AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET Introduction The AGR26045EF is a high-voltage, gold-metalized, enhancement mode, laterally diffused metal oxide semiconductor (LDMOS) RF power transistor suitable for ultrahigh-frequency (UHF) applications, including multichannel multipoint distribution service (MMDS) for broadcasting and communications. Figure 1. AGR26045EF (flanged) Package Features Typical performance for MMDS systems. f = 2600 MHz, IDQ = 430 mA, Vds = 28 V, adjacent channel BW = 3.84 MHz, 5 MHz offset; alternate channel BW = 3.84 MHz, 10 MHz offset. Typical P/A ratio of 9.8 dB at 0.01% (probability) CCDF*: — Output power: 6.5 W. — Power gain: 13 dB. — Efficiency: 20% . — ACPR: –34 dBc. — ACLR1: –36 dBc. — Return loss: –15 dB. Typical pulsed P1dB, 6 µs pulse at 10% duty: 47 W. High-reliability, gold-metalization process. Low hot carrier injection (HCI) induced bias drift over 20 years. Internally matched. High gain, efficiency, and linearity. Integrated ESD protection. Device can withstand a 10:1 voltage standing wave ratio (VSWR) at 28 Vdc, 2600 MHz, 45 W continuous wave (CW) output power. Large signal impedance parameters available. *The test signal utilized is 4-channel W-CDMA Test Model 1. This test signal provides an equivalent reference (occupied bandwidth and waveform EPF) for the actual performance with an MMDS waveform. Table 1. Thermal Characteristics Parameter Thermal Resistance, Junction to Case Sym Rı JC Value 1.5 Unit °C/W Table 2. Absolute Maximum Ratings* Parameter Sym Value Drain-source Voltage VDSS 65 Gate-source Voltage VGS –0.5, +15 Total Dissipation at TC = 25 °C PD 117 Derate Above 25 °C — 0.67 Operating Junction TemperaTJ 200 ture Storage Temperature Range TSTG –65, +150 Unit Vdc Vdc W W/°C °C °C * Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. Table 3. ESD Rating* AGR26045EF HBM MM CDM Minimum (V) 500 50 1500 Class 1B A 4 * Although electrostatic discharge (ESD) protection circuitry has been designed into this device, proper precautions must be taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. PEAK Agere Devices employs a human-body model (HBM), a machine model (MM), and a charged-device model (CDM) qualification requirement in order to determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used in each of the models, as defined by JEDEC's JESD22-A114B (HBM), JESD22-A115A (MM), and JESD22-C101A (CDM) standards. Caution: MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET Electrical Characteristics Recommended operating conditions apply unless otherwise specified: TC = 30 °C. Table 4. dc Characteristics Parameter Symbol Min Typ Max V(BR)DSS 65 — — IDSS — Unit Off Characteristics = 50 200µA µA) Drain-source Breakdown Voltage (VGS = 0, ID = Gate-source Leakage Current (VGS = 5 V, VDS = 0 V) IGSS Zero Gate Voltage Drain Leakage Current (VDS = 28 V, VGS = 0 V) — Vdc — — 2 75 5 µAdc — S µAdc On Characteristics Forward Transconductance (VDS = 10 V, ID = 0.5 A) GFS — 3.2 VGS(Q) — 3.8 Gate Threshold Voltage (VDS = 10 V, ID = 150 µA) VGS(TH) Drain-source On-voltage (VGS = 10 V, ID = 0.5 A) VDS(ON) Gate Quiescent Voltage (VDS = 28 V, ID = 430 mA) — — — 4.8 Vdc 0.22 — Vdc — Vdc Table 5. RF Characteristics Parameter Symbol Min Typ Max Unit — 1.0 — pF — 13 — dB — –38 — dBc ACPR — –40 — dBc IRL — –15 — dB Dynamic Characteristics Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) (This part is internally matched on both the input and output.) CRSS Test Fixture) Functional Tests (in Supplied Agere Systems Supplied Test Fixture) Common-source Amplifier Power Gain* Drain Efficiency* Third-order Intermodulation Distortion* (IM3 distortion measured over 3.84 MHz BW @ f1 – 10 MHz and f2 + 10 MHz) Adjacent Channel Power Ratio* (ACPR measured over BW of 3.84 MHz @ f1 – 5 MHz and f2 + 5 MHz) Input Return Loss* Power Output, 1 dB Compression Point (VDD = 28 V, fC = 2655.0 MHz. CW) Output Mismatch Stress (VDD = 28 V, POUT = 45 W (CW), IDQ = 430 mA, fC = 2655.0 MHz VSWR = 10:1; [all phase angles]) GPS η IM3 P1dB ψ — 43 21 — — — % W No degradation in output power. * 3GPP W-CDMA, typical P/A ratio of 8.5 dB at 0.01% CCDF, f1 = 2645 MHz, and f2 = 2655 MHz. VDD = 28 Vdc, IDQ = 430 mA, and POUT = 6.5 W avg. AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET Test Circuit Illustrations for AGR26045EF FB1 VGG R1 + C4 C2 C3 Z1 RF INPUT Z2 C1 Z7 Z3 Z8 Z4 VDD PINS: 1. DRAIN 2. GATE 3. SOURCE Z5 Z6 2 DUT C13 + Z10 1 Z9 C6 C7 Z11 3 C8 C9 C5 C10 Z12 C13 RF OUTPUT A. Schematic 2 3 1 Parts List: ■ Microstrip line: Z1 0.496 in. x 0.066 in.; Z2 0.235 in. x 0.066 in.; Z3 0.200 in. x 0.090 in.; Z4 0.142 in. x 0.090 in.; Z5 0.215 in. x 0.090 in.; Z6 0.320 in. x 0.470 in.; Z7 0.410 in. x 0.050 in.; Z8 0.155 in. x 0.170 in.; Z9 0.470 in. x 0.330 in.; Z10 0.670 in. x 0.050 in.; Z11 0.530 in. x 0.066 in.; Z12 0.670 in. x 0.066 in. ® ■ ATC chip capacitor: C1, C2, C5, C6: 4.7 pF 100B47_J500; C11: 0.1 pF 100A0R1J_500; C12: 1.5 pF 100A15JW; C13 0.3 pF 100B0R3BW. ® ■ Murata 0805 capacitor: C8: 0.1 µF. ® ■ Vitramon 1206 size capacitor C3, C7: 22000 pF. ■ 1206 size chip resistor: R1; 12 Ω. ® ■ Fair-Rite ferrite bead FB1: 2743018447. ® ■ Kemet capacitor: C4, C10: 22 µF, 35 V; C9: 0.1 µF 1206 case. ® ■ Taconic ORCER RF-35: board material, 1 oz. copper, 30 mil thickness, εr = 3.5. B. Component Layout Figure 2. AGR26045EF Component Layout AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET U CT 8 0.6 90 IN D 0. 10 0.1 0.4 20 50 20 10 5.0 4.0 3.0 2.0 1.8 1.6 1.4 1.2 50 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 ± 180 0.1 0.2 0.2 20 0.4 0.11 -100 -90 0.38 0.37 0.1 -1 06 -70 40 5 0. 0. 07 30 -1 43 0. 8 0.0 2 0.4 .41 0 0.4 0.39 F 0.12 0.13 9 0.0 0. 0 1.0 5 0.14 -80 0.36 -110 0 -12 (-j 0. 2. 1.8 1.6 0.15 0.35 0.9 1.2 1.4 0.7 0 -4 -4 4 -70 0 6 -5 5 -3 0.1 0.3 0.6 CA P A 0.8 3 -60 5 0.3 7 -5 0.1 -60 32 CI T IVE T 5 ,O o) R 0.2 -30 -65 18 CE CO M EN 0.0 Z X/ 0. 0. RE AC TA N PO N -85 1. 0 IN DU IV CT U ES 0.4 31 0. 19 0. 0 -5 -25 -75 0.6 0 -20 0 44 0.8 0.48 o) jB/ Y E (NC TA EP SC 0 1. 4.0 3. 0.3 0 -15 6 0.4 4 0.0 0 -15 -80 5.0 0.2 4 0. -4 .45 ZS -10 ZL f5 0.2 8 f1 0.2 9 0.2 1 -30 0.3 8 0. 0.2 2 7 0.4 f1 0.6 f5 0.2 10 0.1 -20 D< RD L OA TOW A TH S -170 EN G V EL A W <Ð -90 -160 Ð RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) 50 0.49 0.25 0.26 0.24 0.27 0.23 0.25 0.24 0.26 0.23 0.27 EFL ECTI ON COEFFI CI EN T I N R D E G REES L E OF ANG I SSI ON COEFFI CI EN T I N TRA N SM D EGR EES L E OF ANG Z0 = 25 Ω 0.0 Ð > W A V EL E N GTH S TOW A RD 0.0 0.49 0.48 170 Typical Performance Characteristics MHz (f) 2500 (f1) 2550 (f2) 2600 (f3) 2650 (f4) 2700 (f5) ZS Ω (complex source impedance) 13.4 – j9.0 12.8 – j9.3 12.2 – j9.5 11.6 – j9.6 11.1 – j9.7 GATE (2) ZS ZL Ω (complex optimum load impedance) 7.2 – j7.1 6.7 – j7.1 6.2 – j6.5 5.7 – j5.9 5.4 – j5.4 DRAIN (1) ZL SOURCE (3) INPUT MATCH DUT OUTPUT MATCH Figure 3. Series Equivalent Input and Output Impedances AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET Typical Performance Characteristics (continued) 60 20 GAIN 15 PAE 50 45 10 5 P1dB 40 0 35 -5 30 -10 25 -15 IRL 20 2500 2550 2600 GAIN (dB), IRL (dB) Z POWER (dBm), PAE (%) Z 55 2650 -20 2700 FREQUENCY, MHzZ Figure 4. CW Broadband Performance -20 -25 IMD3 (dBc) Z -30 300 mA -35 -40 -45 450 mA -50 400 mA -55 350 mA -60 0.1 500 mA 1 10 OUTPUT POW ER (W ) PEPZ Test conditions: Two-tone measurement @ 10 MHz tone spacing, VDD = 28 VDC, f1 = 2590 MHz, f2 = 2600 MHz. Figure 5. IMD3 vs. Output Power and IDQ 100 AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET dBc X Typical Performance Characteristics (continued) -20 45 -25 40 -30 35 -35 30 -40 25 -45 20 -50 -55 Ƨ -60 -65 15 IM3 10 IM5 5 IM7 1 0 10 100 P OUT (W , PEP)) Test conditions: Two-tone measurement @ 10 MHz tone spacing, VDD = 28 VDC, f1 = 2590 MHz, f2 = 2600 MHz. Figure 6. Two-tone IMD vs. Power 0 IMD (dBc) Z -10 IM3 -20 -30 IM5 -40 IM7 -50 -60 0.1 1 10 TONE SPACING (MHz)Z Test conditions: VDD = 28 V, IDQ = 430 mA, POUT = 45 W (PEP), f = 2595 MHz. Figure 7. Two-tone IM3 vs. Tone Spacing 100 AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET Typical Performance Characteristics (continued) 30 -10 25 PAE -20 20 -30 IMD GAIN 15 -40 10 ACP -50 -60 0 5 5 10 15 PAE (%), GAIN (dB) Z IMD, ACP (dBc) Z 0 0 P OUT (W )Z Test conditions: Two-carrier W-CDMA 3GPP, peak-to-average = 8.5 dB @ 0.01% CCDF, f1 = 2590 MHz, f2 = 2600 MHz, VDD = 28 V, IDQ = 430 mA. Figure 8. Gain, Efficiency, ACP, and IMD vs. Power 25 -5 PAE -10 -15 -20 IRL GAIN 15 -25 -30 10 IMD -35 -40 -45 -50 2500 20 5 ACP 2550 2600 2650 GAIN (dB), PAE (%) Z ACP, IMD (dBc); IRL (dB) Z 0 0 2700 FREQUENCY, MHzZ Test conditions: Two-carrier W-CDMA 3GPP, peak-to-average = 8.5 dB @ 0.01% CCDF, POUT = 6.5 W, VDD = 28 V, IDQ = 430 mA. Figure 9. Two-Carrier W-CDMA Broadband Performance AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET Typical Performance Characteristics (continued) |ÍF1Î| 0 |ÍF2Î| -5 -1 0 -1 5 -2 0 -2 5 -3 0 -3 5 |ÍIMD3Î| |ÍIMD3Î| |Í Î| ACP -4 0 ACP |Í Î| -4 5 Ce nter 2.6 G Hz Sp an Test conditions: Two-carrier W-CDMA 3GPP, peak-to-average = 8.5 dB @ 0.01% CCDF, POUT = 6.5 W, VDD = 28 V, IDQ = 430 mA. Figure 10. Spectrum 50 M Hz Preliminary Data Sheet June 2004 AGR26045EF 45 W, 2.535 GHz—2.655 GHz, N-Channel E-Mode, Lateral MOSFET Package Dimensions All dimensions are in inches. Tolerances are ±0.005 in. unless specified. AGR26045EF PINS: 1. DRAIN 2. GATE 3. SOURCE 1 1 PEAK DEVICES AAGR26045XF GR21045F YYWWLL XXXXX YYWW LL ZZZZZZZ ZZZZZZZ 3 2 3 2 Label Notes: ■ M before the part number denotes model program. X before the part number denotes engineering prototype. ■ ■ ■ ■ The last two letters of the part number denote wafer technology and package type. YYWWLL is the date code including place of manufacture: year year work week (YYWW), LL = location (AL = Allentown, PA; T = Thailand). XXXXX = five-digit wafer lot number. ZZZZZZZ = seven-digit assembly lot number on production parts. ZZZZZZZZZZZZ = 12-digit (five-digit lot, two-digit wafer, and five-digit serial number) on models and engineering prototypes.