Mode 2, set the BUS read interval to 3 V or longer. Figures of BUS read interval at Read Mode 2 Data 1 and Start trigger 2 Start trigger 1 Read Timing Data 2 and Start trigger 3 More than 3 V V-SYNC or VD Counting period 1 (to data 1) Counting period 2 (to data 2) Figures of BUS read interval at Read Mode 2 Note 3: Though there is no restriction for setting BUS read interval at Read Mode 1, set the interval to 1 V per one period at shortest to read the data accurately. Decision algorithm (detection range, detection times and so on) for H/V frequency detection should be determined under consideration of forward Notes and the other factors such as signal strength, existence of ghost signal, APC stability, I2C BUS data transmission and so on via prototype TV set evaluation. 13 2005-09-05 TA1383AFG 2 How To Start I C Bus After power on, TA1383FG pins 28 and 29 (Cr/Pr/R IN, Cb/Pb/B IN) are in Full-Field Clamp Mode. Full-Field Clamp Mode is released by writing or reading. And then, clamp is performed only during the clamp pulse period. Described below is how to send bus data after power on. Use software to handle the procedure. 1. Turn power on. 2. Transmit all write data. 2 How To Transmit/Receive Via I C Bus Slave Address: Can Be Changed Using Pin 12. (VCC1 = 9 V, VCC2 = 5 V) Pin 12-GND (GND to 1.2 V): D8H/D9H Pin 12-3 V (1.8 to 4.2 V): DAH/DBH A6 A5 A4 A3 A2 A1 A0 W/R A6 A5 A4 A3 A2 A1 A0 W/R 1 1 0 1 1 0 0 0/1 1 1 0 1 1 0 1 0/1 Pin 12-6 V (4.8 to 7.2 V): DCH/DDH Pin 12-VCC1 (7.8 to VCC1) DEH/DFH A6 A5 A4 A3 A2 A1 A0 W/R A6 A5 A4 A3 A2 A1 A0 W/R 1 1 0 1 1 1 0 0/1 1 1 0 1 1 1 1 0/1 Start and Stop Conditions SDA SCL S P Start condition Stop condition Bit Transmission SDA SCL SDA must not be changed SDA may be changed Acknowledgement SDA from transmitter High impedance at bit 9 SDA from receiver Low impedance at bit 9 only SCL from master 1 8 9 S Clock pulse for acknowledgement 14 2005-09-05 TA1383AFG Data Transmit Format 1 S Slave address 7-bit 0 A MSB Sub address 8-bit A MSB S: Start condition Transmit data 8-bit A P MSB A: Acknowledgement P: End condition Data Transmit Format 2 S Slave address 0 A Sub address ・・・・・・ A Transmit data 1 Sub address A A ・・・・・・ Transmit data n A P Data Receive Format S Slave address 7-bit 1 A Receive data 1 8-bit Receive data 2 A P MSB MSB MSB A To receive data, the master transmitter changes to the receiver immediately after the first acknowledgement. The slave receiver changes to the transmitter. The end condition is always created by the master. Optional Data Transmit Format Auto Increment Mode 1 S Slave address 7- bit 0 A 1 MSB Sub address 7-bit A Transmit data 8-bit MSB MSB Auto Increment Mode 2 S Slave address 7-bit MSB 0 A 1 MSB Sub address 7-bit A Transmit data 1 8-bit MSB ・・・・ Transmit data n 8-bit A P MSB In this way, sub addresses are automatically incremented from the specified sub address and data are set. 15 2005-09-05 TA1383AFG I2C BUS Conditions Characteristics Symbol Min Typ. Max Unit Low level input voltage VIL 0 ⎯ 1.0 V High level input voltage VIH 1.8 ⎯ Vcc V VOL1 0 ⎯ 0.4 V Input current each I/O pin with an input voltage between 0.1 VDD and 0.9 VDD Ii −10 ⎯ 10 µA Capacitance for each I/O pin Ci ⎯ ⎯ 10 pF Low level output voltage at 3 mA sink current fSCL 0 ⎯ 100 kHz tHD;STA 4.0 ⎯ ⎯ µs Low period of SCL clock tLOW 4.7 ⎯ ⎯ µs High period of SCL clock tHIGH 4.0 ⎯ ⎯ µs SCL clock frequency Hold time START condition Set-up time for a repeated START condition tSU;STA 4.7 ⎯ ⎯ µs Data hold time tHD;DAT 350 ⎯ ⎯ ns Data set-up time tSU;DAT 250 ⎯ ⎯ ns Set-up time for STOP condition tSU;STO 4.0 ⎯ ⎯ µs tBUF 4.7 ⎯ ⎯ µs Bus free time between a STOP and START condition 16 2005-09-05 TA1383AFG Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit VCCmax 12 V Input pin voltage Vin GND − 0.3 to VCC + 0.3 V Power dissipation PD (Note 4) 1471 mW Supply voltage Power dissipation reduction rate depending on temperature 1/θja 11.8 mW/°C Operating temperature Topr −20~65 °C Storage temperature Tstg −55~150 °C Note 4: See the figure below. (the figure is based on when the IC is mounted on a board of 50 × 50 × 1.6 mm and 30% Cu area. this is the minimum board size.) Note 5: Misoperation may be caused in the IC due to leakage from high electric fields generated by the CRT. Install the IC at least 20 cm from the CRT. If not possible, use a shield to shield electric fields. 1000 Power dissipation PD (mW) 1471 0 0 25 65 Ambient temperature Figure 150 Ta (°C) Power dissipation reduction curve 17 2005-09-05 TA1383AFG Operating Conditions Characteristic Min Typ. Max pin 1 8.5 9.0 9.5 pin 25 4.7 5.0 5.3 Y signal input amplitude pins 2, 4, 6, 30 including sync ⎯ 1.0 ⎯ Vp-p Chroma signal input amplitude pins 16, 19 burst signal amplitude ⎯ 300 ⎯ mVp-p Cb, Cr (Pb, Pr) signal input amplitude pins 28, 29 100% color bar signal ⎯ 700 ⎯ mVp-p Supply voltage (VCC) Description Unit V R, G, B signal input amplitude pins 28, 29, 30 100% white signal ⎯ 700 ⎯ mVp-p HD, VD signal amplitude pins 5, 7 1.2 5 6 Vp-p 0.5 µs ⎯ 0.2 H ⎯ 0.2 ⎯ 10 µs 0.2 µs ⎯ 0.2 H (Note 6) ⎯ HD input width Syncronization Pin 7, H/V FREQ = 000 to 101 RGB mode Pin 7, H/V FREQ = 111 Frequency detection Pin 7 Syncronization Pin 5, H/V FREQ = 000 to 101 3 µs ⎯ 31 H ⎯ Pin 5, H/V FREQ = 111 3 µs ⎯ 1.45 ms ⎯ VD input width RGB mode 3 ⎯ 400 µs HD input frequency Pin 7, H/V FREQ = 111 5.7 ⎯ 120 kHz VD input frequency Pin 5, H/V FREQ = 111 47 ⎯ 688 Hz SYNC OUT input current Pin 3 mA Frequency detection Address switching voltage Pin 5 Pin 12 ⎯ ⎯ 1.6 DE/DFH 8.25 9 9 DC/DDH 5.25 6 6.75 DA/DBH 2.25 3 3.75 V D8/D9H 0 0 0.75 SCL/SDA pull-up voltage Pin 13,14 2.5 5 7.5 V SDA input current Pin 13 ⎯ ⎯ 2 mA Note 6: The ratio of H-cycle for HD input for frequency detection. Electrical Characteristics (unless otherwise specified, VCC1 = 9 V, VCC2 = 5 V, Ta = 25°C ± 3°C, bus data: preset values) Current Dissipation Symbol Test Circuit Min Typ. Max Unit VCC1 (9 V) ICC1 ⎯ 29.3 36.5 44.4 mA VCC2 (5 V) ICC2 ⎯ 52.9 66.0 80.2 mA Pin Name Pin Voltage Pin No. Pin Name Symbol Test Circuit Min Typ. Max Unit 2 Y1/SYNC1 IN V2 ⎯ 1.7 2.0 2.3 V 4 Y2/SYNC2 IN V4 ⎯ 1.7 2.0 2.3 V 22 Cr/Pr OUT V22 ⎯ 3.15 3.50 3.85 V 23 Cb/Pb OUT V23 ⎯ 3.15 3.50 3.85 V 24 Y OUT V24 ⎯ 2.85 3.20 3.55 V 28 Cr/Pr/R IN V28 ⎯ 2.0 2.3 2.6 V 29 Cb/Pb/B IN V29 ⎯ 2.0 2.3 2.6 V 30 YD-SYNC1/Y3/G IN V30 ⎯ 1.7 2.0 2.3 V 18 2005-09-05 TA1383AFG Y/Cb/Cr Block Characteristics I/O gain 2 (YPbPr → YCbCr) I/O gain 3 (YCbCr → YPbPr) I/O gain 4 (YPbPr → YPbPr) I/O gain 5 (RGB → YCbCr) ⎯ VDY30 Max Pins 2, and 4 1.35 1.50 1.65 ⎯ Pins 30 1.26 1.40 1.54 VDCb ⎯ Pin 28 1.0 ⎯ ⎯ VDCr ⎯ Pin 29 1.0 ⎯ ⎯ GCT ⎯ fsc attenuation ⎯ ⎯ −20 (00) YDY100 ⎯ SA07H: 80H −17 −10 −5 (01) YDY101 ⎯ SA07H: 84H −5 0 5 (10) YDY110 ⎯ SA07H: 88H 7 10 13 (11) YDY111 ⎯ SA07H: 8CH 7 10 13 (01) YDL2A ⎯ SA07H: 81H 30 40 55 (10) YDL2B ⎯ SA07H: 82H 70 80 110 (11) YDL2C ⎯ SA07H: 83H 100 120 160 −1.00 0.00 1.00 Chroma trap characteristic I/O gain 1 (YCbCr → YCbCr) VDY Typ. Color difference input dynamic range Y delay time switching 2 (TOF block) Test Circuit Min Y input dynamic range Y delay time switching 1 (pre-filter block) Symbol Test Condition Y GMYC ⎯ SA03H: 80H, Between pins 30 and 24 Cb GMBC ⎯ SA03H: 80H, Between pins 29 and 23 −1.00 0.00 1.00 Cr GMRC ⎯ SA03H: 80H, Between pins 28 and 22 −1.00 0.00 1.00 Y GMYC1 ⎯ −1.00 0.00 1.00 B→Y GMBC1 ⎯ −21.4 −19.9 −18.4 B→B GMBC2 ⎯ −1.1 −0.1 0.9 B→R GMBC3 ⎯ −25.5 −24.0 −22.5 R→Y GMRC1 ⎯ −14.1 −13.1 −12.1 R→B GMRC2 ⎯ −21.1 −19.1 −17.6 R→R GMRC3 ⎯ −1.2 −0.2 0.9 Y GMYP1 ⎯ −1.00 0.00 1.00 B→Y GMBP1 ⎯ −20.0 −18.5 −17.0 B→B GMBP2 ⎯ −0.8 0.2 1.2 B→R GMBP3 ⎯ −24.5 −22.5 −20.5 R→Y GMRP1 ⎯ −14.4 −13.4 −12.4 (Note Y1) (Note Y2) R→B GMRP2 ⎯ −20.8 −18.8 −17.3 R→R GMRP3 ⎯ −0.8 0.22 1.2 Y GMYP ⎯ SA03H: E0H, Between pins 30 and 24 −1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00 Pb GMBP ⎯ SA03H: E0H, Between pins 29 and 23 Pr GMRP ⎯ SA03H: E0H, Between pins 28 and 22 G→Y GMGA1 ⎯ −5.0 −4.0 −3.0 G→B GMGA2 ⎯ −10.6 −9.6 −8.6 G→R GMGA3 ⎯ −8.6 −7.6 −6.6 B→Y GMBA1 ⎯ −20.4 −18.9 −17.4 B→B GMBA2 ⎯ −7.0 −6.0 −5.0 B→R GMBA3 ⎯ −25.0 −23.0 −21.0 R→Y GMRA1 ⎯ −10.5 −9.5 −8.5 R→B GMRA2 ⎯ −16.5 −15.5 −14.5 R→R GMRA3 ⎯ −7.0 −6.0 −5.0 (Note Y3) 19 Unit Vp-p Vp-p dB ns ns dB dB dB dB dB 2005-09-05 TA1383AFG Symbol Test Circuit G→Y GMGB1 G→B GMGB2 G→R Characteristics I/O gain 6 (RGB → YPbPr) Min Typ. Max ⎯ −3.1 −2.1 −1.1 ⎯ −9.3 −8.3 −7.3 GMGB3 ⎯ −7.9 −6.9 −5.9 B→Y GMBB1 ⎯ −22.8 −21.8 −20.8 B→B GMBB2 ⎯ −7.0 −6.0 −5.0 B→R GMBB3 ⎯ −29.0 −27.0 −25.0 R→Y GMRB1 ⎯ −13.5 −12.5 −11.5 R→B GMRB2 ⎯ −21.0 −19.0 −17.0 R→R GMRB3 ⎯ −7.0 −6.0 −5.0 GFY1 ⎯ SA03H: 88H, at 11.3 MHz −8 −4 −1 ⎯ SA03H: 88H, at 16 MHz −30 −18 −9 GFY3 ⎯ SA03H: 90H, at 16 MHz −11 −4 −1 GFY4 ⎯ SA03H: 80H, at 27 MHz −34 −26 −18 GFBR1 ⎯ SA03H: 88H, at 5.65 MHz −8 −5 −2 GFBR2 ⎯ SA03H: 88H, at 16 MHz −42 −35 −28 GFBR3 ⎯ SA03H: 90H, at 8 MHz −8 −5 −2 Filter 2 Filter 1 Pre-filter 2 (B-Y, R-Y axes) (Note Y4) GFY2 Filter 1 Pre-filter 1 (Y axis) Test Condition Filter 2 Unit dB dB dB GFBR4 ⎯ SA03H: 90H, at 27 MHz −48 −35 −26 Positive YBMAX ⎯ SA08H: FFH, pin 24 126 140 154 Negative YBMIN ⎯ SA08H: 01H, pin 24 −154 −140 −126 Positive RBBMAX ⎯ SA09H/10H: FFH, pin 23/22 126 140 154 Negative RBBMIN ⎯ SA09H/10H: 01H, pin 23/22 −154 −140 −126 Output gain switching GGSW ⎯ SA04H: 00H/80H 5 6 7 dB Y I/O gain (Y1/Y2 IN) GY ⎯ Between pins 2/4 and 24 −1.0 0 1.0 dB Y black-level range R-Y, B-Y black-level range Sub contrast characteristic max GSCMAX ⎯ SA05H: F8H/80H 2.0 3.0 4.0 min GSCMIN ⎯ SA05H: 80H/00H −4.0 −3.0 −2.0 Sub color characteristic max GCLMAX ⎯ SA06H: F8H/80H 2.0 3.0 4.0 min GCLMIN ⎯ SA06H: 80H/00H −4.0 −3.0 −2.0 GCLT ⎯ ⎯ −35 −50 ⎯ max TNTMAX ⎯ SA07H: F0H/80H 6.0 7.0 8.0 min TNTMIN ⎯ SA70H: 80H/00H −8.0 −7.0 −6.0 Y1/Y2 GY1IN ⎯ at 13 MHz, Input; pins 2 and 4 −2 0 2 Y3 GY3IN ⎯ at 40 MHz, Input; pin 30 −2 0 2 ⎯ at 40 MHz, Input; pins 28 and 29 −2 0 2 Input crosstalk Tint characteristic Frequency characteristic Cb/Cr GBRIN 20 mV mV dB dB dB ° dB 2005-09-05 TA1383AFG Chroma Block Characteristics ACC characteristic Test Circuit F601 F301 F31 ⎯ F11 Typ. Max ⎯ 280 330 380 ⎯ 280 330 380 270 320 370 ⎯ 115 130 145 (Note CH1) A1 ⎯ 0.85 1.00 1.15 ⎯ 600 720 840 R VRO ⎯ 600 705 840 RRB ⎯ 0.93 1 1.15 B θB ⎯ ⎯ −3 0 3 R θR ⎯ ⎯ 87 90 93 θBR ⎯ ⎯ 86 90 93 Killer OFF VCI ⎯ 4.0 5.4 10.0 Killer ON VBI ⎯ 3.5 4.6 6.0 f03 ⎯ Demodulation angle Color difference output relative phase Free-running frequency 100% color bar 100% color bar, Cb/Cr mVp-p ⎯ mVp-p ⎯ ° (Note CH2) Pins 16 and 19: AC GND Unit ° mV 3.579345 3.579545 3.579745 MHz βf ⎯ 0.5 1.0 1.5 Hold + f3HH ⎯ Upper hold range 250 500 2000 Pull-in + f3PH ⎯ Upper pull-in range 250 500 2000 Hold − f3HL ⎯ Lower hold range −2000 −500 −250 Pull-in − f3PL ⎯ Lower pull-in range −2000 −500 −250 Vfsc ⎯ Pin 26 400 600 720 High V26H ⎯ Pin 26 at NTSC input 2.7 3.0 3.3 Low V26L ⎯ Pin 26 at quiescent 1.0 1.3 1.6 VNE ⎯ Pins 22 and 23, fsc leakage level, when rainbow signal (B = C = 300 mVp-p) input ⎯ ⎯ 4.0 mVp-p VHNE ⎯ Pins 22 and 23, 2 × fsc leakage level when rainbow signal (B = C = 300 mVp-p) input ⎯ ⎯ 4.0 mVp-p 0 kHz GFH ⎯ 19 21 23 +500 kHz GFC ⎯ 17 19 21 −500 kHz GFL ⎯ 14 16 18 f0+ GF+ ⎯ 14 16 18 f0− GF− ⎯ 22.5 24.5 26.5 APC frequency control sensitivity APC pull-in and hold ranges CW output amplitude CW output DC level Residual carrier wave level Residual harmonic level TOF (f0・Q) control characteristic Min VBO Color difference output relative amplitude TOF characteristic Test Condition B Color difference output level Identification sensitivity Symbol (Note C3H) Hz/mV Hz mVp-p V (Note CH4) (Note CH5) 21 dB dB 2005-09-05 TA1383AFG Sync Block Symbol Test Circuit SYNC1/2 SPH ⎯ D-SYNC1 DS1PH ⎯ Characteristics SYNC IN sync phase NTSC horizontal sync separation level NTSC vertical sync separation level 1125I/60-Hz horizontal sync separation level 1125I/60-Hz vertical sync separation level D-SYNC2 sync separation level Max 2.8 3.0 3.2 0.75 0.85 0.95 0.8 0.9 1.0 3.9 4.2 4.6 1.4 1.6 1.8 1.3 1.5 1.7 HDPH ⎯ ⎯ 31.5 kHz Wd-HD1 ⎯ 33.75 kHz Wd-HD2 ⎯ 45 kHz Wd-HD3 ⎯ 1.5 1.7 1.9 00 VthH10 ⎯ 0.219 0.229 0.239 01 VthH11 ⎯ 0.199 0.209 0.219 10 VthH12 ⎯ 0.179 0.189 0.199 (Note SY02) (Note SY03) (Note SY04) 11 VthH13 ⎯ 0.162 0.169 0.179 00 VthV10 ⎯ 0.157 0.172 0.186 01 VthV11 ⎯ 0.129 0.143 0.157 10 VthV12 ⎯ 0.1 0.114 0.129 (Note SY05) 11 VthV13 ⎯ 0.072 0.086 0.1 00 VthH20 ⎯ 0.059 0.070 0.081 01 VthH21 ⎯ 0.080 0.091 0.102 10 VthH22 ⎯ 0.109 0.120 0.131 (Note SY06) 11 VthH23 ⎯ 0.135 0.146 0.157 00 VthV20 ⎯ 0.059 0.070 0.081 01 VthV21 ⎯ 0.080 0.091 0.102 10 VthV22 ⎯ 0.109 0.120 0.131 (Note SY07) 11 VthV23 ⎯ 0.135 0.146 0.157 00 VthD20 ⎯ 0.056 0.067 0.078 01 VthD21 ⎯ 0.086 0.097 0.108 10 VthD22 ⎯ 0.111 0.122 0.133 11 VthD23 ⎯ 0.134 0.145 0.156 VthHD ⎯ 0.6 0.7 0.8 15.73 kHz-1 FA000 ⎯ 15.59 15.73 15.91 (Note SY08) Pin 7 31.5 kHz FA001 ⎯ 31.19 31.5 31.82 33.75 kHz-1 FA010 ⎯ 33.41 33.75 34.09 44.55 45 45.45 15.59 15.73 15.91 45 kHz FA011 ⎯ 15.73 kHz-2 FA100 ⎯ 15.73 kHz-3 FA101 ⎯ 15.59 15.73 15.91 33.75 kHz-2 FA110 ⎯ 33.41 33.75 34.09 33.75 kHz-3 FA111 ⎯ 33.41 33.75 34.09 15.73 kHz-4 FF000 ⎯ 15.59 15.73 15.91 F15MIN ⎯ 14.37 14.67 14.97 F15MAX ⎯ 16.61 16.94 17.27 F31MIN ⎯ 28.97 29.56 30.15 F31MAX ⎯ 33.23 33.90 34.57 F33MIN ⎯ 30.91 31.54 32.17 F33MAX ⎯ 35.44 36.15 36.86 F45MIN ⎯ 41.81 42.62 43.48 15.73 kHz-1 31.5 kHz Horizontal frequency range Typ. Wd-HD0 HD input threshold Horizontal free-running frequency (Note SY01) Min 15.73 kHz HD IN horizontal sync phase Delayed HD pulse width Test Condition 33.75 kHz 45 kHz 15.73 kHz-2 (Note SY09) (Note SY10) F45MAX ⎯ 48.27 49.24 50.21 F15nMIN ⎯ 14.80 15.10 15.40 F15nMAX ⎯ 16.06 16.36 16.66 22 Unit µs µs µs Vp-p Vp-p Vp-p Vp-p Vp-p V kHz kHz 2005-09-05 TA1383AFG Symbol Test Circuit 15.73 kHz BH1573 31.5 kHz BH315 33.75 kHz BH3375 ⎯ 45 kHz BH45 ⎯ ID1+ ⎯ ID1− ⎯ Characteristics Horizontal oscillation control sensitivity 0dB AFC phase detection current −6dB −12dB HD output phase and width Max ⎯ 2.7 3.4 4.1 ⎯ 5.4 6.7 8.0 5.6 7.0 8.4 7.9 9.7 11.5 256 320 400 256 320 400 56 70 87.5 56 70 87.5 536 670 838 536 670 838 4.0 4.6 4.9 ⎯ 1 ⎯ ⎯ 10 ⎯ ID2+ ⎯ ⎯ ID3+ ⎯ Pin 9 voltage vs horizontal oscillation frequency (Note SY11) ID3− ⎯ ⎯ Start TVMASK1 ⎯ Stop TVMASK2 ⎯ 15.73 kHz Ph HDS0 ⎯ −1.0 −0.8 −0.6 15.73 kHz W HDW0 ⎯ 4.3 4.5 4.7 31.5 kHz Ph HDS1 ⎯ −0.06 0.04 0.14 Pin 1 (VCC1) NTSC signal, MONITOR OUT (pin 9) 31.5 kHz W HDW1 ⎯ 2.05 2.25 2.45 33.75 kHz Ph HDS2 ⎯ −0.12 −0.02 0.08 33.75 kHz W HDW2 ⎯ 1.9 2.1 2.3 −0.07 0.03 0.13 (Note SY12) Unit kHz/V µA V H µs 45 kHz Ph HDS3 ⎯ 45 kHz W HDW3 ⎯ 1.4 1.6 1.8 D5 mode Ph HDS4 ⎯ 0.13 0.23 0.33 D5 mode W HDW4 ⎯ 1.9 2.1 2.3 RGB mode Ph HDS5 ⎯ 0 0.1 0.2 RGB mode W HDW5 ⎯ 2.23 2.35 2.47 High HDVH ⎯ Pin 17: High voltage 4.9 5.1 5.3 V Pin 17: Low voltage V HD output level HDVL ⎯ 0 0.1 0.3 ∆HP0− ⎯ 1.31 1.45 1.6 ∆HP0+ ⎯ 1.17 1.30 1.43 ∆HP1− ⎯ 0.67 0.74 0.81 ∆HP1+ ⎯ 0.59 0.65 0.72 ∆HP2− ⎯ 0.64 0.71 0.78 ∆HP2+ ⎯ 0.54 0.60 0.66 ∆HP3− ⎯ 0.46 0.51 0.56 ∆HP3+ ⎯ 0.41 0.45 0.50 (− ) → (+ ) HD-DUTY1 ⎯ pin 7: HD input 40 45 50 (+ ) → (− ) HD-DUTY2 ⎯ pin 17: Monitor 45 50 55 Low 15.73 kHz 31.5 kHz HD output phase adjustment range 33.75 kHz 45 kHz HD input polarity detection range Typ. VVCO VCO oscillation start voltage AFC phase detection stop period Min ID2− Test Condition (Note SY13) µs % 23 2005-09-05 TA1383AFG Characteristics 15.73 kHz 31.5 kHz 33.75 kHz Clamp pulse phase and width 45 kHz D5 mode RGB mode Clamp pulse output level Noise detection High Symbol Test Circuit Typ. Max CPS0 ⎯ 6.15 6.35 6.55 ⎯ 1.8 2 2.2 CPS1 ⎯ 2.85 2.95 3.05 CPW1 ⎯ 0.9 1 1.1 CPS2 ⎯ 1.85 1.95 2.05 CPW2 ⎯ 0.9 1.0 1.1 CPS3 ⎯ 1.95 2.05 2.15 CPW3 ⎯ 0.9 1.0 1.1 CPS4 ⎯ 0.75 0.85 0.95 CPW4 ⎯ 0.4 0.5 0.6 CPS5 ⎯ 0.05 0.15 0.25 CPW5 ⎯ 2.23 2.35 2.47 CPVH ⎯ 4.7 5.0 5.3 0 0.1 0.3 (Note SY14) pin 8, SA 02H: 86H CPVL ⎯ 00; 1 → 0 NHi00 ⎯ 37 50 63 01; 1 → 0 NHi01 ⎯ 26 35 44 10; 1 → 0 NHi10 ⎯ 20 27 34 11; 1 → 0 NHi11 ⎯ 17 23 29 00; 0 → 1 NLow00 ⎯ 17 23 29 01; 0 → 1 NLow01 ⎯ 13 18 23 10; 0 → 1 NLow10 ⎯ 9 14 19 11; 0 → 1 NLow11 ⎯ 8 12 16 High VDACH1 ⎯ Pin 8, SA02H: 80H 4.8 5 5.2 Low VDACL0 ⎯ Pin 8, SA02H: 81H 0 0.1 0.3 VthVD ⎯ Pin 5 0.6 0.75 0.9 525I-1 VDW000 ⎯ 451 513 575 525P VDW001 ⎯ 237 270 302 1125I VDW010 ⎯ 222 252 282 750P VDW011 ⎯ 451 513 575 525I-2 VDW100 ⎯ 455 517 579 525I-3 VDW101 ⎯ 222 252 282 1125P VDW110 ⎯ 222 252 282 525I-1 VDPh000 ⎯ 14.4 17.5 20.1 525P VDPh001 ⎯ 6.65 7.85 9.05 1125I VDPh010 ⎯ 6.15 7.25 8.35 (Note SY15) µs mVp-p V (Note SY16) 750P VDPh011 ⎯ 4.85 5.72 6.6 525I-1b VDPh000b ⎯ 12 14 16 High VDVH ⎯ Pin 15: High voltage 4.7 5.0 5.3 Low VDVL ⎯ Pin 15: Low voltage 0 0.1 0.3 VD output level Unit V Low VD input threshold VD output phase Min CPW0 DAC output voltage VD output width Test Condition V µs µs V 24 2005-09-05 TA1383AFG Symbol Test Circuit 525I-1 FVF000 ⎯ 525P FVF001 1125I Characteristics Vertical free-running frequency Test Condition Min Typ. Max Pin 15: Quiescent, SA00H: E0H ⎯ 262.5 ⎯ ⎯ Pin 15: Quiescent, SA00H: E2H ⎯ 525 ⎯ FVF010 ⎯ Pin 15: Quiescent, SA00H: E4H ⎯ 562.5 ⎯ 750P FVF011 ⎯ Pin 15: Quiescent, SA00H: E6H ⎯ 750 ⎯ 525I-2 FVF100 ⎯ Pin 15: Quiescent, SA00H: E8H ⎯ 262.5 ⎯ 525I-3 FVF101 ⎯ Pin 15: Quiescent, SA00H: EAH ⎯ 296.5 ⎯ 1125P FVF110 ⎯ Pin 15: Quiescent, SA00H: ECH ⎯ 562.5 ⎯ RGB FVF111 ⎯ Pin 15: Quiescent, SA00H: EEH ⎯ 562.5 ⎯ 525I-1 FVP000 ⎯ Pin 15, SA00H: 80H 224 ⎯ 296.5 H 525P FVP001 ⎯ Pin 15, SA00H: 82H 48.5 ⎯ 612 1125I FVP010 ⎯ Pin 15, SA00H: 84H 48.5 ⎯ 636 750P FVP011 ⎯ Pin 15, SA00H: 86H 48.5 ⎯ 848 525I-2 FVP100 ⎯ Pin 15, SA00H: 88H ⎯ 262.5 ⎯ 525I-3 FVP101 ⎯ Pin 15, SA00H: 8AH 32 ⎯ 296.5 1125P FVP110 ⎯ Pin 15, SA00H: 8CH 48.5 ⎯ 636 RGB FVP111 ⎯ Pin 15, SA00H: EEH 48.5 ⎯ 740 Vertical pull-in range 25 Unit H 2005-09-05 TA1383AFG Test Method (unless otherwise specified, VCC1 = 9 V, VCC2 = 5 V, Ta = 25°C ± 3°C, bus data: preset values) Note No. SW Mode Characteristic SW28 SW29 Test Method SW30 Y/back end block Y1 Y/back end block common test conditions A (1) Write data: Transmit PREST DATA. Read data: Read DATA. (2) Set SA 08H/09H/10H to 00H/00H/00H. (3) Set SW2 to A, SW4 to A, SW6 to B, SW9 to On, SW12 to A, SW16 to A, SW19 to A, SW22 to B, SW23 to B, and SW24 to B. I/O gain 2 C C (1) Set INPUT SW (SA 00H) to D-SYNC1/Y3/CbCr (PbPr) (C0H). (YPbPr → YCbCr) ↓ ↓ (2) Set MATRIX SW (SA 03H) to MODE-2 (A0H). A A (3) Input sine wave A (f = 100 kHz) to IN30 and set #30 amplitude to 0.2 Vp-p. ↓ (4) Measure #24 amplitude VMYC [V] and determine GMYC using the following equation. (5) Set SW29 to A, input sine wave B (f = 100 kHz) to IN29, and set #29 amplitude to 0.2 Vp-p. (6) Input sync signal to IN30. (7) Measure #24, #23, #22 amplitudes VMBC1, VMBC2, and VMBC3 [V], and determine GMBC1, GMBC2, and GMBC3 using the following equation. GMYC = 20 × log (VMYC/0.2) [dB] C GMBC* = 20 × log (VMBC*/0.2) [dB] (8) Set SW28 to A and SW29 to C, input sine wave B (f = 100 kHz), and set #28 amplitude to 0.2 Vp-p. (9) Input sync signal to IN30. (10) Measure #24, #23, #22 amplitudes VMRC1, VMRC2, and VMRC3 [V], and determine GMRC1, GMRC2, and GMRC3 using the following equation. GMRC* = 20 × log (VMRC*/0.2) [dB] 26 2005-09-05 TA1383AFG Note No. Y2 SW Mode Characteristic Test Method SW28 SW29 SW30 I/O gain 3 C C A (1) Set INPUT SW (SA 00H) to D-SYNC1/Y3/CbCr (PbPr) (C0H). (YCbCr → YPbPr) ↓ ↓ (2) Set MATRIX SW (SA 03H) to MODE-3 (C0H). A A (3) Input sine wave A (f = 100 kHz) to IN30 and set #30 amplitude to 0.2 Vp-p. ↓ (4) Measure #24 amplitude VMYP [V] and determine GMYP using the following equation. (5) Set SW29 to A, input sine wave B (f = 100 kHz) to IN29, and set #29 amplitude to 0.2 Vp-p. (6) Input sync signal to IN30. (7) Measure #24, #23, #22 amplitudes VMBP1, VMBP2, and VMBP3 [V], and determine GMBP1, GMBP2, and GMBP3 using the following equation. GMYP = 20 × log (VMYP/0.2) [dB] C GMBP* = 20 × log (VMBP*/0.2) [dB] (8) Set SW28 to A and SW29 to C, input sine wave B (f = 100 kHz) to IN28, and set #28 amplitude to 0.2 Vp-p. (9) Input sync signal to IN30. (10) Measure #24, #23, #22 amplitudes VMRP1, VMRP2, and VMRP3 [V], and determine GMRP1, GMRP2, and GMRP3 using the following equation. GMRP* = 20 × log (VMRP*/0.2) [dB] Y3 I/O gain 5 (RGB → YCbCr) C C A (1) Set INPUT SW (SA 00H) to DSYNC1/RGB (D0H). ↓ ↓ (2) Set MATRIX SW (SA 03H) to MODE-1 (80H). A A (3) Input sine wave A (f = 100 kHz) to IN30 and set #30 amplitude to 0.2 Vp-p. ↓ (4) Measure #24, #23, #22 amplitudes VMGA1, VMGA2, and VMGA3 [V], and determine GMGA1, GMGA2, and GMGA3 using the following equation. C GMGA* = 20 × log (VMGA*/0.2) [dB] (5) Set SW29 to A, input sine wave B (f = 100 kHz) to IN29, and set #29 amplitude to 0.2 Vp-p. (6) Input sync signal to IN30. (7) Measure #24, #23, #22 amplitudes VMBA1, VMBA2, and VMBA3 [V], and determine GMBA1, GMBA2, and GMBA3 using the following equation. GMBA* = 20 × log (VMBA*/0.2) [dB] (8) Set SW28 to A and SW29 to C, input sine wave B (f = 100 kHz) to IN28, and set #28 amplitude to 0.2 Vp-p. (9) Input sync signal to IN30. (10) Measure #24, #23, #22 amplitudes VMRA1, VMRA2, and VMRA3 [V], and determine GMRA1, GMRA2, and GMRA3 using the following equation. GMRA* = 20 × log (VMRA*/0.2) [dB] 27 2005-09-05 TA1383AFG Note No. Y4 SW Mode Characteristic Test Method SW28 SW29 SW30 I/O gain 6 C C A (1) Set INPUT SW (SA 00H) to DSYNC1/RGB (D0H). (RGB → YPbPr) ↓ ↓ (2) Set MATRIX SW (SA 03H) to MODE-4 (E0H). A A (3) Input sine wave A (f = 100 kHz) to IN30 and set #30 amplitude to 0.2 Vp-p. ↓ (4) Measure #24, #23, #22 amplitudes VMGB1, VMGB2, and VMGB3 [V], and determine GMGB1, GMGB2, and GMGB3 using the following equation. C GMGB* = 20 × log (VMGB*/0.2) [dB] (5) Set SW29 to A, input sine wave B (f = 100 kHz) to IN29, and set #29 amplitude to 0.2 Vp-p. (6) Input sync signal to IN30. (7) Measure #24, #23, #22 amplitudes VMBB1, VMBB2, and VMBB3 [V], and determine GMBB1, GMBB2, and GMBB3 using the following equation. GMBB* = 20 × log (VMBB*/0.2) [dB] (8) Set SW28 to A and SW29 to C, input sine wave B (f = 100 kHz), and set #28 amplitude to 0.2 Vp-p. (9) Input sync signal to IN30. (10) Measure #24, #23, #22 amplitudes VMRB1, VMRB2, and VMRB3 [V], and determine GMRB1, GMRB2, and GMRB3 using the following equation. GMRB* = 20 × log (VMRB*/0.2) [dB] 28 2005-09-05 TA1383AFG Note No. Characteristic SW Mode SW2 Chroma block CH1 ACC characteristic Test Method SW30 Chroma block common test conditions B C (1) Write data: Transmit PREST DATA. Read data: Read DATA. (2) Set SW2 to B, SW4 to C, SW6 to B, SW9 to On, SW12 to A, SW16 to A, SW19 to A, SW22 to B, SW23 to B, and SW24 to B, SW28 to C, SW29 to C, and SW30 to C. Input sync signal (15.734 kHz) to TP2. (1) Input rainbow signal to the C1 IN pin (burst: chroma = 1:1). (2) Adjust burst phase so that the lower extremity of the TP23A (Cb/Pb OUT) output waveform is at the second bar; the upper extremity, at the 7th bar. (3) Change the chroma input signal amplitudes to 10, 30, 300, and 600 mVp-p and measure the TP23A (Cb/Pb OUT) output amplitudes F11, F31, F301, and F601. Determine A2 = F31/F601 according to the measurement result in (3) above. (4) TA23A output signal waveform F30, F300, 6 1 2 3 4 5 7 8 F600 9 10 F10 10 TA23A (Cb/Pb OUT) output signal waveform CH2 CH3 Identification sensitivity APC frequency control sensitivity B C C C 30 300 600 C1 IN signal amplitude [mVp-p] (1) Input rainbow signal to the C1 IN pin (burst: chroma = 1:1). (2) Monitor TP26 (CW OUT) DC voltage. (3) Increase input signal amplitude from 0. When TP26 (CW OUT) DC voltage reaches High (3.2 V), measure input signal amplitude VCI. (4) Decrease input signal amplitude from 100 mVp-p. When TP26 (CW OUT) DC voltage drops Low (1.4 V), measure input signal amplitude VBI. (1) Connect #20 (APC FILTER) to external power supply (V20). (2) Change external power supply (V20) voltage. When #26 (CW OUT) output frequency matches 3.579545 MHz, voltage is referred to as Vf. (3) Measure #26 (CW OUT) output frequency Xf (+100) and Xf (−100) in relation to Vf ± ∆Vf (±100 mVp-p). Determine free-running sensitivity βf using the following equation. βf = (Xf (+100) − Xf (−100))/200 [Hz/mV] 29 2005-09-05 TA1383AFG Note No. CH4 Characteristic TOF characteristic SW Mode SW2 SW30 B C Test Method (1) Input sine wave C (10 mVp-p) to C1 IN pin. (2) Set TEST (SA 03H) to 82H and TINT (SA 07H) to 30H. (3) Set TOF f0 (SA 05H) to 87H (f0 max) and TOF Q (SA 06H) to 87H (Q max). (4) Set sine wave C frequency to 3.58 MHz, measure TP26 (CW OUT) signal amplitude, and determine input gain GFC. (5) Set sine wave C frequency to 3.58 MHz + 500 kHz, measure TP26 (CW OUT) signal amplitude, and determine input gain GFH. (6) Set sine wave C frequency to 3.58 MHz − 500 kHz, measure TP26 (CW OUT) signal amplitude, and determine input gain GFL. TP output signal waveform GFH GFC GFL f0 − 500 kHz f0 f0 + 500 kHz C IN input frequency CH5 TOF (f0・q) control characteristic B C (1) Input sine wave C (f0 = 3.579545 MHz, amplitude = 10 mVp-p) to C1 IN pin. (2) Set TEST (SA 03H) to 82H and TINT (SA 07H) to 30H. (3) Set TOF f0 (SA 05H) to 87H (f0 = max) and TOF Q (SA 06H) to 80H (Q min), measure CW OUT (TP26) signal amplitude, and determine input gain GFF. (4) Set TOF f0 (SA 05H) to 81H (f0 = min) and TOF Q (SA 06H) to 87H (max). (5) Measure CW OUT (TP26) signal amplitude, and determine input gain GFQ. 30 2005-09-05 TA1383AFG Note No. SW Mode Characteristic SW2 SW4 SW9 Test Method SW30 Sync block SY01 SYNC IN sync phase Sync block common test conditions ON (1) Write data: Transmit PREST DATA. Read data: Read DATA. (2) Set SW6 to B, SW12 to A, SW16 to B, SW19 to B, SW22 to B, SW23 to B, and SW24 to B, SW28 to B, and SW29 to B. A A A (1) Set SA 00H data to 80H (or 90H). or or or (2) Set SW2 to A (or C), SW4 to C (or A), and SW30 to C. C C C (3) Input composite video signal of 15.734-kHz horizontal frequency to Y1/SYNC1 IN (or Y2/SYNC2 IN). (4) Monitor #2 (or #4) pin waveform and #9 (AFC FILTER) pin waveform. Measure phase difference SPH. (5) Set SW2 to C, SW4 to C, and SW30 to A. (6) Input signal a to D-SYNC1/Y3 IN. (7) Set SA 00H data to C4H. (8) Monitor #30 pin waveform and #9 (AFC FILTER) pin waveform. Measure phase difference DS1PH. 29.63 µs 2 µs Signal a 0.286 V SPH, DS1PH #9 Pin Waveform 31 2005-09-05 TA1383AFG Note No. SY02 SW Mode Characteristic HD IN horizontal sync phase Test Method SW2 SW4 SW9 SW30 C C ON A (1) Set SA 00H data to E2H. (2) Input signal b (horizontal frequency 31.5 kHz) to #7 (HD IN). (3) Set SA 02H data to 02H. (4) Monitor #7 and #9 (AFC FILTER) pin waveforms. Measure phase difference HDPH. 31.75 µs 2.35 µs Signal b 1.5 V HDPH #9 Pin Waveform 32 2005-09-05 TA1383AFG Note No. SY03 SW Mode Characteristic Delayed HD pulse width Test Method SW2 SW4 SW9 SW30 C C ON A (1) Set SA 00H data to C0H and input 15.734-kHz composite video signal to D-SYNC1/Y3 IN. (2) Determine pulse width Wd-HD0 of delayed HD from #9 (AFC FILTER) pin waveform. (3) Set SA 00H data to C2H and input signal c (T = 31.75 µs, t = 2.35 µs) to D-SYNC1/Y3 IN. (4) Determine pulse width Wd-HD1 of delay HD from #9 (AFC FILTER) pin waveform. (5) Set SA 00H data to C4H and input signal c (T = 29.63 µs, t = 2 µs) to D-SYNC1/Y3 IN. (6) Determine pulse width Wd-HD2 of delay HD from #9 (AFC FILTER) pin waveform. (7) Set SA 00H data to C6H and input signal c (T = 22.22 µs, t = 1.65 µs) to D-SYNC1/Y3 IN. (8) Determine pulse width Wd-HD3 of delay HD from #9 (AFC FILTER) pin waveform. T t Signal c 0.286 V Wd-HD* #9 Pin Waveform 33 2005-09-05 TA1383AFG Note No. SY04 SW Mode Characteristic NTSC Test Method SW2 SW4 SW9 SW30 A C ON C horizontal sync separation level (1) Set SA 00H data to 80H. (2) Input 15.734-kHz composite video signal to Y1/SYNC1 IN. Set sync signal amplitude to 0.286 Vp-p. (3) Decrease horizontal sync signal amplitude of line 21 of field 1 in pedestal direction. (4) Monitor #3 (SYNC OUT). When no sync signal on line 21 of field 1 is detected, measure input signal sync amplitude of line 21, and determine sync separation level VthH10. (5) Set SA 01H data to 90H. (6) Repeat steps (3) and (4) above and determine sync separation level VthH11. (7) Set SA 01H data to A0H. (8) Repeat steps (3) and (4) above and determine sync separation level VthH12. (9) Set SA 01H data to B0H. (10) Repeat steps (3) and (4) above and determine sync separation level VthH13. SY05 NTSC vertical sync separation level A C ON C (1) Set SA 00H data to 80H. (2) Input 15.734-kHz composite video signal to Y1/SYNC1 IN. Set sync signal amplitude to 0.286 Vp-p. (3) Decrease vertical sync signal amplitude of first half of line 4 of field 1 in pedestal direction. (4) Monitor #15 (VD OUT). When VD pulse start phase shifts to line 5, measure input signal sync amplitude of line 4, and determine sync separation level VthV10. (5) Set SA 01H data to 84H. (6) Repeat steps (3) and (4) above and determine sync separation level VthV11. (7) Set SA 01H data to 88H. (8) Repeat steps (3) and (4) above and determine sync separation level VthV12. (9) Set SA 01H data to 8CH. (10) Repeat steps (3) and (4) above and determine sync separation level VthV13. 34 2005-09-05 TA1383AFG Note No. SY06 SW Mode Characteristic 1125I/60-Hz Test Method SW2 SW4 SW9 SW30 C C ON A horizontal sync separation level (1) Set SA 00H data to C4H. (2) Input 33.75-kHz (1125I/60-Hz) video signal to D-SYNC1/Y3 IN. Monitor #30 (D-SYNC1/Y3 IN) and measure sync tip DC voltage Vsync30. (3) Apply external voltage to #30 via 100 kΩ. Increase voltage from Vsync30. (4) Monitor #17 (HD OUT). When phase is unlocked from input sync signal, measure #30 sync tip voltage. Determine difference from Vsync30, VthH20. (5) Set SA 01H data to 90H. (6) Repeat steps (3) and (4) above and determine sync separation level VthH21. (7) Set SA 01H data to A0H. (8) Repeat steps (3) and (4) above and determine sync separation level VthH22. (9) Set SA 01H data to B0H. (10) Repeat steps (3) and (4) above and determine sync separation level VthH23. SY07 1125I/60-Hz vertical sync separation level C C ON A (1) SA 00H data to C4H. (2) Input 33.75-kHz (1125I/60-Hz) video signal to D-SYNC1/Y3 IN. Monitor #30 (D-SYNC1/Y3 IN) and measure sync tip DC voltage Vsync30. (3) Apply external voltage to #30 via 100 kΩ. Increase voltage from Vsync30. (4) Monitor #17 (HD OUT). When phase is unlocked from input sync signal, measure #30 sync tip voltage. Determine difference from Vsync30, VthV20. (5) Set SA 01H data to 84H. (6) Repeat steps (3) and (4) above and determine sync separation level VthV21. (7) Set SA 01H data to 88H. (8) Repeat steps (3) and (4) above and determine sync separation level VthV22. (9) Set SA 01H data to 8CH. (10) Repeat steps (3) and (4) above and determine sync separation level VthV23. 35 2005-09-05 TA1383AFG Note No. SY08 SW Mode Characteristic DSYNC2 sync separation level Test Method SW2 SW4 SW9 SW30 C C ON C (1) Set SW6 to A and set SA 00H data to 00H. (2) Input 33.75-kHz (1125I/60) video signal to TP6 (D-SYNC2 IN). (3) Monitor #6 (D-SYNC2 IN) and measure sync tip DC voltage Vsync6. (4) Apply external voltage to #30 via 100 kΩ. Increase voltage from Vsyn6. (5) Monitor READ BUS DATA. When H/V FREQ data deviate from approx. 33.75 kHz/60 Hz, measure #6 sync tip voltage. Determine difference from Vsync6, VthD20. (6) Set SA 01H data to 81H. (7) Repeat steps (3) and (4) above and determine sync separation level VthD21. (8) Set SA 01H data to 82H. (9) Repeat steps (3) and (4) above and determine sync separation level VthD22. (10) Set SA 01H data to 83H. (11) Repeat steps (3) and (4) above and determine sync separation level VthD23. SY09 SY10 Horizontal free-running frequency Horizontal frequency range C C C C OPEN OPEN C C (1) Set SW9 to open and SA 00H data to 80H. (2) Monitor #17 (HD OUT) pin waveform and measure oscillation frequency FA000. (3) As in steps (1) and (2) above, set SA00H data to 82H, 84H, 86H, 88H, and 8AH. Measure respective oscillation frequencies FA001, FA010, FA011, FA100, and FA101. (4) Set SA 00H data to 8CH, SA 02H to 83H, and SA 03H to 82H. (5) Monitor #17 (HD OUT) pin waveform and measure oscillation frequency FA110. (6) Set SA 00H data to 8EH, monitor #17 (HD OUT) pin waveform, and count oscillation frequency FA111. (7) Set SA 00H data to 80H, SA 02H to E0H, and SA 03H to 80H. (8) Monitor #17 (HD OUT) pin waveform and count oscillation frequency FF000. (1) Set SW9 to open and SA 00H data to 80H. (2) Apply 9 V to #9 via 10 kΩ. Monitor #17 (HD OUT) pin waveform and count oscillation frequency F1573MIN. (3) Apply 0 V to #9 via 10 kΩ. Monitor #17 (HD OUT) pin waveform and count oscillation frequency F1573MAX. (4) Set SA 00H data to 82H. As in steps (2) and (3) above, count oscillation frequencies F315MIN and F315MAX. (5) Set SA 00H data to 81H. As in steps (2) and (3) above, count oscillation frequencies 1573nMIN and F1573nMAX. 36 2005-09-05 TA1383AFG Note No. SY11 SW Mode Characteristic AFC phase detection current Test Method SW2 SW4 SW9 SW30 C C OPEN C (1) Set SA 00H to C0H and SA 02H to A0H. (2) Set SW9 to open and measure #9 voltage V9 (6.3 to 6.4 V) (measure #9 voltage at no load). (3) Connect external power supply (PS) to TP9 and apply V9. (4) Set SW30 to A. Input 15.734-kHz sync signal d to D-SYNC1/Y3 IN. Monitor #9. Measure voltages V1 and V2. (5) Set SA 02H data to C0H. Repeat steps (2) to (4) above. Measure voltages V3 and V4. (6) Set SA 02H data to 80H. Connect external power supply (PS) to TP9 and apply V9 − 0.1 V and measure voltage V5. (7) Connect external power supply (PS) to TP9 and apply V9 + 0.1 V and measure voltage V6. (8) Determine ID1 to ID6 using following equations. ID1+ = (V1 [V] ÷ 1 [kΩ]) × 1000 [µA] ID1− = (V2 [V] ÷ 1 [kΩ]) × 1000 [µA] ID2+ = (V3 [V] ÷ 1 [kΩ]) × 1000 [µA] ID2− = (V4 [V] ÷ 1 [kΩ]) × 1000 [µA] ID3+ = (V5 [V] ÷ 1 [kΩ]) × 1000 [µA] ID3− = (V6 [V] ÷ 1 [kΩ]) × 1000 [µA] 63.5 µs 4.7 µs Signal d 0.286 V V1, V3, V5 #9 Pin Waveform V2, V4, V6 37 2005-09-05 TA1383AFG Note No. SY12 SW Mode Characteristic HD output phase and width Test Method SW2 SW4 SW9 SW30 C C ON A (1) Set SA 00H data to C0H. (2) Input 15.734-kHz composite video signal to D-SYNC1/Y3 IN. (3) Measure #17 (HD OUT) and #30. Measure phase difference HDS0 and pulse width HDW0. (4) Set SA 00H data to C2H. Input signal c (T = 31.75 µs, t = 2.35 µs) and measure phase difference HDS1 and pulse width HDW1. (5) Set SA 00H data to C4H. Input signal c (T = 29.63 µs, t = 2 µs) to D-SYNC1/Y3 IN and measure phase difference HDS2 and pulse width HDW2. (6) Set SA 00H data to C6H. Input signal c (T = 24.1 µs, t = 1.65 µs) to D-SYNC1/Y3 IN and measure phase difference HDS3 and pulse width HDW3. (7) Set SA 00H data to CCH. Input signal c (T = 14.815 µs, t = 1 µs) to D-SYNC1/Y3 IN and measure phase difference HDS4 and pulse width HDW4. (8) Set SA 00H data to FEH. Input signal c (T = 31.75 µs, t = 2.35 µs, amplitude = 1.5 V) to D-SYNC1/Y3 IN and measure phase difference HDS5 and pulse width HDW5. T t Signal c 0.286 V HDS* #17 Pin Waveform HDW* 38 2005-09-05 TA1383AFG Note No. SY13 SW Mode Characteristic HD output phase adjustment range Test Method SW2 SW4 SW9 SW30 C C ON C (1) While monitoring #17 (HD OUT), change SA 04H data from 80H to 88H, and measure #17 pin waveform phase amount ∆HP0−. (2) While monitoring #17 (HD OUT), change SA 04H data from 88H to 8FH, and measure #17 pin waveform phase amount ∆HP0+. (3) Set SA 00H data to 82H. While monitoring #17 (HD OUT), change SA 04H data from 80H to 88H, and measure #17 pin waveform phase amount ∆HP1−. (4) While monitoring #17 (HD OUT), change SA 04H data from 88H to 8FH, and measure #17 pin waveform phase amount ∆HP1+. (5) Set SA 00H data to 84H. While monitoring #17 (HD OUT), change SA 04H data from 80H to 88H, and measure #17 pin waveform phase amount ∆HP2−. (6) While monitoring #17 (HD OUT), change SA 04H data from 88H to 8FH, and measure #17 pin waveform phase amount ∆HP2+. (7) Set SA 00H data to 86H. While monitoring #17 (HD OUT), change SA 04H data from 80H to 88H, and measure #17 pin waveform phase amount ∆HP3−. (8) While monitoring #17 (HD OUT), change SA 04H data from 88H to 8FH, and measure #17 pin waveform phase amount ∆HP3+. 39 2005-09-05 TA1383AFG Note No. SY14 SW Mode Characteristic Clamp pulse phase and width Test Method SW2 SW4 SW9 SW30 C C ON A (1) Set SA 00H data to C0H. Input 15.734-kHz composite video signal to D-SYNC1/Y3 IN. (2) Set SA 02H data to 86H. (3) Monitor TP8 (MONITOR OUT) and #30 pin waveforms. Measure clamp pulse phase CPS0 and width CPW0. (4) Set SA 00H data to C2H. Input signal c (T = 31.75 µs, t = 2.35 µs) to D-SYNC1/Y3 IN. (5) Monitor TP8 (MONITOR OUT) and #30 pin waveforms. Measure clamp pulse phase CPS1 and width CPW1. (6) Set SA 00H data to C4H. Input signal c (T = 29.63 µs, t = 2 µs) to D-SYNC1/Y3 IN. (7) Monitor TP8 (MONITOR OUT) and #30 pin waveforms. Measure clamp pulse phase CPS2 and width CPW2. (8) Set SA 00H data to C6H. Input signal c (T = 22.22 µs, t = 1.65 µs) to D-SYNC1/Y3 IN. (9) Monitor TP8 (MONITOR OUT) and #30 pin waveforms. Measure clamp pulse phase CPS3 and width CPW3. (10) Set SA 00H data to CCH. Input signal c (T = 14.815 µs, t = 1.15 µs) to D-SYNC1/Y3 IN. (11) Monitor TP8 (MONITOR OUT) and #30 pin waveforms. Measure clamp pulse phase CPS4 and width CPW4. (12) Set SA 00H data to FEH. Input signal c (T = 31.75 µs, t = 2.35 µs, amplitude = 1.5 V) to D-SYNC1/Y3 IN. (13) Monitor TP8 (MONITOR OUT) and #30 pin waveforms. Measure clamp pulse phase CPS5 and width CPW5. T t Signal c 0.286 V CPS* TP8 Pin Waveform CPW* SY15 Noise detection A C ON C (1) Set SA 00H data to 80H. (2) Input 500-kHz sine wave to Y1/SYNC2 IN. Increase sine wave amplitude from 0 Vp-p. When READ MODE 1 N-DET changes from 0 to 1, measure amplitude NHi00. Input 500-kHz sine wave to Y1/SYNC2 IN. Decrease sine wave amplitude from 1.0 Vp-p. When READ MODE 1 N-DET changes from 1 to 0, measure amplitude NLow00. As in steps (1) and (2) above, set SA 02H (NOISE LVL) data to 88H, 90H, and 98H, and measure respective amplitudes NHi01, NLow01, NHi0, NLow10, NHi11, and Nlow11. (3) (4) 40 2005-09-05 TA1383AFG Note No. SY16 SW Mode Characteristic VD output width VD output phase Test Method SW2 SW4 SW9 SW30 C C ON A (1) Set SA 00H data to C0H. Input 15.734-kHz composite video signal (525I/60-Hz) to D-SYNC1/Y3 IN. (2) Monitor #30 and TP15 (VP OUT). Measure VD output width VDW000 and phase difference VDPh000. (3) Set SA 00H data to C8H. Monitor #30 and TP15 (VP OUT). Measure VD output width VDW100. (4) Set SA 00H data to CAH. Monitor #30 and TP15 (VP OUT). Measure VD output width VDW101. (5) Set SA 00H data to C0H and SA 03H data to 84H. Monitor #30 and TP15 (VP OUT). Measure VD output phase difference VDPh000b. (6) Set SA 00H data to C2H. Input 525P/60-Hz composite video signal to D-SYNC1/Y3 IN. (7) Monitor #30 and TP15 (VP OUT). Measure VD output phase difference VDPh001 and width VDW001. (8) Set SA 00H data to C4H. Input 1125I/60-Hz composite video signal to D-SYNC1/Y3 IN. (9) Monitor #30 and TP15 (VP OUT). Measure VD output phase difference VDPh010 and width VDW010. (10) Set SA 00H data to C6H. Input 750P/60-Hz composite video signal to D-SYNC1/Y3 IN. (11) Monitor #30 and TP15 (VP OUT). Measure VD output phase difference VDPh110 and width VDW110. (12) Set SA 00H data to CCH. Input 1125P/60-Hz composite video signal to D-SYNC1/Y3 IN. (13) Monitor #30 and TP15 (VP OUT). Measure VD output width VDW110. Video Signal 525I-60 Hz or 525P-60 Hz TP15 Pin Waveform VDPh000, VDPh000b, VDPh001 VDW000, VDPh001, VDW100, VDW101 Video Signal 1125I-60 Hz VDPh010 TP15 Pin Waveform Video Signal 750P-60 Hz or 1125P-60 Hz TP15 Pin Waveform 41 VDW010 VPPh011 VDW011, VDW110 2005-09-05 TA1383AFG Signals Used for Testing • Sine wave A • Sine wave B • Sync signal • Rainbow signal 180°150°120° 90° 60° 30° 0° −30°−60°−90° • Sine wave C • Composite video signal 15.743 kHz 42 2005-09-05 A C B A C B TP2 TP4 #5 DV IN A B TP6 D-SYNC2 IN 43 #8 #9 #7 TP8 TP9 HD IN MONITOR #10 10 11 A B C D #12 12 ADD #13 13 SDA 18 #14 14 SCL C1 IN #17 VD OUT HD OUT 19 100 Ω 0.1 µF (Note 7) or 100 pF BC A SCL 20 DIGITAL GND 0.0022 µF 3.58 MHz X’tal 30 kΩ 0.22 µF #19 SDA 21 C2 IN APC FILTER 100 Ω #20 ADDRESS GND1 100 Ω 12 pF 100 Ω #21 HD OUT TP17 BC A #16 17 16 #15 0.1 µF (Note 7) or 100 pF TP19 100 Ω 9 CSB503F30 3.58 X’tal A B HVCO Cr/Pr OUT A B 1.6 kΩ 2.2 kΩ 75 Ω 1.6 kΩ 2.2 kΩ 75 Ω 10 µF 100 µF 0.01 µF 2.7 kΩ 2.7 kΩ 1.6 kΩ TP22B 1.6 kΩ TP23B 1.6 kΩ TP24B 3.9 kΩ 3.9 kΩ C1 IN IN16 470 Ω 8 AFC FILTER Cb/Pb OUT Y OUT TP24A TP23A TP22A 10 µF 470 Ω 7 MONITOR OUT 6 C2 IN IN19 15 kΩ 15 kΩ 15 kΩ #6 HD IN #24 #23 #22 Cr Cb Y OUT 25 24 OUT 23 OUT 22 A B 470 Ω 5 SW9 4 1 kΩ #4 VCC2 (5 V) TP26B 6.2 kΩ Sync OUT 3 CW TP26 OUT 100 Ω 0.01 µF 100 µF TP28 0.01 µF #3 #26 D-SYNC2 IN (for freq. det.) 26 fsc OUT 10 µF 100 Ω 2 B A C VD IN 27 GND2 1.6 kΩ 5.1 kΩ 75 Ω TP26C 0.1 µF #2 #28 0.1 µF B A C Y2/SYNC2 IN 28 Cr/Pr/R IN TP29 0.1 µF 1 #29 0.1 µF B A C SYNC OUT 29 Cb/Pb/B IN #30 0.1 µF 3.9 kΩ TP30 10 KΩ 30 D-SYNC1/Y3/G IN 1.6 kΩ 5.1 kΩ 10 µF Y1/SYNC1 IN VCC1 (9 V) 3.9 kΩ IN29 0.1 µF 100 µF 0.01 µF 1.6 kΩ 5.1 kΩ 75 Ω IN28 1 µF Y1/Sync2 IN 10 µF IN4 1.6 kΩ Y1/Sync1 IN 10 µF IN2 3.9 kΩ D-Sync1/Y3 IN 10 µF IN30 1.6 kΩ 5.1 kΩ 75 Ω Cb IN 3.9 kΩ 75 Ω 0.01 µF Cr IN 5.1 kΩ 75 Ω VCC 9 V 100 µF TA1383AFG Test Circuit Diagram VCC 5 V TP16 TA1383AFG 15 VD OUT TP15 Note 7: If there is a possibility of inputting CVBS signals, connect a 100-pF capacitor. 2005-09-05 Y2/Sync2 IN D-Sync2 IN 1.6 kΩ 10 µF Y1/Sync1 DV IN 10 µF Y2/Sync2 D-Sync2 44 HD IN MONITOR SDA A B C D SCL VD OUT ADD 18 SDA 17 SCL C1 IN 0.1 µF (Note 8) or 100 pF 0.1 µF (Note 8) or 100 pF 1.6 kΩ 2.2 kΩ 75 Ω 2.7 kΩ 2.7 kΩ 2.2 kΩ 1.6 kΩ 75 Ω C2 IN HD OUT 19 DIGITAL GND 20 C2 IN 21 30 kΩ 0.22 µF 0.01 µF 10 µF 470 Ω ADDRESS APC FILTER 2200 pF X’tal Cr OUT Cb OUT 5V 470 Ω GND1 3.58 X’tal 12 pF 100 Ω 100 Ω 100 Ω Y OUT C2 IN HVCO HVCO 22 Cr/Pr OUT Y OUT 0.01 µF 100 µF 100 µF 0.01 µF 0.01 µF 3.9 kΩ 5V 15 kΩ 15 kΩ 15 kΩ Sync OUT 23 470 Ω AFC FILTER 24 Cb/Pb OUT 25 VCC2 (5 V) CW OUT 6.2 kΩ MONITOR OUT 26 fsc OUT D-Sync1/Y3 1 µF HD IN 27 GND2 #28 0.1 µF Cb 0.01 µF D-SYNC2 IN (for freq. det.) 28 Cr/Pr/R IN 0.1 µF 1.6 kΩ 5.1 kΩ Reg. 0.1 µF VD IN 2 Y2/SYNC2 IN 29 Cb/Pb/B IN 0.1 µF 1.6 kΩ 3.9 kΩ 5.1 kΩ 9V 0.1 µF 10 µF SYNC OUT 1 10 KΩ Y1/SYNC1 IN 3.9 kΩ 30 D-SYNC1/Y3/G IN 1.6 kΩ 5.1 kΩ 75 Ω Cr 0.1 µF 3.9 kΩ D-Sync1/Y3 IN 10 µF VCC1 (9 V) 1.6 kΩ 5.1 kΩ 0.01 µF 75 Ω 10 µF 100 µF 0.01 µF 3.9 kΩ Y1/Sync1 IN 5.1 kΩ 75 Ω 10 µF 1.6 kΩ 3.9 kΩ 75 Ω 0.01 µF Cr IN 5.1 kΩ 75 Ω Cb IN 75 Ω 9V 100 µF TA1383AFG Application Circuit 1 (Typical values) C1 IN 10 µF C1 IN HD OUT 16 TA1383AFG 3 4 5 6 7 8 9 10 11 12 13 14 15 VD OUT Note 8: If there is a possibility of inputting CVBS signals, connect a 100-pF capacitor. 2005-09-05 TA1383AFG Application Circuit 2 (How to measure H/V frequency) 16 C1-IN APC 19 C2-IN Internal pulse (A) FREQ COUNTER 6 D-SYNC2-IN (for H/V freq. counter) BUS READ TA1383 This IC’s H/V frequency counting is done by internal pulse (A) which is made in APC circuit. So, if APC circuit doesn’t lock in the regular frequency, the frequency of pulse (A) will not be correct and the H/V frequency data will not be showed correct data. Decision algorithm of H/V frequency detection (detection range, detection times and so on) should be determined under consideration the factors such as signal strength, existence of ghost signal, APC stability, I2C BUS data transmission and so on via prototype TV set evaluation. 45 2005-09-05 TA1383AFG Package Dimensions Weight: 0.63 g (typ.) 46 2005-09-05 TA1383AFG 47 2005-09-05