APT100GT60JR 600V TYPICAL PERFORMANCE CURVES APT100GT60JR ® E E Thunderbolt IGBT® The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 80KHz • Low Tail Current • Ultra Low Leakage Current C G ISOTOP ® S OT 22 7 "UL Recognized" file # E145592 C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 148 I C2 Continuous Collector Current @ TC = 100°C I CM SSOA PD TJ,TSTG TL Pulsed Collector Current UNIT APT100GT60JR Volts 80 1 Amps 300 300A @ 600V Switching Safe Operating Area @ TJ = 150°C Watts 500 Total Power Dissipation Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES (VCE = VGE, I C = 1.5mA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 100A, Tj = 125°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) TYP MAX 3 4 5 1.7 2.1 2.5 Gate-Emitter Leakage Current (VGE = ±30V) µA TBD 300 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts 2.5 25 2 Units nA 4-2006 MIN Rev A Characteristic / Test Conditions 052-6274 Symbol APT100GT60JR DYNAMIC CHARACTERISTICS Symbol Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 Eon2 Eoff td(on) tr td(off) tf Eon1 Eon2 Eoff f = 1 MHz 295 Gate Charge 8.0 VGE = 15V 460 V nC A VCC = 400V 75 ns 320 I C = 100A 100 RG = 4.3Ω 3250 TJ = +25°C µJ 3525 6 3125 Inductive Switching (125°C) 40 VCC = 400V 75 Current Rise Time VGE = 15V Turn-off Delay Time 100 RG = 4.3Ω 44 55 ns 350 I C = 100A Current Fall Time Turn-on Switching Energy (Diode) pF 300 40 5 UNIT 210 Inductive Switching (25°C) 4 MAX 40 VGE = 15V Turn-on Delay Time Turn-off Switching Energy 475 15V, L = 100µH,VCE = 600V Current Fall Time Turn-on Switching Energy VGE = 0V, VCE = 25V TJ = 150°C, R G = 4.3Ω, VGE = Turn-off Delay Time Turn-off Switching Energy 5150 I C = 100A Current Rise Time Turn-on Switching Energy (Diode) TYP Capacitance VCE = 300V Turn-on Delay Time Turn-on Switching Energy MIN 3275 TJ = +125°C µJ 4650 66 3750 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .25 RθJC Junction to Case (DIODE) N/A WT VIsolation Package Weight 29.2 RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500 UNIT °C/W gm Volts 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 052-6274 Rev A 4-2006 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES 160 140 TC = 25°C 120 TC = 125°C 100 80 TC = -55°C 60 40 12, 13, &15V 10V 250 9V 200 150 8V 100 7V 50 6V 20 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 160 140 120 100 80 TJ = 25°C 60 TJ = 125°C 40 20 0 IC = 200A 4.0 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 3.0 IC = 100A 2.5 2.0 1.5 IC = 50A 1.0 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature VCE = 480V 6 4 2 0 100 200 300 400 GATE CHARGE (nC) 500 FIGURE 4, Gate Charge 4 IC = 200A 3.5 3 2.5 IC = 100A 2 1.5 IC = 50A 1 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0.5 0 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 180 0.90 VCE = 300V 8 1.10 0.95 VCE = 120V 10 200 1.00 J 12 1.15 1.05 I = 100A C T = 25°C 14 0 2 4 6 8 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.5 (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) TJ = -55°C VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE 180 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 200 160 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 4-2006 IC, COLLECTOR CURRENT (A) = 15V Rev A GE 052-6274 V 180 APT100GT60JR 300 IC, COLLECTOR CURRENT (A) 200 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) VGE = 15V 30 25 20 15 10 VCE = 400V 5 TJ = 25°C, or 125°C RG = 4.3Ω L = 100µH 0 200 150 100 VCE = 400V RG = 4.3Ω L = 100µH 50 160 150 100 TJ = 125°C 8000 6000 4000 2000 TJ = 25°C 25000 20000 15000 Eon2,100A Eoff,100A 5000 Eoff,50A Eon2,50A 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 V = 400V CE V = +15V GE R = 4.3Ω G 10000 TJ = 125°C 8000 6000 4000 2000 TJ = 25°C 0 0 25 50 70 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) Eon2,200A J Eoff,200A TJ = 25°C, VGE = 15V 16000 = 400V V CE = +15V V GE T = 125°C 10000 60 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 30000 80 0 0 35000 100 20 EOFF, TURN OFF ENERGY LOSS (µJ) G 10000 120 12000 V = 400V CE V = +15V GE R = 4.3Ω 12000 TJ = 125°C, VGE = 15V 140 40 TJ = 25 or 125°C,VGE = 15V 14000 0 RG = 4.3Ω, L = 100µH, VCE = 400V 180 tf, FALL TIME (ns) tr, RISE TIME (ns) VGE =15V,TJ=125°C 200 RG = 4.3Ω, L = 100µH, VCE = 400V 16000 EON2, TURN ON ENERGY LOSS (µJ) VGE =15V,TJ=25°C 250 250 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current SWITCHING ENERGY LOSSES (µJ) 300 0 0 4-2006 350 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 50 Rev A 400 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 200 052-6274 APT100GT60JR 450 35 Eon2,200A = 400V V CE = +15V V GE R = 4.3Ω 14000 G 12000 Eoff,200A 10000 8000 6000 4000 Eon2,100A Eoff,100A 2000 Eoff,50A 0 Eon2,50A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES 10,000 IC, COLLECTOR CURRENT (A) Cies 5,000 P C, CAPACITANCE ( F) APT100GT60JR 350 1,000 500 C0es 300 250 200 150 100 50 Cres 0 100 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.25 0.9 0.20 0.7 0.15 0.5 0.10 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 0.3 t1 t2 0.05 0 0.1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 0.0587 0.0120 0.420 4.48 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL C F 10 T = 100°C C 5 1 T = 125°C J D = 50 % V = 400V CE R = 4.3Ω G = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 4-2006 0.132 T = 75°C Rev A 0.0587 Dissipated Power (Watts) 50 052-6274 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 100 APT100GT60JR APT100DQ60 Gate Voltage 10% TJ = 125°C td(on) tr V CE IC V CC 90% 5% 10% A Collector Current 5% CollectorVoltage D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% Gate Voltage td(off) CollectorVoltage 90% tf TJ = 125°C 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 4-2006 14.9 (.587) 15.1 (.594) Rev A 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 052-6274 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) 1.95 (.077) 2.14 (.084) * Emitter 30.1 (1.185) 30.3 (1.193) Collector * Emitter terminals are shorted internally. Current handling capability is equal for either Source terminal. 38.0 (1.496) 38.2 (1.504) * Emitter Gate Dimensions in Millimeters and (Inches) ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.