ADPOW APT100GT60JR

APT100GT60JR
600V
TYPICAL PERFORMANCE CURVES
APT100GT60JR
®
E
E
Thunderbolt IGBT®
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 80KHz
• Low Tail Current
• Ultra Low Leakage Current
C
G
ISOTOP ®
S
OT
22
7
"UL Recognized"
file # E145592
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
148
I C2
Continuous Collector Current @ TC = 100°C
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
UNIT
APT100GT60JR
Volts
80
1
Amps
300
300A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Watts
500
Total Power Dissipation
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
(VCE = VGE, I C = 1.5mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
TYP
MAX
3
4
5
1.7
2.1
2.5
Gate-Emitter Leakage Current (VGE = ±30V)
µA
TBD
300
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
2.5
25
2
Units
nA
4-2006
MIN
Rev A
Characteristic / Test Conditions
052-6274
Symbol
APT100GT60JR
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
td(on)
tr
td(off)
tf
Eon1
Eon2
Eoff
f = 1 MHz
295
Gate Charge
8.0
VGE = 15V
460
V
nC
A
VCC = 400V
75
ns
320
I C = 100A
100
RG = 4.3Ω
3250
TJ = +25°C
µJ
3525
6
3125
Inductive Switching (125°C)
40
VCC = 400V
75
Current Rise Time
VGE = 15V
Turn-off Delay Time
100
RG = 4.3Ω
44
55
ns
350
I C = 100A
Current Fall Time
Turn-on Switching Energy (Diode)
pF
300
40
5
UNIT
210
Inductive Switching (25°C)
4
MAX
40
VGE = 15V
Turn-on Delay Time
Turn-off Switching Energy
475
15V, L = 100µH,VCE = 600V
Current Fall Time
Turn-on Switching Energy
VGE = 0V, VCE = 25V
TJ = 150°C, R G = 4.3Ω, VGE =
Turn-off Delay Time
Turn-off Switching Energy
5150
I C = 100A
Current Rise Time
Turn-on Switching Energy (Diode)
TYP
Capacitance
VCE = 300V
Turn-on Delay Time
Turn-on Switching Energy
MIN
3275
TJ = +125°C
µJ
4650
66
3750
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.25
RθJC
Junction to Case (DIODE)
N/A
WT
VIsolation
Package Weight
29.2
RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500
UNIT
°C/W
gm
Volts
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
052-6274
Rev A
4-2006
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
160
140
TC = 25°C
120
TC = 125°C
100
80
TC = -55°C
60
40
12, 13, &15V
10V
250
9V
200
150
8V
100
7V
50
6V
20
0
0
0 0.5
1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
160
140
120
100
80
TJ = 25°C
60
TJ = 125°C
40
20
0
IC = 200A
4.0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
3.0
IC = 100A
2.5
2.0
1.5
IC = 50A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
VCE = 480V
6
4
2
0
100
200
300
400
GATE CHARGE (nC)
500
FIGURE 4, Gate Charge
4
IC = 200A
3.5
3
2.5
IC = 100A
2
1.5
IC = 50A
1
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0.5
0
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
180
0.90
VCE = 300V
8
1.10
0.95
VCE = 120V
10
200
1.00
J
12
1.15
1.05
I = 100A
C
T = 25°C
14
0
2
4
6
8
10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.5
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
TJ = -55°C
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
180
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
200
160
140
120
100
80
60
40
20
0
-50 -25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
4-2006
IC, COLLECTOR CURRENT (A)
= 15V
Rev A
GE
052-6274
V
180
APT100GT60JR
300
IC, COLLECTOR CURRENT (A)
200
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
30
25
20
15
10
VCE = 400V
5 TJ = 25°C, or 125°C
RG = 4.3Ω
L = 100µH
0
200
150
100
VCE = 400V
RG = 4.3Ω
L = 100µH
50
160
150
100
TJ = 125°C
8000
6000
4000
2000
TJ = 25°C
25000
20000
15000
Eon2,100A
Eoff,100A
5000
Eoff,50A
Eon2,50A
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
G
10000
TJ = 125°C
8000
6000
4000
2000
TJ = 25°C
0
0 25 50 70 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
Eon2,200A
J
Eoff,200A
TJ = 25°C, VGE = 15V
16000
= 400V
V
CE
= +15V
V
GE
T = 125°C
10000
60
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
30000
80
0
0
35000
100
20
EOFF, TURN OFF ENERGY LOSS (µJ)
G
10000
120
12000
V
= 400V
CE
V
= +15V
GE
R = 4.3Ω
12000
TJ = 125°C, VGE = 15V
140
40
TJ = 25 or 125°C,VGE = 15V
14000
0
RG = 4.3Ω, L = 100µH, VCE = 400V
180
tf, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =15V,TJ=125°C
200
RG = 4.3Ω, L = 100µH, VCE = 400V
16000
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
250
250
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
300
0
0
4-2006
350
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
50
Rev A
400
0 25 50 75 100 125 150 175 200 225
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
200
052-6274
APT100GT60JR
450
35
Eon2,200A
= 400V
V
CE
= +15V
V
GE
R = 4.3Ω
14000
G
12000
Eoff,200A
10000
8000
6000
4000 Eon2,100A
Eoff,100A
2000 Eoff,50A
0
Eon2,50A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
10,000
IC, COLLECTOR CURRENT (A)
Cies
5,000
P
C, CAPACITANCE ( F)
APT100GT60JR
350
1,000
500
C0es
300
250
200
150
100
50
Cres
0
100
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.25
0.9
0.20
0.7
0.15
0.5
0.10
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
0.3
t1
t2
0.05
0
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.05
10-5
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
0.0587
0.0120
0.420
4.48
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
C
F
10
T = 100°C
C
5
1
T = 125°C
J
D = 50 %
V
= 400V
CE
R = 4.3Ω
G
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
10 20
30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
4-2006
0.132
T = 75°C
Rev A
0.0587
Dissipated Power
(Watts)
50
052-6274
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
100
APT100GT60JR
APT100DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
tr
V CE
IC
V CC
90%
5%
10%
A
Collector Current
5%
CollectorVoltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
Gate Voltage
td(off)
CollectorVoltage
90%
tf
TJ = 125°C
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
4-2006
14.9 (.587)
15.1 (.594)
Rev A
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
052-6274
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
1.95 (.077)
2.14 (.084)
* Emitter
30.1 (1.185)
30.3 (1.193)
Collector
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson.
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.