VISHAY SIHFP22N60K

IRFP22N60K, SiHFP22N60K
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Hard Switching Primary or PFS Switch
600
RDS(on) (Ω)
VGS = 10 V
Qg (Max.) (nC)
• Low Gate Charge Qg Results in Simple Drive
Requirement
0.24
150
Qgs (nC)
• Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
45
Qgd (nC)
76
Configuration
Available
RoHS*
COMPLIANT
• Fully Characterized Capacitance and Avalanche Voltage
and Current
Single
D
• Enhanced Body Diode dV/dt Capability
TO-247
• Lead (Pb)-free Available
BENEFITS
G
• Switch Mode Power Supply (SMPS)
• Uninterruptible Power Supply
S
D
• High Speed Power Switching
S
G
• Motor Drive
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-247
IRFP22N60KPbF
SiHFP22N60K-E3
IRFP22N60K
SiHFP22N60K
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
600
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
Repetitive Avalanche
Currenta
Repetitive Avalanche
Energya
Maximum Power Dissipation
Peak Diode Recovery
TC = 25 °C
dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
for 10 s
V
22
14
A
IDM
88
2.9
W/°C
EAS
380
mJ
IAR
22
A
EAR
37
mJ
PD
370
W
dV/dt
15
V/ns
TJ, Tstg
- 55 to + 150
Linear Derating Factor
Single Pulse Avalanche Energyb
UNIT
300d
°C
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 1.5 mH, RG = 25 Ω, IAS = 22 A (see fig. 12).
c. ISD ≤ 22 A, dI/dt ≤ 360 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91208
S-81274-Rev. A, 16-Jun-08
www.vishay.com
1
IRFP22N60K, SiHFP22N60K
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
40
Case-to-Sink, Flat, Greased Surface
RthCS
0.24
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.34
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
VDS
VGS = 0 V, ID = 250 µA
MIN.
TYP.
MAX.
UNIT
600
-
-
V
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
ΔVDS/TJ
VGS(th)
Reference to 25 °C, ID = 1
VDS = VGS, ID = 250 µA
RDS(on)
gfs
-
0.30
-
V/°C
3.0
-
5.0
V
nA
VGS = ± 30 V
-
-
± 100
VDS = 600 V, VGS = 0 V
-
-
50
VDS = 480 V, VGS = 0 V, TJ = 125 °C
-
-
250
IGSS
IDSS
mAd
ID = 13 Ab
VGS = 10 V
VDS = 50 V, ID = 13 Ab
µA
-
0.240
0.280
Ω
11
-
-
S
-
3570
-
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Coss
Effective Output Capacitance
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
Turn-Off Delay Time
Fall Time
VDS = 1.0 V , f = 1.0 MHz
VGS = 0 V
Coss eff.
Total Gate Charge
Rise Time
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
tr
td(off)
VGS = 10 V
-
350
-
-
36
-
-
4710
-
VDS = 480 V , f = 1.0 MHz
-
92
-
VDS = 0 V to 480 V
-
180
-
-
-
150
ID = 22 A, VDS = 480 V
see fig. 6 and 13b
-
-
45
-
-
76
-
26
-
-
99
-
-
48
-
-
37
-
-
-
22
-
-
88
-
-
1.5
VDD = 300 V, ID = 22 A,
RG = 6.2, VGS = 10 V,
see fig. 10b
tf
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge
Reverse Recovery Current
Forward Turn-On Time
trr
Qrr
IRRM
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 22 A, VGS = 0 Vb
TJ = 25 °C
-
590
890
TJ = 125 °C
-
670
1010
-
7.2
11
-
8.5
13
-
26
39
TJ = 25 °C
IF = 22 A,
dI/dt = 100 A/µsb
TJ =1 25 °C
TJ = 25 °C
V
ns
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91208
S-81274-Rev. A, 16-Jun-08
IRFP22N60K, SiHFP22N60K
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100.00
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
10
ID, Drain-to-Source Current ( A)
ID, Drain-to-Source Current (A)
TOP
1
0.1
5.0V
0.01
T J = 150°C
10.00
1.00
T J = 25°C
0.10
VDS = 50V
20µs PULSE WIDTH
20µs PULSE WIDTH
Tj = 25°C
0.001
0.01
0.1
1
10
100
5.0
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
100
3.0
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
r
, Drain-to-Source On Resistance
DS(on)
(Normalized)
ID, Drain-to-Source Current (A)
TOP
10
6.0
7.0
8.0
9.0
10.0
VGS , Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
5.0V
1
20µs PULSE WIDTH
Tj = 150°C
0.1
I D = 22A
2.5
2.0
1.5
1.0
0.5
V GS = 10V
0.0
0.1
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91208
S-81274-Rev. A, 16-Jun-08
100
-60
-40
-20
0
20
40
60
80
100
120
140
160
TJ, Junction Temperature (° C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFP22N60K, SiHFP22N60K
Vishay Siliconix
100000
ISD, Reverse Drain Current (A)
Crss
Coss
10000
C, Capacitance (pF)
100.0
VGS = 0V,
f = 1 MHZ
C iss
= C gs + C gd , C ds
SHORTED
= Cgd
= Cds + Cgd
Ciss
1000
Coss
100
Crss
10
1.0
T J = 25°C
VGS = 0V
0.1
1
10
100
1000
0.2
VDS, Drain-to-Source Voltage (V)
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-toDrain Voltage (V)
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
1000
20
ID= 22A
OPERATION IN THIS AREA
LIMITED BY RDS(on)
VDS= 480V
VDS= 300V
VDS= 120V
16
ID, Drain-to-Source Current (A)
VGS , Gate-to-Source Voltage (V)
T J = 150°C
10.0
12
8
4
0
0
40
80
120
160
Q G Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
100
100µsec
10
1msec
1
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
1
10
10msec
100
1000
10000
VDS , Drain-toSource Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91208
S-81274-Rev. A, 16-Jun-08
IRFP22N60K, SiHFP22N60K
Vishay Siliconix
RD
VDS
25
VGS
ID, Drain Current (A)
D.U.T.
RG
20
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
15
Fig. 10a - Switching Time Test Circuit
10
VDS
90 %
5
0
25
50
75
100
125
10 %
VGS
150
TC, Case Temperature (° C)
td(on)
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Fig. 9 - Maximum Drain Current vs. Case Temperature
Thermal Response (ZthJC)
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
0.01
P DM
t1
t2
Notes:
1. Duty factor D =
2. Peak T
0.001
0.00001
0.0001
0.001
0.01
t1/ t 2
J = P DM x Z thJC
+T C
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
L
VDS
D.U.T
RG
IAS
20 V
tp
tp
Driver
+
- VDD
IAS
0.01Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91208
S-81274-Rev. A, 16-Jun-08
A
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFP22N60K, SiHFP22N60K
Vishay Siliconix
800
EAS, Single Pulse Avalanche Energy (mJ)
ID
TOP
9.8A
14A
22A
BOTTOM
600
400
200
0
25
50
75
100
125
150
Starting T J, Junction Temperature
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91208
S-81274-Rev. A, 16-Jun-08
IRFP22N60K, SiHFP22N60K
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
dI/dt
D.U.T. VDS Waveform
Diode Recovery
dV/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91208.
Document Number: 91208
S-81274-Rev. A, 16-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1