IRFP15N60L, SiHFP15N60L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Superfast Body Diode Eliminates the Need for External Diodes in ZVS Applications 600 RDS(on) (Ω) VGS = 10 V 0.385 Available RoHS* Qg (Max.) (nC) 100 Qgs (nC) 30 • Lower Gate Charge Results in Simple Drive Requirements 46 • Enhanced dV/dt Capabilities Offer Improved Ruggedness Qgd (nC) Configuration Single COMPLIANT • Higher Gate Voltage Threshold Offers Improved Noise Immunity D • Lead (Pb)-free Available TO-247 APPLICATIONS G • Zero Voltage Switching SMPS • Telecom and Server Power Supplies S D G • Uninterruptible Power Supplies S N-Channel MOSFET • Motor Control Applications ORDERING INFORMATION Package TO-247 IRFP15N60LPbF SiHFP15N60L-E3 IRFP15N60L SiHFP15N60L Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 VGS at 10 V Continuous Drain Current Pulsed Drain TC = 25 °C ID TC = 100 °C Currenta IDM Linear Derating Factor UNIT V 15 9.7 A 60 2.3 W/°C mJ Single Pulse Avalanche Energyb EAS 320 Repetitive Avalanche Currenta IAR 15 A Repetitive Avalanche Energya EAR 28 mJ Maximum Power Dissipation TC = 25 °C PD 280 W dV/dt 10 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 2.9 mH, RG = 25 Ω, IAS = 15 A, dV/dt = 10 V/ns (see fig. 12a). c. ISD ≤ 15 A, dI/dt ≤ 340 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91204 S-Pedning-Rev. B, 24-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRFP15N60L, SiHFP15N60L Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.44 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.39 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V VGS = ± 30 V - - ± 100 nA VDS = 600 V, VGS = 0 V - - 50 µA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage IGSS Zero Gate Voltage Drain Current IDSS Drain-Source On-State Resistance RDS(on) Forward Transconductance gfs VDS = 480 V, VGS = 0 V, TJ = 125 °C ID = 9.0 Ab VGS = 10 V VDS = 50 V, ID = 9.0 A - - 2.0 mA - 0.385 0.460 Ω 8.3 - - S - 2720 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Effective Output Capacitance Coss eff. Effective Output Capacitance (Energy Related) Coss eff. (ER) Total Gate Charge Qg Gate-Source Charge Qgs VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 0 V, VDS = 0 V to 480 Vc VGS = 10 V ID = 15 A, VDS = 480 V, see fig. 7 and 15b - 260 - - 20 - - 120 - - 100 - - - 100 - - 30 Gate-Drain Charge Qgd - - 46 Turn-On Delay Time td(on) - 20 - - 44 - - 28 - - 5.5 - - - 15 - - 60 Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 300 V, ID = 15 A, RG = 1.8 Ω, VGS = 10 V, see fig. 11a and 11bb tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Time IRRM Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 15 A, VGS = 0 Vb - - 1.5 TJ = 25 °C, IF = 15 A - 130 200 TJ = 125 °C, dI/dt = 100 A/µsb - 240 360 TJ = 25 °C, IF = 15 A, VGS = 0 Vb - 450 670 - 1080 1620 - 5.8 8.7 TJ = 125 °C, dI/dt = 100 TJ = 25 °C A/µsb V ns nC A Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91204 S-Pedning-Rev. B, 24-Jun-08 IRFP15N60L, SiHFP15N60L Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 1000 100 10 BOTTOM 1000 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V 5.0V ID, Drain-to-Source Current (Α) ID, Drain-to-Source Current (A) TOP 1 5.0V 0.1 0.01 100 T J = 150°C 10 1 T J = 25°C 0.1 VDS = 50V 20μs PULSE WIDTH 20μs PULSE WIDTH Tj = 25°C 0.001 0.01 0.1 1 10 100 4 VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 8 10 12 14 16 3.0 10 BOTTOM 5.0V 1 0.1 20μs PULSE WIDTH Tj = 150°C ID = 15A 2.5 VGS = 10V 2.0 (Normalized) TOP VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V 5.0V RDS(on) , Drain-to-Source On Resistance 100 ID, Drain-to-Source Current (A) 6 VGS , Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics 1.5 1.0 0.5 0.0 0.01 0.1 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91204 S-Pedning-Rev. B, 24-Jun-08 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFP15N60L, SiHFP15N60L Vishay Siliconix 100000 ID= 15A VGS , Gate-to-Source Voltage (V) 10000 C, Capacitance(pF) 12.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 1000 Coss 100 Crss 10 10.0 VDS= 120V 8.0 6.0 4.0 2.0 0.0 1 1 10 100 0 1000 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 25 10 20 30 40 50 60 70 Q G Total Gate Charge (nC) Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage 100.00 ISD, Reverse Drain Current (A) 20 Energy (μJ) VDS= 480V VDS= 300V 15 10 5 T J = 150°C 10.00 T J = 25°C 1.00 VGS = 0V 0 0 100 200 300 400 500 600 700 VDS, Drain-to-Source Voltage (V) Fig. 6 - Typical Output Capacitance Stored Energy vs. VDS www.vishay.com 4 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig. 8 - Typical Source-Drain Diode Forward Voltage Document Number: 91204 S-Pedning-Rev. B, 24-Jun-08 IRFP15N60L, SiHFP15N60L Vishay Siliconix ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 100μsec 1msec 1 Tc = 25°C Tj = 150°C Single Pulse 10msec 0.1 1 10 100 1000 10000 VDS, Drain-to-Source Voltage (V) Fig. 9 - Maximum Safe Operating Area RD VDS 16 VGS 14 D.U.T. RG + - VDD ID, Drain Current (A) 12 10 V 10 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 8 Fig. 11a - Switching Time Test Circuit 6 4 VDS 90 % 2 0 25 50 75 100 125 150 T C , Case Temperature (°C) 10 % VGS td(on) Fig. 10 - Maximum Drain Current vs. Case Temperature Document Number: 91204 S-Pedning-Rev. B, 24-Jun-08 tr td(off) tf Fig. 11b - Switching Time Waveforms www.vishay.com 5 IRFP15N60L, SiHFP15N60L Vishay Siliconix Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 P DM t1 0.001 SINGLE PULSE ( THERMAL RESPONSE ) t2 Notes: 1. Duty factor D = 2. Peak T 0.0001 1E-006 1E-005 0.0001 0.001 t1 / t 2 J = P DM x Z thJC 0.01 +TC 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 600 EAS , Single Pulse Avalanche Energy (mJ) VGS(th) Gate threshold Voltage (V) 5.0 4.5 4.0 3.5 ID = 250μA 3.0 2.5 2.0 ID 6.7A 9.5A BOTTOM 15A TOP 500 400 300 200 100 0 -75 -50 -25 0 25 50 75 100 125 150 175 25 T J , Temperature ( °C ) 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig. 13 - Threshold Voltage vs. Temperature Fig. 14a - Maximum Avalanche Energy vs. Drain Current VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 14b - Unclamped Inductive Test Circuit www.vishay.com 6 A Fig. 14c - Unclamped Inductive Waveforms Document Number: 91204 S-Pedning-Rev. B, 24-Jun-08 IRFP15N60L, SiHFP15N60L Vishay Siliconix Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V QGS 0.2 µF 0.3 µF QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 15a - Basic Gate Charge Waveform Fig. 15b - Gate Charge Test Circuit Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 16 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91204. Document Number: 91204 S-Pedning-Rev. B, 24-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1