ADPOW APT15GT120BR

APT15GT120BR(G)
1200V
TYPICAL PERFORMANCE CURVES
APT15GT120BR
APT15GT120BRG*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
47
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 50KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GT120BR(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
36
I C2
Continuous Collector Current @ TC = 110°C
18
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
45
@ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
45A @ 960V
Total Power Dissipation
Watts
250
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1mA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
MAX
4.5
5.5
6.5
2.5
3.0
3.6
Units
1200
(VCE = VGE, I C = 0.6mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
3.8
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Volts
100
2
Gate-Emitter Leakage Current (VGE = ±20V)
TBD
480
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
nA
12-2005
V(BR)CES
MIN
Rev B
Characteristic / Test Conditions
050-6266
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT15GT120BR(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
Eon1
f = 1 MHz
65
Gate Charge
10
VGE = 15V
105
TJ = 150°C, R G = 5Ω, VGE =
585
TJ = +25°C
260
10
VCC = 800V
11
VGE = 15V
Turn-off Delay Time
42
RG = 5Ω
44
55
ns
95
I C = 15A
Current Fall Time
Turn-off Switching Energy
µJ
800
Inductive Switching (125°C)
Current Rise Time
Eoff
ns
35
6
Turn-on Switching Energy (Diode)
nC
85
RG = 5Ω
Turn-on Delay Time
Turn-on Switching Energy
V
A
11
I C = 15A
Eon2
pF
45
10
5
UNIT
60
VCC = 800V
4
MAX
10
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
100
15V, L = 100µH,VCE = 960V
Turn-off Delay Time
Eoff
tr
VGE = 0V, VCE = 25V
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
1070
I C = 15A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 600V
Turn-on Delay Time
Turn-on Switching Energy
MIN
590
TJ = +125°C
µJ
1440
6
340
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.50
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
050-6266
Rev B
12-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
V
GE
35
= 15V
TJ = -55°C
30
25
TJ = 25°C
20
15
TJ = 125°C
10
5
12V
30
11V
20
10V
9V
10
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
VGE, GATE-TO-EMITTER VOLTAGE (V)
35
30
25
20
TJ = -55°C
15
TJ = 25°C
10
TJ = 125°C
5
0
J
VCE = 240V
12
VCE = 600V
10
VCE = 960V
8
6
4
2
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 15A
C
T = 25°C
14
0
20
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC = 30A
4
IC = 15A
3
IC = 7.5A
2
1
9
10
11
12
13
14
15
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.00
0.95
0.90
0.85
0.80
0.75
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
6
5
IC = 30A
4
IC = 15A
IC = 7.5A
3
2
1
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
45
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
1.05
120
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
40
60
80
100
GATE CHARGE (nC)
40
35
30
25
20
15
10
5
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
12-2005
250µs PULSE
TEST<0.5 % DUTY
CYCLE
40
FIGURE 2, Output Characteristics (TJ = 125°C)
16
Rev B
45
IC, COLLECTOR CURRENT (A)
13V
40
0
0
1
2
3
4
5
6
7
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
14V
50
8V
0
0
15V
050-6266
IC, COLLECTOR CURRENT (A)
40
APT15GT120BR(G)
60
IC, COLLECTOR CURRENT (A)
45
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
12
VGE = 15V
10
8
6
4
VCE = 600V
2 TJ = 25°C, TJ =125°C
0
RG = 5Ω
L = 100 µH
5
40
tf, FALL TIME (ns)
tr, RISE TIME (ns)
40
20 VCE = 800V
RG = 5Ω
L = 100 µH
5
RG = 5Ω, L = 100µH, VCE = 800V
40
25
20
15
30
20
15
10
TJ = 25 or 125°C,VGE = 15V
5
0
0
4000
EOFF, TURN OFF ENERGY LOSS (µJ)
G
3000
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1000
V
= 800V
CE
V
= +15V
GE
R = 5Ω
3500
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
25
5
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
TJ = 125°C
2500
2000
1500
1000
500
TJ = 25°C
0
= 800V
V
CE
= +15V
V
GE
R = 5Ω
G
800
TJ = 125°C
600
400
200
TJ = 25°C
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
8000
4000
= 800V
V
CE
= +15V
V
GE
T = 125°C
7000
Eon2,30A
J
6000
5000
4000
3000
2000
1000
0
Eoff,30A
Eon2,15A
Eon2,7.5A
0
Eoff,15A
Eoff,7.5A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
60
35
10
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=125°C
45
RG = 5Ω, L = 100µH, VCE = 800V
30
12-2005
80
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
35
Rev B
100
0
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
050-6266
APT15GT120BR(G)
120
14
V
= 800V
CE
V
= +15V
GE
R = 5Ω
3500
G
3000
Eon2,30A
2500
2000
1500
Eon2,15A
Eoff,30A
1000
Eon2,7.5A
500
0
0
Eoff,7.5A
Eoff,15A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
2,000
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
1,000
Coes
100
50
APT15GT120BR(G)
50
Cres
45
40
35
30
25
20
15
10
5
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.50
D = 0.9
0.40
0.7
0.30
0.20
0.5
Note:
0.3
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
t1
t2
0.10
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.00471
Power
(watts)
0.229
0.0898
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 5Ω
G
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
0
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
12-2005
0.271
50
Rev B
Junction
temp. (°C)
100
050-6266
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
400
APT15GT120BR(G)
APT15DQ120
Gate Voltage
10%
TJ = 125°C
td(on)
IC
V CC
tr
V CE
Collector Current
5%
90%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
TJ = 125°C
Gate Voltage
td(off)
tf
Collector Voltage
90%
10% 0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
Rev B
12-2005
4.50 (.177) Max.
050-6266
5.38 (.212)
6.20 (.244)
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.