IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 500 RDS(on) (Ω) VGS = 10 V 1.7 Qg (Max.) (nC) 24 Qgs (nC) 6.5 Qgd (nC) Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current 13 Configuration Available • Improved Gate, Avalanche and Dynamic dV/dt RoHS* COMPLIANT Single • Effective Coss Specified D • Lead (Pb)-free Available DPAK (TO-252) IPAK (TO-251) APPLICATIONS G • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply • High Speed Power Switching S N-Channel MOSFET ORDERING INFORMATION Package DPAK (TO-252) IRFR430APbF SiHFR430A-E3 IRFR430A SiHFR430A Lead (Pb)-free SnPb DPAK (TO-252) IRFR430ATRPbFa SiHFR430AT-E3a IRFR430ATRa SiHFR430ATa DPAK (TO-252) IRFR430ATRLPbFa SiHFR430ATL-E3a IRFR430ATRLa SiHFR430ATLa DPAK (TO-252) IRFR430ATRRPbFa SiHFR430ATR-E3a IRFR430ATRRa SiHFR430ATRa IPAK (TO-251) IRFU430APbF SiHFU430A-E3 IRFU430A SiHFU430A Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor UNIT V 5.0 3.2 A 20 0.91 W/°C EAS 130 mJ Currenta IAR 5.0 A Repetitive Avalanche Energya EAR 11 mJ PD 110 W dV/dt 3.0 V/ns TJ, Tstg - 55 to + 150 Single Pulse Avalanche Energyb Repetitive Avalanche Maximum Power Dissipation Peak Diode Recovery TC = 25 °C dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) for 10 s 300d °C Notes a. b. c. d. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). Starting TJ = 25 °C, L = 11 mH, RG = 25 Ω, IAS = 5.0 A (see fig. 12). ISD ≤ 5.0 A, dI/dt ≤ 320 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91276 S-81366-Rev. A, 07-Jul-08 www.vishay.com 1 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.1 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.60 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.5 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance IGSS IDSS RDS(on) gfs VGS = ± 30 V - - ± 100 VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 - - 1.7 Ω VDS = 50 V, ID = 3.0 A 2.3 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 490 - - 75 - - 4.5 - VDS = 1.0 V, f = 1.0 MHz - 750 - VDS = 400 V, f = 1.0 MHz - 25 - - 51 - - - 24 ID = 3.0 Ab VGS = 10 V µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Effective Output Capacitance VGS = 10 V Coss eff. VDS = 0 V to 400 Vc Total Gate Charge Qg Gate-Source Charge Qgs - - 6.5 Gate-Drain Charge Qgd - - 13 Turn-On Delay Time td(on) - 8.7 - tr - 27 - - 17 - - 16 - - - 5.0 - - 20 Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 10 V ID = 5.0 A, VDS = 400 V, see fig. 6 and 13b VDD = 250 V, ID = 5.0 A, RG = 15 Ω, RD = 50 Ω, see fig. 10b tf pF pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 5.0 A, VGS = 0 S Vb TJ = 25 °C, IF = 5.0 A, dI/dt = 100 A/µsb - - 1.5 V - 410 620 ns - 1.4 2.1 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91276 S-81366-Rev. A, 07-Jul-08 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100.00 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 ID, Drain-to-Source Current (Α ) ID, Drain-to-Source Current (A) TOP 1 0.1 4.5V 0.01 10.00 T J = 150°C 1.00 T J = 25°C 0.10 20μs PULSE WIDTH Tj = 25°C VDS = 100V 20μs PULSE WIDTH 0.01 0.001 0.1 1 10 100 4.0 100 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 4.5V 0.1 20μs PULSE WIDTH Tj = 150°C 0.01 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91276 S-81366-Rev. A, 07-Jul-08 10.0 12.0 14.0 16.0 I D = 5.0A 100 2.0 (Normalized) 1 0.1 8.0 2.5 RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (A) TOP 10 6.0 VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 160 ( ° C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Vishay Siliconix 100 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) I SD , Reverse Drain Current (A) Coss = Cds + Cgd 1000 Ciss 100 Coss 10 Crss 10 TJ = 25 ° C TJ = 150 ° C 1 1 V GS= 0 V 1 10 100 0.1 1000 0.2 0.5 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage OPERATION IN THIS AREA LIMITED BY R DS(on) VDS = 400V VDS = 250V VDS = 100V VGS , Gate-to-Source Voltage (V) 10 7 5 2 10 100μsec 1 1msec 0.1 0 4 8 12 16 20 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1.4 100 I D = 5.0A 0 1.1 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID , Drain-to-Source Current (A) 12 0.8 V SD,Source-to-Drain Voltage (V) Tc = 25°C Tj = 150°C Single Pulse 10 10msec 100 1000 10000 VDS , Drain-toSource Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91276 S-81366-Rev. A, 07-Jul-08 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Vishay Siliconix 5.5 RD VDS VGS D.U.T. RG 4.4 + - VDD ID , Drain Current (A) 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 3.3 Fig. 10a - Switching Time Test Circuit 2.2 VDS 1.1 90 % 0.0 25 50 75 100 125 150 10 % VGS ( ° C) TC , Case Temperature td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms (Z thJC ) 10 1 Thermal Response D = 0.50 0.20 P DM 0.10 0.1 0.05 t1 SINGLE PULSE (THERMAL RESPONSE) 0.02 0.01 t2 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1/ t 2 J = P DM x Z thJC +TC 0.1 1 t1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91276 S-81366-Rev. A, 07-Jul-08 Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Vishay Siliconix 5.0 250 EAS , Single Pulse Avalanche Energy (mJ) 200 TOP 2.2A 3.2A BOTTOM 5.0A VGS(th) Gate threshold Voltage (V) ID 150 100 50 4.5 ID = 250μA 4.0 3.5 3.0 2.5 -75 0 25 50 75 100 Starting Tj, Junction Temperature 125 -50 -25 0 25 50 75 100 125 150 150 ( ° C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current T J , Temperature ( °C ) Fig. 12d - Threshold Voltage vs. Temperature Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91276 S-81366-Rev. A, 07-Jul-08 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91276. Document Number: 91276 S-81366-Rev. A, 07-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1