IRFPS35N50L, SiHFPS35N50L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Super Fast Body Diode Eliminates the Need for External Diodes in ZVS Applications 500 RDS(on) (Ω) VGS = 10 V 0.125 Qg (Max.) (nC) 230 Qgs (nC) 65 Qgd (nC) 110 Configuration Available • Lower Gate Charge Results in Simpler Drive RoHS* COMPLIANT Requirements • Enhanced dV/dt Capabilities Offer Improved Ruggedness • Higher Gate Voltage Threshold Offers Improved Noise Immunity Single D • Lead (Pb)-free Available SUPER-247TM APPLICATIONS • Zero Voltage Switching SMPS G • Telecom and Server Power Supplies S • Uninterruptible Power Supplies D G • Motor Control Applications S N-Channel MOSFET ORDERING INFORMATION SUPER-247TM Package IRFPS35N50LPbF Lead (Pb)-free SiHFPS35N50L-E3 IRFPS35N50L SnPb SiHFPS35N50L ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 34 22 A IDM 140 3.6 W/°C EAS 560 mJ Currenta IAR 34 A Repetitive Avalanche Energya EAR 45 mJ Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 450 W dV/dt 15 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 0.97 mH, RG = 25 Ω, IAS = 34 A (see fig. 12). c. ISD ≤ 34 A, dI/dt ≤ 765 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91257 S-81368-Rev. A, 21-Jul-08 www.vishay.com 1 IRFPS35N50L, SiHFPS35N50L Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.28 UNIT °C/W Note a. Rth is measured at TJ approximately 90 °C. SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS ΔVDS/TJ VGS = 0 V, ID = 250 µA 500 - - V Reference to 25 °C, ID = 1 mA - 0.12 V/°C VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 - ± 100 nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance VGS = ± 30 V - VDS = 500 V, VGS = 0 V - - 50 µA VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 2.0 IGSS IDSS V - 0.125 0.145 mA Ω gfs VDS = 50 V, ID = 20 Ab 18 - - S Ciss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 5580 - - 590 - - 58 - VDS = 1.0 V , f = 1.0 MHz - 7290 - VDS = 400 V , f = 1.0 MHz - 160 - - 320 - - 220 - - - 230 - - 65 - - 110 RDS(on) ID = 20 Ab VGS = 10 V Dynamic Input Capacitance Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Effective Output Capacitance Effective Output Capacitance (Energy Related) Total Gate Charge Coss eff. Qg Qgs Gate-Drain Charge Qgd Internal Gate Resistance Rise Time Turn-Off Delay Time Fall Time VDS = 0 V to 400 Vc Coss eff. (ER) Gate-Source Charge Turn-On Delay Time VGS = 0 V RG VGS = 10 V ID = 34 A, VDS = 400 V, see fig. 7 and 13b f = 1 MHz, open drain td(on) tr td(off) - 1.1 - - 24 - pF nC Ω - 100 - - 42 - - 42 - - - 34 - - 140 TJ = 25 °C, IS = 34 A, VGS = 0 Vb - - 1.5 V ns VDD = 250 V, ID = 34 A, RG = 1.2 Ω, see fig. 10b tf ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Reverse Recovery Current Forward Turn-On Time IRRM ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IF = 34 A - TJ = 125 °C, dI/dt = 100 A/µsb - 170 220 250 330 TJ = 25 °C, IS = 34 A, VGS = 0 Vb - 670 1010 - 1500 8.5 2200 - TJ = 125 °C, dI/dt = 100 TJ = 25 °C A/µsb - µC A Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 400 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91257 S-81368-Rev. A, 21-Jul-08 IRFPS35N50L, SiHFPS35N50L Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 10 I D , Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 0.1 4.5V 0.01 100 TJ = 150 ° C 10 1 20µs PULSE WIDTH Tj = 25°C 0.001 0.1 1 10 100 0.01 4.0 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 10 4.5V 1 20µs PULSE WIDTH TJ = 150 ° C 0.1 0.1 1 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91257 S-81368-Rev. A, 21-Jul-08 5.0 6.0 7.0 8.0 9.0 10.0 Fig. 3 - Typical Transfer Characteristics 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 V DS = 50V 20µs PULSE WIDTH VGS , Gate-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) TJ = 25 ° C 0.1 ID = 34A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFPS35N50L, SiHFPS35N50L Vishay Siliconix VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance(pF) 10000 Ciss 1000 Coss 100 Crss 20 VGS , Gate-to-Source Voltage (V) 100000 ID = 34A VDS = 400V VDS = 250V VDS = 100V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 10 1 10 100 0 1000 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 30 0 40 80 120 160 200 240 QG , Total Gate Charge (nC) Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage ISD , Reverse Drain Current (A) 1000 25 100 Energy (µJ) 20 15 10 5 TJ = 150 ° C 10 TJ = 25 ° C 1 0 0 100 200 300 400 500 600 VDS, Drain-to-Source Voltage (V) Fig. 6 - Typical Output Capacitance Stored Energy vs. VDS www.vishay.com 4 0.1 0.2 V GS = 0 V 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD ,Source-to-Drain Voltage (V) Fig. 8 - Typical Source Drain Diode Forward Voltage Document Number: 91257 S-81368-Rev. A, 21-Jul-08 IRFPS35N50L, SiHFPS35N50L Vishay Siliconix RD VDS VGS 35 D.U.T. RG + - VDD ID , Drain Current (A) 30 10 V 25 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 20 Fig. 10a - Switching Time Test Circuit 15 VDS 10 90 % 5 10 % VGS 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 PDM 0.02 0.01 0.01 SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS tp 15 V L VDS D.U.T RG IAS 20 V tp Driver + A - VDD A 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91257 S-81368-Rev. A, 21-Jul-08 A IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFPS35N50L, SiHFPS35N50L Vishay Siliconix EAS , Single Pulse Avalanche Energy (mJ) 1200 TOP 1000 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) BOTTOM ID 15A 22A 34A 800 100 600 400 10us 100us 10 1ms 200 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current TC = 25 ° C TJ = 150 ° C Single Pulse 1 1 10 100 1000 Fig. 12d - Maximum Safe Operating Area Current regulator Same type as D.U.T. 50 kΩ 50 kΩ 12 V 0.2 µF 0.2 µF 0.3 µF 0.3 µF + + D.U.T. - VDS D.U.T. - VDS VGS VGS 3 mA 3 mA IG ID Current sampling resistors IG ID Current sampling resistors Fig. 13a - Gate Charge Test Circuit www.vishay.com 6 10000 VDS , Drain-to-Source Voltage (V) Current regulator Same type as D.U.T. 12 V 10ms Fig. 13b - Basic Gate Charge Waveform Document Number: 91257 S-81368-Rev. A, 21-Jul-08 IRFPS35N50L, SiHFPS35N50L Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91257. Document Number: 91257 S-81368-Rev. A, 21-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1