APT200GN60B2G 600V, VCE(ON) = 1.45V Typical Field Stop IGBT Utilizing the latest Field Stop and Trench Gate technologies, these IGBT’s have ultra low VCE(ON) and are ideal for low frequency applications that require absolute minimum conduction loss. Easy paralleling is a result of very tight parameter distribution and a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. Low gate charge simplifies gate drive design and minimizes losses. • 1200V Field Stop • Trench Gate: Low VCE(ON) • Easy Paralleling • Integrated Gate Resistor :Low EMI, High Reliability • RoHS Compliant Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings Symbol Parameter Ratings VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 IC1 Continuous Collector Current @ TC = 25°C 283 IC2 Continuous Collector Current @ TC = 110°C 158 ICM SSOA PD TJ, TSTG TL Pulsed Collector Current 1 Unit Volts Amps 600 Switching Safe Operating Area @ TJ = 175°C 600A @ 600V Total Power Dissipation 682 Operating and Storage Junction Temperature Range Watts -55 to 175 Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec. °C 300 Static Electrical Characteristics Min Typ Max Unit V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA) 600 - - VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 3.2mA, Tj = 25°C) 5.0 5.8 6.5 Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 25°C) 1.05 1.45 1.85 Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 125°C) - 1.65 - Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 - - 25 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 - - 1000 Gate-Emitter Leakage Current (VGE = ±20V) - - 600 nA Integrated Gate Resistor - 2 - Ω VCE(ON) ICES IGES RG(int) CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts μA 050-7628 Rev A 9-2008 Symbol Characteristic / Test Conditions Dynamic Characteristics Symbol APT200GN60B2G Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage VGE = 0V, VCE = 25V f = 1MHz Gate Charge Min Typ Max - 14100 - - 461 - - 393 - - 8.2 - Qg Total Gate Charge VGE = 15V - 1180 - Qge Gate-Emitter Charge VCE= 300V - 85 - Gate-Collector Charge IC = 100A - 660 - Qgc SSOA td(on) tr td(off) tf Eon1 Switching Safe Operating Area TJ = 150°C, RG = 1.0Ω , VGE = 15V, L = 100μH, VCE= 600V Turn-On Delay Time - 50 - Inductive Switching (25°C) - 80 - Turn-Off Delay Time VCC = 400V 560 - Current Fall Time VGE = 15V - 100 - RG = 1.0Ω - 13 - TJ = +25°C - 15 - Current Rise Time IC = 200A Eon2 Turn-On Switching Energy Eoff Turn-Off Switching Energy 6 - 11 - td(on) Turn-On Delay Time - 50 - Inductive Switching (125°C) - 80 - Turn-Off Delay Time VCC = 400V - 620 - Current Fall Time VGE = 15V - 70 - Turn-On Switching Energy 4 IC = 200A 14 - Turn-On Switching Energy RG = 1.0Ω - 5 - 16 - Turn-Off Switching Energy 6 - 10 - Eon1 Eon2 Eoff nC A 5 tf V 600 Turn-On Switching Energy td(off) pF 7 4 tr Unit Current Rise Time TJ = +125°C ns mJ ns mJ Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions R R θJC θJC WT Min Typ Max Unit Junction to Case (IGBT) - - 0.13 °C/W Junction to Case (DIODE) - - N/A Package Weight - 6.1 - 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. 050-7628 Rev A 9-2008 Microsemi reserves the right to change, without notice, the specifications and information contained herein. gm Typical Performance Curves APT200GN60B2G 400 450 GE = 15V IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 300 250 TJ= 25°C 200 TJ= 125°C 150 TJ= 150°C 100 TJ= 55°C 50 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 250μs PULSE TEST<0.5 % DUTY CYCLE TJ= 125°C 300 TJ= -55°C 250 TJ= 25°C 200 150 100 50 0 0 2 4 6 8 12V 300 250 9V 200 8.5V 150 8V 100 7.5V 50 7V 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 16 TJ= 150°C VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 350 13V 350 0 0 400 15V 400 10 I = 200A C T = 25°C 14 J 12 VCE = 300V 10 6 4 2 0 12 2.5 IC = 400A 2.0 IC = 200A 1.5 IC = 100A 1.0 0.5 0 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 0.95 0.90 0.85 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 2.5 IC = 400A 2.0 IC = 200A 1.5 IC = 100A 1.0 0.5 0 0 25 50 75 100 125 150 175 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 450 1.05 1.00 3.0 200 400 600 800 1000 1200 1400 1600 GATE CHARGE (nC) FIGURE 4, Gate charge 500 IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.10 VCE = 480V 8 VCE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3.0 VCE = 120V 400 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 050-7628 Rev A 9-2008 V 350 Typical Performance Curves APT200GN60B2G 800 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 60 50 VGE = 15V 40 30 20 VCE = 400V TJ = 25°C, or 125°C RG = 1.0Ω L = 100μH 10 VGE =15V,TJ=125°C VGE =15V,TJ=25°C 400 300 200 VCE = 400V RG = 1.0Ω L = 100μH 100 250 RG = 1.0Ω, L = 100μH, VCE = 400V RG = 1.0Ω, L = 100μH, VCE = 400V 200 140 120 tr, FALL TIME (ns) tr, RISE TIME (ns) 500 40 80 120 160 200 240 280 320 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 40 80 120 160 200 240 280 320 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 160 600 0 0 180 700 100 80 60 40 TJ = 25 or 125°C,VGE = 15V 150 TJ = 25°C, VGE = 15V 100 50 TJ = 125°C, VGE = 15V 20 0 0 V = 400V CE V = +15V GE R = 1.0Ω 30 40 80 120 160 200 240 280 320 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 25 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 40 80 120 160 200 240 280 320 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 35 G 25 TJ = 125°C 20 15 10 5 TJ = 125°C 15 10 TJ = 25°C 5 0 40 80 120 160 200 240 280 320 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current V = 400V CE V = +15V GE T = 125°C 60 35 Eoff,400A J 50 Eon2,400A 40 Eoff,200A 30 Eon2,200A 20 40 80 120 160 200 240 280 320 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current Eoff,100A 10 SWITCHING ENERGY LOSSES (μJ) 70 SWITCHING ENERGY LOSSES (μJ) G 20 TJ = 25°C 0 050-7628 Rev A 9-2008 V = 400V CE V = +15V GE R = 1.0Ω V = 400V CE = +15V V GE R = 1.0Ω 30 25 Eoff,400A 20 Eon2,200A 15 Eoff,200A 10 Eon2,100A 5 Eon2,100A 0 0 5 10 15 20 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance Eon2,400A G Eoff,100A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT200GN60B2G 100,000 700 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) 600 Cies 10,000 1,000 Coes Cres 100 500 400 300 200 100 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0.12 D = 0.9 0.10 0.7 0.08 0.5 Note: 0.06 PDM 0.3 0.04 t1 t2 0.02 t 0.1 0.05 0 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TC (°C) 0.032 0.099 Dissipated Power (Watts) .000443 ZEXT TJ (°C) .0058601 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) 70 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 1.0Ω 60 G 50 40 75°C 30 20 10 100°C 0 1.0 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 0 50 100 150 200 250 300 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 050-7628 Rev A 9-2008 ZθJC, THERMAL IMPEDANCE (°C/W) 0.14 APT200GN60B2G 10% Gate Voltage td(on) TJ = 125°C APT100DQ60 tr IC V CC V CE 90% 5% A 10% Collector Current 5% Collector Voltage D.U.T. Switching Energy Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) Collector Voltage 90% tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions T-MAX® Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector 5.38 (.212) 6.20 (.244) 20.80 (.819) 21.46 (.845) 0.40 (.016) 0.79 (.031) 4.50 (.177) Max. 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 050-7628 Rev A 9-2008 1.01 (.040) 1.40 (.055) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.