VISHAY SIHFPS35N50L-E3

IRFPS35N50L, SiHFPS35N50L
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Super Fast Body Diode Eliminates the Need for
External Diodes in ZVS Applications
500
RDS(on) (Ω)
VGS = 10 V
0.125
Qg (Max.) (nC)
230
Qgs (nC)
65
Qgd (nC)
110
Configuration
Available
• Lower Gate Charge Results in Simpler Drive RoHS*
COMPLIANT
Requirements
• Enhanced dV/dt Capabilities Offer Improved Ruggedness
• Higher Gate Voltage Threshold Offers Improved Noise
Immunity
Single
D
• Lead (Pb)-free Available
SUPER-247TM
APPLICATIONS
• Zero Voltage Switching SMPS
G
• Telecom and Server Power Supplies
S
• Uninterruptible Power Supplies
D
G
• Motor Control Applications
S
N-Channel MOSFET
ORDERING INFORMATION
SUPER-247TM
Package
IRFPS35N50LPbF
Lead (Pb)-free
SiHFPS35N50L-E3
IRFPS35N50L
SnPb
SiHFPS35N50L
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
UNIT
V
34
22
A
IDM
140
3.6
W/°C
EAS
560
mJ
Currenta
IAR
34
A
Repetitive Avalanche Energya
EAR
45
mJ
Linear Derating Factor
Single Pulse Avalanche Energyb
Repetitive Avalanche
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
PD
450
W
dV/dt
15
V/ns
TJ, Tstg
- 55 to + 150
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 0.97 mH, RG = 25 Ω, IAS = 34 A (see fig. 12).
c. ISD ≤ 34 A, dI/dt ≤ 765 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91257
S-81368-Rev. A, 21-Jul-08
www.vishay.com
1
IRFPS35N50L, SiHFPS35N50L
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
40
Case-to-Sink, Flat, Greased Surface
RthCS
0.24
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.28
UNIT
°C/W
Note
a. Rth is measured at TJ approximately 90 °C.
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS
ΔVDS/TJ
VGS = 0 V, ID = 250 µA
500
-
-
V
Reference to 25 °C, ID = 1 mA
-
0.12
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
3.0
-
5.0
-
± 100
nA
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
VGS = ± 30 V
-
VDS = 500 V, VGS = 0 V
-
-
50
µA
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
2.0
IGSS
IDSS
V
-
0.125
0.145
mA
Ω
gfs
VDS = 50 V, ID = 20 Ab
18
-
-
S
Ciss
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
-
5580
-
-
590
-
-
58
-
VDS = 1.0 V , f = 1.0 MHz
-
7290
-
VDS = 400 V , f = 1.0 MHz
-
160
-
-
320
-
-
220
-
-
-
230
-
-
65
-
-
110
RDS(on)
ID = 20 Ab
VGS = 10 V
Dynamic
Input Capacitance
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Coss
Effective Output Capacitance
Effective Output Capacitance (Energy
Related)
Total Gate Charge
Coss eff.
Qg
Qgs
Gate-Drain Charge
Qgd
Internal Gate Resistance
Rise Time
Turn-Off Delay Time
Fall Time
VDS = 0 V to 400 Vc
Coss eff. (ER)
Gate-Source Charge
Turn-On Delay Time
VGS = 0 V
RG
VGS = 10 V
ID = 34 A, VDS = 400 V,
see fig. 7 and 13b
f = 1 MHz, open drain
td(on)
tr
td(off)
-
1.1
-
-
24
-
pF
nC
Ω
-
100
-
-
42
-
-
42
-
-
-
34
-
-
140
TJ = 25 °C, IS = 34 A, VGS = 0 Vb
-
-
1.5
V
ns
VDD = 250 V, ID = 34 A,
RG = 1.2 Ω, see fig. 10b
tf
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Reverse Recovery Current
Forward Turn-On Time
IRRM
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IF = 34 A
-
TJ = 125 °C, dI/dt = 100 A/µsb
-
170
220
250
330
TJ = 25 °C, IS = 34 A, VGS = 0 Vb
-
670
1010
-
1500
8.5
2200
-
TJ = 125 °C, dI/dt = 100
TJ = 25 °C
A/µsb
-
µC
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 400 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
Coss eff. (ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91257
S-81368-Rev. A, 21-Jul-08
IRFPS35N50L, SiHFPS35N50L
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
10
I D , Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
0.1
4.5V
0.01
100
TJ = 150 ° C
10
1
20µs PULSE WIDTH
Tj = 25°C
0.001
0.1
1
10
100
0.01
4.0
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
100
10
4.5V
1
20µs PULSE WIDTH
TJ = 150 ° C
0.1
0.1
1
10
VDS , Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91257
S-81368-Rev. A, 21-Jul-08
5.0
6.0
7.0
8.0
9.0
10.0
Fig. 3 - Typical Transfer Characteristics
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
V DS = 50V
20µs PULSE WIDTH
VGS , Gate-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
I D , Drain-to-Source Current (A)
TJ = 25 ° C
0.1
ID = 34A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFPS35N50L, SiHFPS35N50L
Vishay Siliconix
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance(pF)
10000
Ciss
1000
Coss
100
Crss
20
VGS , Gate-to-Source Voltage (V)
100000
ID = 34A
VDS = 400V
VDS = 250V
VDS = 100V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
10
1
10
100
0
1000
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
30
0
40
80
120
160
200
240
QG , Total Gate Charge (nC)
Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage
ISD , Reverse Drain Current (A)
1000
25
100
Energy (µJ)
20
15
10
5
TJ = 150 ° C
10
TJ = 25 ° C
1
0
0
100
200
300
400
500
600
VDS, Drain-to-Source Voltage (V)
Fig. 6 - Typical Output Capacitance Stored Energy
vs. VDS
www.vishay.com
4
0.1
0.2
V GS = 0 V
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD ,Source-to-Drain Voltage (V)
Fig. 8 - Typical Source Drain Diode Forward Voltage
Document Number: 91257
S-81368-Rev. A, 21-Jul-08
IRFPS35N50L, SiHFPS35N50L
Vishay Siliconix
RD
VDS
VGS
35
D.U.T.
RG
+
- VDD
ID , Drain Current (A)
30
10 V
25
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
20
Fig. 10a - Switching Time Test Circuit
15
VDS
10
90 %
5
10 %
VGS
0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
PDM
0.02
0.01
0.01
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.00001
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
tp
15 V
L
VDS
D.U.T
RG
IAS
20 V
tp
Driver
+
A
- VDD
A
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91257
S-81368-Rev. A, 21-Jul-08
A
IAS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFPS35N50L, SiHFPS35N50L
Vishay Siliconix
EAS , Single Pulse Avalanche Energy (mJ)
1200
TOP
1000
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
ID , Drain Current (A)
BOTTOM
ID
15A
22A
34A
800
100
600
400
10us
100us
10
1ms
200
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
TC = 25 ° C
TJ = 150 ° C
Single Pulse
1
1
10
100
1000
Fig. 12d - Maximum Safe Operating Area
Current regulator
Same type as D.U.T.
50 kΩ
50 kΩ
12 V
0.2 µF
0.2 µF
0.3 µF
0.3 µF
+
+
D.U.T.
-
VDS
D.U.T.
-
VDS
VGS
VGS
3 mA
3 mA
IG
ID
Current sampling resistors
IG
ID
Current sampling resistors
Fig. 13a - Gate Charge Test Circuit
www.vishay.com
6
10000
VDS , Drain-to-Source Voltage (V)
Current regulator
Same type as D.U.T.
12 V
10ms
Fig. 13b - Basic Gate Charge Waveform
Document Number: 91257
S-81368-Rev. A, 21-Jul-08
IRFPS35N50L, SiHFPS35N50L
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91257.
Document Number: 91257
S-81368-Rev. A, 21-Jul-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1