MICROSEMI APT200GT60JR

APT200GT60JR
600V, 200A, VCE(ON) = 2.1V Typical
Thunderbolt IGBT®
E
E
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.
C
G
Features
S
• Low Forward Voltage Drop
• RBSOA and SCSOA Rated
• Low Tail Current
• High Frequency Switching to 50KHz
• Integrated Gate Resistor
• Ultra Low Leakage Current
OT
22
7
"UL Recognized"
ISOTOP ®
file # E145592
Low EMI, High Reliability
• RoHS Compliant
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
IC1
Continuous Collector Current @ TC = 25°C
195
IC2
Continuous Collector Current @ TC = 100°C
100
ICM
Pulsed Collector Current 1
600
SSOA
PD
TJ, TSTG
Unit
Volts
Switching Safe Operating Area @ TJ = 150°C
Amps
600A @ 600V
Total Power Dissipation
Operating and Storage Junction Temperature Range
500
Watts
-55 to 150
°C
Static Electrical Characteristics
Min
Typ
Max
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA)
600
-
-
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 4.0mA, Tj = 25°C)
3
4
5
Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 25°C)
1.6
2.0
2.5
Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 125°C)
-
2.5
-
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2
-
-
25
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2
-
-
1000
Gate-Emitter Leakage Current (VGE = ±30V)
-
-
300
VCE(ON)
ICES
IGES
Volts
μA
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Unit
nA
052-6298 Rev C 5 - 2009
Symbol Characteristic / Test Conditions
Dynamic Characteristic
Symbol
APT200GT60JR
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Min
Typ
Max
-
8650
-
-
546
-
-
1180
-
-
7.5
-
VGE = 15V
-
946
-
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
VCE= 300V
-
58
-
Gate-Collector Charge
IC = 200A
-
430
-
TJ = 150°C, RG = 2.2Ω , VGE = 15V,
600
Qgc
SSOA
td(on)
tr
td(off)
tf
3
Switching Safe Operating Area
L = 100μH, VCE= 600V
Current Rise Time
Turn-Off Delay Time
72
-
Inductive Switching (25°C)
-
160
-
VCC = 400V
-
952
-
-
212
-
RG = 2.2Ω
-
-
-
TJ = +25°C
-
9193
-
VGE = 15V
Current Fall Time
IC = 200A
Eon1
Turn-On Switching Energy
4
Eon2
Turn-On Switching Energy
5
Eoff
Turn-Off Switching Energy 6
-
19290
-
td(on)
Turn-On Delay Time
-
71
-
Inductive Switching (125°C)
-
157
-
Turn-Off Delay Time
VCC = 400V
-
1030
-
Current Fall Time
VGE = 15V
-
202
-
Turn-On Switching Energy
4
IC = 200A
-
-
Eon2
Turn-On Switching Energy
RG = 2.2Ω
-
5
-
10460
-
Eoff
Turn-Off Switching Energy 6
-
20210
-
tr
td(off)
tf
Eon1
Current Rise Time
TJ = +125°C
pF
V
nC
A
-
Turn-On Delay Time
Unit
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
Min
Typ
Max
Unit
RθJC
Junction to Case (IGBT)
-
-
0.21
RθJC
Junction to Case (DIODE)
-
-
N/A
WT
Package Weight
-
29.2
-
g
-
-
10
in·lbf
-
-
1.1
N·m
2500
-
-
Volts
°C/W
Torque
Terminals and Mounting Screws
VIsolation
RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
052-6298 Rev C 5 - 2009
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages.
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT200GT60JR
250
V
= 15V
IC, COLLECTOR CURRENT (A)
TJ= 25°C
175
TJ= 125°C
150
TJ= 150°C
125
100
75
TJ= 55°C
50
25
250
200
150
100
TJ= 25°C
50
TJ= -55°C
TJ= 125°C
0
2
4
10V
250
200
9V
150
100
8V
50
0
5V
0
4
8
12 16
20 24
28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
20
250μs PULSE
TEST<0.5 % DUTY
CYCLE
300
11V
300
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
350
0
13/15V
12V
350
200
0
6
8
10
I = 200A
C
T = 25°C
J
VCE = 120V
15
VCE = 300V
10
VCE = 480V
5
0
12
0
250
500
750
GATE CHARGE (nC)
FIGURE 4, Gate charge
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
5
4
IC = 400A
3
IC = 200A
IC = 100A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
6
1000
5
4
IC = 400A
3
IC = 200A
IC = 100A
2
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0
25
50
75
100 125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
250
1.05
200
1.00
0.95
0.90
0.85
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT (A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
150
100
50
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6298 Rev C 5 - 2009
IC, COLLECTOR CURRENT (A)
GE
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
225
400
Typical Performance Curves
APT200GT60JR
1400
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
100
VGE = 15V
80
60
40
VCE = 400V
TJ = 25°C, or 125°C
RG = 2.2Ω
L = 100μH
20
1200
1000
VGE =15V,TJ=25°C
600
400
VCE = 400V
RG = 2.2Ω
L = 100μH
200
0
0
0 50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
400
VGE =15V,TJ=125°C
800
0 50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
450
RG = 2.2Ω, L = 100μH, VCE = 400V
RG = 2.2Ω, L = 100μH, VCE = 400V
400
350
tr, FALL TIME (ns)
tr, RISE TIME (ns)
300
200
100
TJ = 25°C, VGE = 15V
300
250
200
TJ = 125°C, VGE = 15V
150
100
TJ = 25 or 125°C,VGE = 15V
50
0
0
0
50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
V
= 400V
CE
V
= +15V
GE
R = 2.2Ω
35000
G
30000
25000
TJ = 125°C
20000
15000
10000
5000
TJ = 25°C
50000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
0
50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
40000
0
J
80000
Eon2,400A
60000
Eoff,200A
40000
Eon2,200A
20000
30000
20000
TJ = 25°C
10000
60000
Eoff,400A
Eoff,100A
TJ = 125°C
50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6298 Rev C 5 - 2009
V
= 400V
CE
V
= +15V
GE
T = 125°C
G
40000
0
0 50 100 150 200 250 300 350 400
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
100000
V
= 400V
CE
V
= +15V
GE
R = 2.2Ω
50000
V
= 400V
CE
V
= +15V
GE
R = 2.2Ω
G
40000
Eoff,400A
30000
20000
Eoff,200A
10000
Eon2,200A
Eon2,100A
0
0
5
10
15
20
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
Eon2,400A
Eon2,100A
Eoff,100A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT200GT60JR
1000
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
100,000
Cies
10,000
1,000
Coes
Cres
100
100
10
1
0.1
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
D = 0.9
0.20
0.7
0.15
0.5
Note:
PDM
0.10
0.3
t
0.1
0.05
0
t1
t2
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10 -1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
40
75°C
35
30
25
100°C
20
15
10
5
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 1.0Ω
G
0
10
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
20
30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6298 Rev C 5 - 2009
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT200GT60JR
10%
Gate Voltage
td(on)
APT100DQ60
TJ = 125°C
tr
90%
Collector Current
V CE
IC
V CC
10%
5%
5%
A
CollectorVoltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
TJ = 125°C
Gate Voltage
90%
td(off)
tf
10%
0
Collector Current
CollectorVoltage
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
3.3 (.129)
3.6 (.143)
14.9 (.587)
15.1 (.594)
052-6298 Rev C 5 - 2009
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
1.95 (.077)
2.14 (.084)
*Emitter
Collector
*Emitter terminals are shorted
internally. Current handling capability is equal for either Emitter
terminal.
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
*Emitter
Gate
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.