VISHAY SIHFPS29N60L-E3

IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Super Fast Body Diode Eliminates the Need
for External Diodes in ZVS Applications
600
RDS(on) (Ω)
VGS = 10 V
0.175
Qg (Max.) (nC)
220
Qgs (nC)
67
Qgd (nC)
96
Configuration
Available
• Lower Gate Charge Results in Simpler Drive RoHS*
COMPLIANT
Requirements
• Enhances dV/dt Capabilities Offer Improved Ruggedness
Single
• Higher Gate Voltage Threshold Offer Improved Noise
Immunity
D
• Lead (Pb)-free Available
SUPER-247TM
APPLICATIONS
G
• Zero Voltage Switching SMPS
S
D
G
• Telecom and Server Power Supplies
S
• Uninterruptible Power Supplies
N-Channel MOSFET
• Motor Control Applications
ORDERING INFORMATION
SUPER-247TM
Package
IRFPS29N60LPbF
Lead (Pb)-free
SiHFPS29N60L-E3
IRFPS29N60L
SnPb
SiHFPS29N60L
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
600
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Currenta
ID
UNIT
V
29
18
A
IDM
110
3.8
W/°C
Single Pulse Avalanche Energyb
EAS
570
mJ
Repetitive Avalanche Currenta
IAR
29
A
Repetitive Avalanche Energya
EAR
48
mJ
Pulsed Drain
Linear Derating Factor
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
PD
480
W
dV/dt
15
V/ns
TJ, Tstg
- 55 to + 150
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 1.5 mH, RG = 25 Ω, IAS = 29 A (see fig.12a).
c. ISD ≤ 29 A, dI/dt ≤ 830 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
www.vishay.com
1
IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambienta
RthJA
-
40
Case-to-Sink, Flat, Greased Surface
RthCS
0.24
-
(Drain)a
RthJC
-
0.26
Maximum Junction-to-Case
UNIT
°C/W
Note
a. Rth is measured at TJ approximately 90 °C.
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VDS
VGS = 0 V, ID = 250 µA
600
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.53
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
3.0
-
5.0
V
Gate-Source Leakage
IGSS
VGS = ± 30 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 600 V, VGS = 0 V
-
-
50
µA
VDS = 480 V, VGS = 0 V, TJ = 125 °C
-
-
2.0
mA
Gate-Source Threshold Voltage
Drain-Source On-State Resistance
RDS(on)
Forward Transconductance
gfs
-
0.175
0.21
Ω
VDS = 50 V, ID = 17 Ab
15
-
-
S
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5b
-
6160
-
-
530
-
-
44
-
-
250
-
-
190
-
ID = 17 Ab
VGS = 10 V
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Effective Output Capacitance
Coss eff.
Effective Output Capacitance
(Energy Related)
Coss eff. (ER)
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Internal Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
RG
td(on)
tr
td(off)
VDS = 0 V to 480 Vc
VGS = 10 V
ID = 29 A, VDS = 480 V,
see fig. 7 and 15b
f = 1 MHz, open drain
VDD =300 V, ID = 29 A,
RG = 4.3 Ω, VGS = 10 V,
see fig. 11a and 11bb
tf
-
-
220
-
-
67
-
-
96
-
0.86
-
-
34
-
-
100
-
-
66
-
-
54
-
-
-
29
-
-
110
pF
nC
Ω
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
TJ = 25 °C, IS = 29 A, VGS = 0 Vb
trr
TJ = 25 °C, IF = 29 A
TJ = 125 °C, dI/dt = 100 A/µsb
Body Diode Reverse Recovery Charge
Body Diode Recovery Current
Qrr
IRRM
TJ = 25 °C
S
-
-
1.5
-
130
190
-
240
360
-
630
950
-
1820
2720
-
9.4
14
V
ns
µC
A
Forward Turn-On Time
ton
Intrinsic turn-on time is negligible (turn-on is dominatred by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
ID, Drain-to-Source Current (A)
TOP
100
BOTTOM
10
VGS
15V
10V
9.0V
7.0V
7.0V
5.5V
5.0V
4.5V
20μs PULSE WIDTH
Tj = 25°C
1000.00
ID, Drain-to-Source Current (A)
1000
1
0.1
100.00
T J = 150°C
10.00
T J = 25°C
1.00
0.10
VDS = 50V
20μs PULSE WIDTH
4.5V
0.01
0.01
0.1
1
10
100
4
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
100
8
10
3.0
BOTTOM
4.5V
1
20μs PULSE WIDTH
Tj = 150°C
ID = 28A
2.5
VGS = 10V
2.0
(Normalized)
10
VGS
15V
10V
9.0V
7.0V
7.0V
5.5V
5.0V
4.5V
RDS(on) , Drain-to-Source On Resistance
TOP
ID, Drain-to-Source Current (A)
6
VGS , Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
1.5
1.0
0.5
0.0
0.1
0.1
1
10
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
100
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
100000
VGS , Gate-to-Source Voltage (V)
Coss = Cds + Cgd
10000
C, Capacitance(pF)
20
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Ciss
1000
Coss
100
Crss
ID= 28A
VDS= 480V
VDS= 300V
VDS= 150V
16
12
8
4
0
10
1
10
100
0
1000
40
80
120
160
200
240
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage
40
20
ID= 28A
VGS , Gate-to-Source Voltage (V)
35
Energy (μJ)
30
25
20
15
10
5
0
0
100
200
300
400
500
600
700
VDS, Drain-to-Source Voltage (V)
Fig. 6 - Typical Output Capacitance Stored Energy vs. VDS
www.vishay.com
4
VDS= 480V
VDS= 300V
VDS= 150V
16
12
8
4
0
0
40
80
120
160
200
240
Q G Total Gate Charge (nC)
Fig. 8 - Typical Source-Drain Diode Forward Voltage
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
ID, Drain-to-Source Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100μsec
10
1msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
10msec
0.1
1
10
100
1000
10000
VDS, Drain-to-Source Voltage (V)
Fig. 9 - Maximum Safe Operating Area
RD
30
VDS
VGS
ID, Drain Current (A)
25
D.U.T.
RG
20
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
15
Fig. 11a - Switching Time Test Circuit
10
VDS
90 %
5
0
25
50
75
100
125
150
T C , Case Temperature (°C)
Fig. 10 - Maximum Drain Current vs. Case Temperature
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
10 %
VGS
td(on)
tr
td(off) tf
Fig. 11b - Switching Time Waveforms
www.vishay.com
5
IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
1200
EAS , Single Pulse Avalanche Energy (mJ)
VGS(th) GateThreshold Voltage (V)
5.0
ID = 250μA
4.0
3.0
2.0
ID
TOP
13A
18A
BOTTOM 29A
1000
800
600
400
200
1.0
0
- 75 - 50 - 25
0
25
50
75
100
125
150
25
50
75
100
125
150
T J, Temperature (°C)
Starting T J , Junction Temperature (°C)
Fig. 13 - Threshold Voltage vs. Temperature
Fig. 14a - Maximum Avalanche Energy vs. Drain Current
15 V
L
VDS
D.U.T
RG
IAS
20 V
tp
Driver
+
- VDD
A
0.01Ω
Fig. 14b - Unclamped Inductive Test Circuit
www.vishay.com
6
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
Current regulator
Same type as D.U.T.
VDS
50 kΩ
tp
12 V
0.2 µF
0.3 µF
+
D.U.T.
-
VDS
VGS
3 mA
IAS
IG
ID
Current sampling resistors
Fig. 15a - Gate Charge Test Circuit
Fig. 14c - Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
VG
Charge
Fig. 15b - Basic Gate Charge Waveform
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
www.vishay.com
7
IRFPS29N60L, SiHFPS29N60L
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
•
•
•
•
rG
dV/dt controlled by r G
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 16 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91255.
www.vishay.com
8
Document Number: 91255
S-81359-Rev. A, 07-Jul-08
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1