MICROSEMI APT200GN60B2G

APT200GN60B2G
600V, VCE(ON) = 1.45V Typical
Field Stop IGBT
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT’s have ultra low VCE(ON) and
are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling
is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. A
built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low
gate charge simplifies gate drive design and minimizes losses.
• 1200V Field Stop
• Trench Gate: Low VCE(ON)
• Easy Paralleling
• Integrated Gate Resistor :Low EMI, High Reliability
• RoHS Compliant
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
IC1
Continuous Collector Current @ TC = 25°C
283
IC2
Continuous Collector Current @ TC = 110°C
158
ICM
SSOA
PD
TJ, TSTG
TL
Pulsed Collector Current
1
Unit
Volts
Amps
600
Switching Safe Operating Area @ TJ = 175°C
600A @ 600V
Total Power Dissipation
682
Operating and Storage Junction Temperature Range
Watts
-55 to 175
Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec.
°C
300
Static Electrical Characteristics
Min
Typ
Max
Unit
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA)
600
-
-
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 3.2mA, Tj = 25°C)
5.0
5.8
6.5
Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 25°C)
1.05
1.45
1.85
Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 125°C)
-
1.65
-
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2
-
-
25
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2
-
-
1000
Gate-Emitter Leakage Current (VGE = ±20V)
-
-
600
nA
Integrated Gate Resistor
-
2
-
Ω
VCE(ON)
ICES
IGES
RG(int)
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Volts
μA
050-7628 Rev A 9-2008
Symbol Characteristic / Test Conditions
Dynamic Characteristics
Symbol
APT200GN60B2G
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Min
Typ
Max
-
14100
-
-
461
-
-
393
-
-
8.2
-
Qg
Total Gate Charge
VGE = 15V
-
1180
-
Qge
Gate-Emitter Charge
VCE= 300V
-
85
-
Gate-Collector Charge
IC = 100A
-
660
-
Qgc
SSOA
td(on)
tr
td(off)
tf
Eon1
Switching Safe Operating Area
TJ = 150°C, RG = 1.0Ω , VGE = 15V,
L = 100μH, VCE= 600V
Turn-On Delay Time
-
50
-
Inductive Switching (25°C)
-
80
-
Turn-Off Delay Time
VCC = 400V
560
-
Current Fall Time
VGE = 15V
-
100
-
RG = 1.0Ω
-
13
-
TJ = +25°C
-
15
-
Current Rise Time
IC = 200A
Eon2
Turn-On Switching Energy
Eoff
Turn-Off Switching Energy 6
-
11
-
td(on)
Turn-On Delay Time
-
50
-
Inductive Switching (125°C)
-
80
-
Turn-Off Delay Time
VCC = 400V
-
620
-
Current Fall Time
VGE = 15V
-
70
-
Turn-On Switching Energy
4
IC = 200A
14
-
Turn-On Switching Energy
RG = 1.0Ω
-
5
-
16
-
Turn-Off Switching Energy
6
-
10
-
Eon1
Eon2
Eoff
nC
A
5
tf
V
600
Turn-On Switching Energy
td(off)
pF
7
4
tr
Unit
Current Rise Time
TJ = +125°C
ns
mJ
ns
mJ
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
R
R
θJC
θJC
WT
Min
Typ
Max
Unit
Junction to Case (IGBT)
-
-
0.13
°C/W
Junction to Case (DIODE)
-
-
N/A
Package Weight
-
6.1
-
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
050-7628 Rev A 9-2008
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
gm
Typical Performance Curves
APT200GN60B2G
400
450
GE
= 15V
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
300
250
TJ= 25°C
200
TJ= 125°C
150
TJ= 150°C
100
TJ= 55°C
50
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
TJ= 125°C
300
TJ= -55°C
250
TJ= 25°C
200
150
100
50
0
0
2
4
6
8
12V
300
250
9V
200
8.5V
150
8V
100
7.5V
50
7V
0
4
8
12 16
20 24
28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
16
TJ= 150°C
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
350
13V
350
0
0
400
15V
400
10
I = 200A
C
T = 25°C
14
J
12
VCE = 300V
10
6
4
2
0
12
2.5
IC = 400A
2.0
IC = 200A
1.5
IC = 100A
1.0
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0.95
0.90
0.85
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
2.5
IC = 400A
2.0
IC = 200A
1.5
IC = 100A
1.0
0.5
0
0
25
50
75 100 125 150 175
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
450
1.05
1.00
3.0
200 400 600 800 1000 1200 1400 1600
GATE CHARGE (nC)
FIGURE 4, Gate charge
500
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
VCE = 480V
8
VCE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.0
VCE = 120V
400
350
300
250
200
150
100
50
0
-50
-25
0
25
50 75 100 125 150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
050-7628 Rev A 9-2008
V
350
Typical Performance Curves
APT200GN60B2G
800
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
60
50
VGE = 15V
40
30
20
VCE = 400V
TJ = 25°C, or 125°C
RG = 1.0Ω
L = 100μH
10
VGE =15V,TJ=125°C
VGE =15V,TJ=25°C
400
300
200
VCE = 400V
RG = 1.0Ω
L = 100μH
100
250
RG = 1.0Ω, L = 100μH, VCE = 400V
RG = 1.0Ω, L = 100μH, VCE = 400V
200
140
120
tr, FALL TIME (ns)
tr, RISE TIME (ns)
500
40 80
120 160
200 240 280 320
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
40
80 120 160 200 240 280 320
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
160
600
0
0
180
700
100
80
60
40
TJ = 25 or 125°C,VGE = 15V
150
TJ = 25°C, VGE = 15V
100
50
TJ = 125°C, VGE = 15V
20
0
0
V
= 400V
CE
V
= +15V
GE
R = 1.0Ω
30
40
80
120 160 200 240 280 320
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
25
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
40
80
120 160 200 240 280 320
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
35
G
25
TJ = 125°C
20
15
10
5
TJ = 125°C
15
10
TJ = 25°C
5
0
40
80
120 160 200
240 280
320
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
V
= 400V
CE
V
= +15V
GE
T = 125°C
60
35
Eoff,400A
J
50
Eon2,400A
40
Eoff,200A
30
Eon2,200A
20
40 80
120 160 200 240 280 320
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
Eoff,100A
10
SWITCHING ENERGY LOSSES (μJ)
70
SWITCHING ENERGY LOSSES (μJ)
G
20
TJ = 25°C
0
050-7628 Rev A 9-2008
V
= 400V
CE
V
= +15V
GE
R = 1.0Ω
V
= 400V
CE
= +15V
V
GE
R = 1.0Ω
30
25
Eoff,400A
20
Eon2,200A
15
Eoff,200A
10
Eon2,100A
5
Eon2,100A
0
0
5
10
15
20
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
Eon2,400A
G
Eoff,100A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT200GN60B2G
100,000
700
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
600
Cies
10,000
1,000
Coes
Cres
100
500
400
300
200
100
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
0 100
200 300 400 500 600 700
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0.12
D = 0.9
0.10
0.7
0.08
0.5
Note:
0.06
PDM
0.3
0.04
t1
t2
0.02
t
0.1
0.05
0
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
TC (°C)
0.032
0.099
Dissipated Power
(Watts)
.000443
ZEXT
TJ (°C)
.0058601
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
70
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 1.0Ω
60
G
50
40
75°C
30
20
10
100°C
0
1.0
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
0
50
100
150
200
250
300
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
050-7628 Rev A 9-2008
ZθJC, THERMAL IMPEDANCE (°C/W)
0.14
APT200GN60B2G
10%
Gate Voltage
td(on)
TJ = 125°C
APT100DQ60
tr
IC
V CC
V CE
90%
5%
A
10%
Collector Current
5%
Collector Voltage
D.U.T.
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
Collector Voltage
90%
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
T-MAX® Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
0.40 (.016)
0.79 (.031)
4.50
(.177) Max.
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
050-7628 Rev A 9-2008
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.