APT40GT60BR 600V, 80A, VCE(ON) = 2.1V Typical Thunderbolt IGBT® The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. TO -24 7 Features • Low Forward Voltage Drop • RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 150KHz • RoHS Compliant • Ultra Low Leakage Current G C E C G E All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings Symbol Parameter Ratings VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 IC1 Continuous Collector Current @ TC = 25°C 80 IC2 Continuous Collector Current @ TC = 105°C 40 ICM Pulsed Collector Current 1 160 SSOA PD TJ, TSTG Unit Volts Switching Safe Operating Area @ TJ = 150°C Amps 160A @ 600V Total Power Dissipation Operating and Storage Junction Temperature Range 345 Watts -55 to 150 °C Static Electrical Characteristics Min Typ Max V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA) 600 - - VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 500μA, Tj = 25°C) 3 4 5 Collector Emitter On Voltage (VGE = 15V, IC = 40A, Tj = 25°C) 1.6 2.15 2.5 Collector Emitter On Voltage (VGE = 15V, IC = 40A, Tj = 125°C) - - 2.8 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 - - 80 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 - - 2000 Gate-Emitter Leakage Current (VGE = ±20V) - - 100 VCE(ON) ICES IGES Volts μA CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Unit nA 052-6222 Rev C 11 - 2008 Symbol Characteristic / Test Conditions Dynamic Characteristic Symbol APT40GT60BR Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge Qge Gate-Emitter Charge Qgc SSOA td(on) tr td(off) tf Min Typ Max - 2190 - - 220 - - 130 - - 8.0 - VGE = 15V - 200 - VCE= 300V - 12 - IC = 40A - 86 - TJ = 150°C, RG = 5Ω , VGE = 15V, L 160 VGE = 0V, VCE = 25V 3 f = 1MHz Gate Charge Gate-Collector Charge Switching Safe Operating Area = 100μH, VCE= 600V Current Rise Time Turn-Off Delay Time 12 - Inductive Switching (25°C) - 36 - VCC = 400V - 124 - - 55 - RG = 5Ω - - - TJ = +25°C - 945 - VGE = 15V Current Fall Time IC = 40A Eon1 Turn-On Switching Energy 4 Eon2 Turn-On Switching Energy 5 Eoff Turn-Off Switching Energy 6 - 828 - td(on) Turn-On Delay Time - 12 - Inductive Switching (125°C) - 33 - Turn-Off Delay Time VCC = 400V - 165 - Current Fall Time VGE = 15V - 58 - Turn-On Switching Energy 4 IC = 40A - - Eon2 Turn-On Switching Energy RG = 5Ω - 5 - 1342 - Eoff Turn-Off Switching Energy 6 - 1150 - tr td(off) tf Eon1 Current Rise Time TJ = +125°C pF V nC A - Turn-On Delay Time Unit ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions Min Typ Max Unit RθJC Junction to Case (IGBT) - - 0.36 RθJC Junction to Case (DIODE) - - N/A WT Package Weight - 6.1 - g - - 10 in·lbf - - 1.1 N·m 2500 - - Volts °C/W Torque Terminals and Mounting Screws VIsolation RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 052-6222 Rev C 11 - 2008 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages. 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves = 15V 80 70 TJ= 125°C 60 TJ= 25°C 50 40 30 20 TJ= 55°C 10 IC, COLLECTOR CURRENT (A) 120 80 60 40 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ= 25°C 100 20 TJ= 125°C 0 TJ= -55°C 4 6 8 10 12 14 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 5 4 IC = 80A 3 IC = 40A 2 IC = 200A 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 8V 7V 25 6V 0 5 10 15 20 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 0.95 0.90 0.85 0.80 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature J 12 VCE = 120V 10 VCE = 300V 8 VCE = 480V 6 4 2 0 20 40 60 80 100 120 140 160 180 200 GATE CHARGE (nC) FIGURE 4, Gate charge 6 5 IC = 80A 4 3 IC = 40A 2 IC = 20A 1 0 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 80 1.05 1.00 I = 40A C T = 25°C 14 90 IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.10 0.75 -.50 -.25 9V 50 0 2 6 10V 16 250μs PULSE TEST<0.5 % DUTY CYCLE 140 11V 75 0 0 1 2 3 4 5 6 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 160 13V 100 VGE, GATE-TO-EMITTER VOLTAGE (V) 0 15V 125 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) GE 70 60 50 40 30 20 10 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6222 Rev C 11 - 2008 V 90 APT40GT60BR 150 IC, COLLECTOR CURRENT (A) 100 Typical Performance Curves APT40GT60BR 300 20 VGE = 15V 15 10 VCE = 400V TJ = 25°C, or 125°C RG = 5Ω L = 100μH 5 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 250 200 VGE =15V,TJ=125°C 150 0 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 200 RG = 5Ω, L = 100μH, VCE = 400V 90 tr, FALL TIME (ns) tr, RISE TIME (ns) 150 70 60 50 40 30 TJ = 25 or 125°C,VGE = 15V 20 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 4500 75 50 TJ = 125°C, VGE = 15V V = 400V CE V = +15V GE R = 5Ω 4000 G 3500 3000 TJ = 125°C 2500 2000 1500 1000 TJ = 25°C 500 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 3000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) TJ = 25°C, VGE = 15V 100 0 0 0 V = 400V CE V = +15V GE T = 125°C 7000 6000 Eoff,80A 4000 3000 Eoff,40A 2000 Eon2,40A Eoff,20A 1000 G TJ = 125°C 2000 1500 1000 TJ = 25°C 500 5000 Eon2,80A J 5000 2500 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) 8000 V = 400V CE V = +15V GE R = 5Ω 0 0 10 20 30 40 50 60 70 80 90 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) 125 25 10 052-6222 Rev C 11 - 2008 RG = 5Ω, L = 100μH, VCE = 400V 175 80 0 VCE = 400V RG = 5Ω L = 100μH 50 0 100 VGE =15V,TJ=25°C 100 V = 400V CE V = +15V GE R = 5Ω G 4000 Eon2,80A 3000 2000 Eoff,80A Eon2,40A 1000 Eoff,40A Eon2,20A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance 0 Eon2,20A Eoff,20A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT40GT60BR 200 100,000 175 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 10,000 Coes 1000 100 Cres 150 125 100 75 50 25 0 0 10 20 30 40 0 100 200 300 400 500 600 700 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0.35 D = 0.9 0.30 0.7 0.25 0.5 0.20 0.15 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.40 0.3 0.10 t1 t2 t 0.1 0.05 0.05 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0 10-5 10-4 10-3 10-2 10 -1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 .07172 .1434 .1451 Dissipated Power (Watts) .00157 .0040 0.1270 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 70 60 50 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 40 30 20 10 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 1.0Ω f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 75°C G 0 25 35 45 55 65 75 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6222 Rev C 11 - 2008 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 80 APT40GT60BR 10% td(on) Gate Voltage APT30DQ60 TJ = 125°C tr 90% V CE IC V CC Collector Current 10% 5% 5% CollectorVoltage A Switching Energy D.U.T. Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% TJ = 125°C Gate Voltage td(off) tf 10% 0 Collector Current CollectorVoltage Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions TO-247 (B) Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC Collector 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 052-6222 Rev C 11 - 2008 5.38 (.212) 6.20 (.244) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.