IRFPS29N60L, SiHFPS29N60L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Super Fast Body Diode Eliminates the Need for External Diodes in ZVS Applications 600 RDS(on) (Ω) VGS = 10 V 0.175 Qg (Max.) (nC) 220 Qgs (nC) 67 Qgd (nC) 96 Configuration Available • Lower Gate Charge Results in Simpler Drive RoHS* COMPLIANT Requirements • Enhances dV/dt Capabilities Offer Improved Ruggedness Single • Higher Gate Voltage Threshold Offer Improved Noise Immunity D • Lead (Pb)-free Available SUPER-247TM APPLICATIONS G • Zero Voltage Switching SMPS S D G • Telecom and Server Power Supplies S • Uninterruptible Power Supplies N-Channel MOSFET • Motor Control Applications ORDERING INFORMATION SUPER-247TM Package IRFPS29N60LPbF Lead (Pb)-free SiHFPS29N60L-E3 IRFPS29N60L SnPb SiHFPS29N60L ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Currenta ID UNIT V 29 18 A IDM 110 3.8 W/°C Single Pulse Avalanche Energyb EAS 570 mJ Repetitive Avalanche Currenta IAR 29 A Repetitive Avalanche Energya EAR 48 mJ Pulsed Drain Linear Derating Factor Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 480 W dV/dt 15 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 1.5 mH, RG = 25 Ω, IAS = 29 A (see fig.12a). c. ISD ≤ 29 A, dI/dt ≤ 830 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91255 S-81359-Rev. A, 07-Jul-08 www.vishay.com 1 IRFPS29N60L, SiHFPS29N60L Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambienta RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - (Drain)a RthJC - 0.26 Maximum Junction-to-Case UNIT °C/W Note a. Rth is measured at TJ approximately 90 °C. SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.53 - V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 50 µA VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 2.0 mA Gate-Source Threshold Voltage Drain-Source On-State Resistance RDS(on) Forward Transconductance gfs - 0.175 0.21 Ω VDS = 50 V, ID = 17 Ab 15 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5b - 6160 - - 530 - - 44 - - 250 - - 190 - ID = 17 Ab VGS = 10 V Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Effective Output Capacitance Coss eff. Effective Output Capacitance (Energy Related) Coss eff. (ER) Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Internal Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time RG td(on) tr td(off) VDS = 0 V to 480 Vc VGS = 10 V ID = 29 A, VDS = 480 V, see fig. 7 and 15b f = 1 MHz, open drain VDD =300 V, ID = 29 A, RG = 4.3 Ω, VGS = 10 V, see fig. 11a and 11bb tf - - 220 - - 67 - - 96 - 0.86 - - 34 - - 100 - - 66 - - 54 - - - 29 - - 110 pF nC Ω ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 29 A, VGS = 0 Vb trr TJ = 25 °C, IF = 29 A TJ = 125 °C, dI/dt = 100 A/µsb Body Diode Reverse Recovery Charge Body Diode Recovery Current Qrr IRRM TJ = 25 °C S - - 1.5 - 130 190 - 240 360 - 630 950 - 1820 2720 - 9.4 14 V ns µC A Forward Turn-On Time ton Intrinsic turn-on time is negligible (turn-on is dominatred by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91255 S-81359-Rev. A, 07-Jul-08 IRFPS29N60L, SiHFPS29N60L Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted ID, Drain-to-Source Current (A) TOP 100 BOTTOM 10 VGS 15V 10V 9.0V 7.0V 7.0V 5.5V 5.0V 4.5V 20μs PULSE WIDTH Tj = 25°C 1000.00 ID, Drain-to-Source Current (A) 1000 1 0.1 100.00 T J = 150°C 10.00 T J = 25°C 1.00 0.10 VDS = 50V 20μs PULSE WIDTH 4.5V 0.01 0.01 0.1 1 10 100 4 VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 100 8 10 3.0 BOTTOM 4.5V 1 20μs PULSE WIDTH Tj = 150°C ID = 28A 2.5 VGS = 10V 2.0 (Normalized) 10 VGS 15V 10V 9.0V 7.0V 7.0V 5.5V 5.0V 4.5V RDS(on) , Drain-to-Source On Resistance TOP ID, Drain-to-Source Current (A) 6 VGS , Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics 1.5 1.0 0.5 0.0 0.1 0.1 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91255 S-81359-Rev. A, 07-Jul-08 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFPS29N60L, SiHFPS29N60L Vishay Siliconix 100000 VGS , Gate-to-Source Voltage (V) Coss = Cds + Cgd 10000 C, Capacitance(pF) 20 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd Ciss 1000 Coss 100 Crss ID= 28A VDS= 480V VDS= 300V VDS= 150V 16 12 8 4 0 10 1 10 100 0 1000 40 80 120 160 200 240 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage 40 20 ID= 28A VGS , Gate-to-Source Voltage (V) 35 Energy (μJ) 30 25 20 15 10 5 0 0 100 200 300 400 500 600 700 VDS, Drain-to-Source Voltage (V) Fig. 6 - Typical Output Capacitance Stored Energy vs. VDS www.vishay.com 4 VDS= 480V VDS= 300V VDS= 150V 16 12 8 4 0 0 40 80 120 160 200 240 Q G Total Gate Charge (nC) Fig. 8 - Typical Source-Drain Diode Forward Voltage Document Number: 91255 S-81359-Rev. A, 07-Jul-08 IRFPS29N60L, SiHFPS29N60L Vishay Siliconix ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100μsec 10 1msec 1 Tc = 25°C Tj = 150°C Single Pulse 10msec 0.1 1 10 100 1000 10000 VDS, Drain-to-Source Voltage (V) Fig. 9 - Maximum Safe Operating Area RD 30 VDS VGS ID, Drain Current (A) 25 D.U.T. RG 20 + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 15 Fig. 11a - Switching Time Test Circuit 10 VDS 90 % 5 0 25 50 75 100 125 150 T C , Case Temperature (°C) Fig. 10 - Maximum Drain Current vs. Case Temperature Document Number: 91255 S-81359-Rev. A, 07-Jul-08 10 % VGS td(on) tr td(off) tf Fig. 11b - Switching Time Waveforms www.vishay.com 5 IRFPS29N60L, SiHFPS29N60L Vishay Siliconix Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 1200 EAS , Single Pulse Avalanche Energy (mJ) VGS(th) GateThreshold Voltage (V) 5.0 ID = 250μA 4.0 3.0 2.0 ID TOP 13A 18A BOTTOM 29A 1000 800 600 400 200 1.0 0 - 75 - 50 - 25 0 25 50 75 100 125 150 25 50 75 100 125 150 T J, Temperature (°C) Starting T J , Junction Temperature (°C) Fig. 13 - Threshold Voltage vs. Temperature Fig. 14a - Maximum Avalanche Energy vs. Drain Current 15 V L VDS D.U.T RG IAS 20 V tp Driver + - VDD A 0.01Ω Fig. 14b - Unclamped Inductive Test Circuit www.vishay.com 6 Document Number: 91255 S-81359-Rev. A, 07-Jul-08 IRFPS29N60L, SiHFPS29N60L Vishay Siliconix Current regulator Same type as D.U.T. VDS 50 kΩ tp 12 V 0.2 µF 0.3 µF + D.U.T. - VDS VGS 3 mA IAS IG ID Current sampling resistors Fig. 15a - Gate Charge Test Circuit Fig. 14c - Unclamped Inductive Waveforms QG 10 V QGS QGD VG Charge Fig. 15b - Basic Gate Charge Waveform Document Number: 91255 S-81359-Rev. A, 07-Jul-08 www.vishay.com 7 IRFPS29N60L, SiHFPS29N60L Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • rG dV/dt controlled by r G Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 16 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91255. www.vishay.com 8 Document Number: 91255 S-81359-Rev. A, 07-Jul-08 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1