VISHAY SIHFP460A

IRFP460A, SiHFP460A
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Requirement
• Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
• Fully
Characterized
Capacitance
and
Avalanche Voltage and Current
• Effective Coss Specified
• Lead (Pb)-free Available
500
RDS(on) (Ω)
VGS = 10 V
0.27
Qg (Max.) (nC)
105
Qgs (nC)
26
Qgd (nC)
42
Configuration
Single
D
Available
RoHS*
COMPLIANT
APPLICATIONS
TO-247
• Switch Mode Power Supply (SMPS)
• Uninterruptable Power Supply
• High Speed Power Switching
G
TYPICAL SMPS TOPOLOGIES
S
D
• Full Bridge
• PFC Boost
S
G
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-247
IRP460APbF
SiHFP460A-E3
IRP460A
SiHFP460A
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
Pulsed Drain
VGS at 10 V
TC = 25 °C
TC = 100 °C
Currenta
ID
IDM
Linear Derating Factor
UNIT
V
20
13
A
80
2.2
W/°C
mJ
Single Pulse Avalanche Energyb
EAS
960
Repetitive Avalanche Currenta
IAR
20
A
Repetitive Avalanche Energya
EAR
28
mJ
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
PD
280
W
dV/dt
3.8
V/ns
TJ, Tstg
- 55 to + 150
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 4.3 mH, RG = 25 Ω, IAS = 20 A (see fig. 12).
c. ISD ≤ 20 A, dI/dt ≤ 125 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91234
S-81360-Rev. A, 28-Jul-08
www.vishay.com
1
IRFP460A, SiHFP460A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
40
Case-to-Sink, Flat, Greased Surface
RthCS
0.24
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.45
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS
VGS = 0 V, ID = 250 µA
500
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.61
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.0
V
nA
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
IGSS
IDSS
RDS(on)
gfs
VGS = ± 30 V
-
-
± 100
VDS = 500 V, VGS = 0 V
-
-
25
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
250
-
-
0.27
Ω
11
-
-
S
-
3100
-
-
480
-
-
18
-
ID = 12 Ab
VGS = 10 V
VDS = 50 V, ID = 12
Ab
µA
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Coss
Effective Output Capacitance
Total Gate Charge
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
VGS = 0 V
Coss eff.
VDS = 1.0 V, f = 1.0 MHz
4430
VDS = 400 V, f = 1.0 MHz
130
VDS = 0 V to 400
Vc
Qg
140
-
-
105
Gate-Source Charge
Qgs
-
-
26
Gate-Drain Charge
Qgd
-
-
42
Turn-On Delay Time
td(on)
-
18
-
tr
-
55
-
-
45
-
-
39
-
-
-
20
-
-
80
Rise Time
Turn-Off Delay Time
Fall Time
td(off)
VGS = 10 V
ID = 20 A, VDS = 400 V,
see fig. 6 and 13b
VDD = 250 V, ID = 20 A,
RG = 4.3 Ω, RD = 13 Ω, see fig. 10b
tf
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 20A, VGS = 0 Vb
TJ = 25 °C, IF = 20 A, dI/dt = 100 A/µsb
-
-
1.8
V
-
480
710
ns
-
5.0
7.5
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91234
S-81360-Rev. A, 28-Jul-08
IRFP460A, SiHFP460A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
102
VGS
Top
10
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
1
4.5 V
20 µs Pulse Width
TC = 25 °C
0.1
0.1
VDS, Drain-to-Source Voltage (V)
91234_01
150 °C
10
25 °C
1
4.0
10
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
4.5 V
20 µs Pulse Width
TC = 150 °C
1
10
1
91234_02
Fig. 2 - Typical Output Characteristics
Document Number: 91234
S-81360-Rev. A, 28-Jul-08
3.0
2.5
7.0
8.0
9.0
ID = 20 A
VGS = 10 V
2.0
1.5
1.0
0.5
0.0
- 60 - 40 - 20
102
VDS, Drain-to-Source Voltage (V)
6.0
Fig. 3 - Typical Transfer Characteristics
RDS(on), Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
VGS
Top
5.0
VGS, Gate-to-Source Voltage (V)
91234_03
Fig. 1 - Typical Output Characteristics
102
20 µs Pulse Width
VDS = 50 V
0.1
102
10
1
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
102
91234_04
0
20 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFP460A, SiHFP460A
Vishay Siliconix
VGS = 0 V, f = 1 MHz
Ciss = Cgs + Cgd, Cds Shorted
Crss = Cgd
Coss = Cds + Cgd
Capacitance (pF)
104
Ciss
103
102
Coss
10
Crss
102
ISD, Reverse Drain Current (A)
105
VGS = 0 V
0.1
1
102
10
103
VDS, Drain-to-Source Voltage (V)
91234_05
0.2
103
ID, Drain Current (A)
12
VDS = 100 V
8
4
For test circuit
see figure 13
0
0
91234_06
20
40
60
80
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
1.0
1.2
1.4
1.6
102
10 µs
100 µs
10
1 ms
1
TC = 25 °C
TJ = 150 °C
Single Pulse
10
100
QG, Total Gate Charge (nC)
0.8
Operation in this area limited
by RDS(on)
VDS = 400 V
VDS = 250 V
0.6
Fig. 7 - Typical Source-Drain Diode Forward Voltage
ID = 20 A
16
0.4
VSD, Source-to-Drain Voltage (V)
91234_07
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
VGS, Gate-to-Source Voltage (V)
25 °C
1
1
20
150 °C
10
91234_08
10 ms
102
103
104
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91234
S-81360-Rev. A, 28-Jul-08
IRFP460A, SiHFP460A
Vishay Siliconix
RD
VDS
VGS
ID, Drain Current (A)
20
D.U.T.
RG
+
- VDD
10 V
15
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
10
Fig. 10a - Switching Time Test Circuit
VDS
5
90 %
0
25
50
75
100
125
150
10 %
VGS
TC, Case Temperature (°C)
91234_09
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (ZthJC)
1
0 − 0.5
0.1
0.2
0.1
0.05
10-2
PDM
0.02
0.01
t1
Single Pulse
(Thermal Response)
t2
Notes:
1. Duty Factor, D = t1/t2
2. Peak Tj = PDM x ZthJC + TC
10-3
10-5
10-4
10-3
10-2
0.1
1
t1, Rectangular Pulse Duration (S)
91234_11
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
tp
L
VDS
D.U.T.
RG
IAS
20 V
tp
Driver
+
A
- VDD
IAS
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91234
S-81360-Rev. A, 28-Jul-08
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFP460A, SiHFP460A
2400
ID
Top
8.9 A
13 A
Bottom 20 A
2000
1600
1200
800
400
0
620
VDSav, Avalanche Voltage (V)
EAS, Single Pulse Avalanche Energy (mJ)
Vishay Siliconix
600
580
560
540
25
50
75
100
125
Starting TJ, Junction Temperature (°C)
91234_12c
0
150
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
8
4
12
16
20
IAV, Avalanche Current (A)
91234_12d
Fig. 12d - Typical Drain-to-Source Voltage vs.
Avalanche Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91234
S-81360-Rev. A, 28-Jul-08
IRFP460A, SiHFP460A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91234.
Document Number: 91234
S-81360-Rev. A, 28-Jul-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1