IRFP460A, SiHFP460A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss Specified • Lead (Pb)-free Available 500 RDS(on) (Ω) VGS = 10 V 0.27 Qg (Max.) (nC) 105 Qgs (nC) 26 Qgd (nC) 42 Configuration Single D Available RoHS* COMPLIANT APPLICATIONS TO-247 • Switch Mode Power Supply (SMPS) • Uninterruptable Power Supply • High Speed Power Switching G TYPICAL SMPS TOPOLOGIES S D • Full Bridge • PFC Boost S G N-Channel MOSFET ORDERING INFORMATION Package TO-247 IRP460APbF SiHFP460A-E3 IRP460A SiHFP460A Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current Pulsed Drain VGS at 10 V TC = 25 °C TC = 100 °C Currenta ID IDM Linear Derating Factor UNIT V 20 13 A 80 2.2 W/°C mJ Single Pulse Avalanche Energyb EAS 960 Repetitive Avalanche Currenta IAR 20 A Repetitive Avalanche Energya EAR 28 mJ Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 280 W dV/dt 3.8 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 4.3 mH, RG = 25 Ω, IAS = 20 A (see fig. 12). c. ISD ≤ 20 A, dI/dt ≤ 125 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91234 S-81360-Rev. A, 28-Jul-08 www.vishay.com 1 IRFP460A, SiHFP460A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.45 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.61 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance IGSS IDSS RDS(on) gfs VGS = ± 30 V - - ± 100 VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 - - 0.27 Ω 11 - - S - 3100 - - 480 - - 18 - ID = 12 Ab VGS = 10 V VDS = 50 V, ID = 12 Ab µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Effective Output Capacitance Total Gate Charge VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 0 V Coss eff. VDS = 1.0 V, f = 1.0 MHz 4430 VDS = 400 V, f = 1.0 MHz 130 VDS = 0 V to 400 Vc Qg 140 - - 105 Gate-Source Charge Qgs - - 26 Gate-Drain Charge Qgd - - 42 Turn-On Delay Time td(on) - 18 - tr - 55 - - 45 - - 39 - - - 20 - - 80 Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 10 V ID = 20 A, VDS = 400 V, see fig. 6 and 13b VDD = 250 V, ID = 20 A, RG = 4.3 Ω, RD = 13 Ω, see fig. 10b tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 20A, VGS = 0 Vb TJ = 25 °C, IF = 20 A, dI/dt = 100 A/µsb - - 1.8 V - 480 710 ns - 5.0 7.5 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91234 S-81360-Rev. A, 28-Jul-08 IRFP460A, SiHFP460A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 102 VGS Top 10 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 1 4.5 V 20 µs Pulse Width TC = 25 °C 0.1 0.1 VDS, Drain-to-Source Voltage (V) 91234_01 150 °C 10 25 °C 1 4.0 10 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom 4.5 V 4.5 V 20 µs Pulse Width TC = 150 °C 1 10 1 91234_02 Fig. 2 - Typical Output Characteristics Document Number: 91234 S-81360-Rev. A, 28-Jul-08 3.0 2.5 7.0 8.0 9.0 ID = 20 A VGS = 10 V 2.0 1.5 1.0 0.5 0.0 - 60 - 40 - 20 102 VDS, Drain-to-Source Voltage (V) 6.0 Fig. 3 - Typical Transfer Characteristics RDS(on), Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) VGS Top 5.0 VGS, Gate-to-Source Voltage (V) 91234_03 Fig. 1 - Typical Output Characteristics 102 20 µs Pulse Width VDS = 50 V 0.1 102 10 1 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 102 91234_04 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFP460A, SiHFP460A Vishay Siliconix VGS = 0 V, f = 1 MHz Ciss = Cgs + Cgd, Cds Shorted Crss = Cgd Coss = Cds + Cgd Capacitance (pF) 104 Ciss 103 102 Coss 10 Crss 102 ISD, Reverse Drain Current (A) 105 VGS = 0 V 0.1 1 102 10 103 VDS, Drain-to-Source Voltage (V) 91234_05 0.2 103 ID, Drain Current (A) 12 VDS = 100 V 8 4 For test circuit see figure 13 0 0 91234_06 20 40 60 80 Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1.0 1.2 1.4 1.6 102 10 µs 100 µs 10 1 ms 1 TC = 25 °C TJ = 150 °C Single Pulse 10 100 QG, Total Gate Charge (nC) 0.8 Operation in this area limited by RDS(on) VDS = 400 V VDS = 250 V 0.6 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID = 20 A 16 0.4 VSD, Source-to-Drain Voltage (V) 91234_07 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage VGS, Gate-to-Source Voltage (V) 25 °C 1 1 20 150 °C 10 91234_08 10 ms 102 103 104 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91234 S-81360-Rev. A, 28-Jul-08 IRFP460A, SiHFP460A Vishay Siliconix RD VDS VGS ID, Drain Current (A) 20 D.U.T. RG + - VDD 10 V 15 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 10 Fig. 10a - Switching Time Test Circuit VDS 5 90 % 0 25 50 75 100 125 150 10 % VGS TC, Case Temperature (°C) 91234_09 td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (ZthJC) 1 0 − 0.5 0.1 0.2 0.1 0.05 10-2 PDM 0.02 0.01 t1 Single Pulse (Thermal Response) t2 Notes: 1. Duty Factor, D = t1/t2 2. Peak Tj = PDM x ZthJC + TC 10-3 10-5 10-4 10-3 10-2 0.1 1 t1, Rectangular Pulse Duration (S) 91234_11 Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T. RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91234 S-81360-Rev. A, 28-Jul-08 Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFP460A, SiHFP460A 2400 ID Top 8.9 A 13 A Bottom 20 A 2000 1600 1200 800 400 0 620 VDSav, Avalanche Voltage (V) EAS, Single Pulse Avalanche Energy (mJ) Vishay Siliconix 600 580 560 540 25 50 75 100 125 Starting TJ, Junction Temperature (°C) 91234_12c 0 150 Fig. 12c - Maximum Avalanche Energy vs. Drain Current 8 4 12 16 20 IAV, Avalanche Current (A) 91234_12d Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91234 S-81360-Rev. A, 28-Jul-08 IRFP460A, SiHFP460A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91234. Document Number: 91234 S-81360-Rev. A, 28-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1