APT200GT60JR 600V, 200A, VCE(ON) = 2.1V Typical Thunderbolt IGBT® E E The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. C G Features S • Low Forward Voltage Drop • RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 50KHz • Integrated Gate Resistor • Ultra Low Leakage Current OT 22 7 "UL Recognized" ISOTOP ® file # E145592 Low EMI, High Reliability • RoHS Compliant All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings Symbol Parameter Ratings VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 IC1 Continuous Collector Current @ TC = 25°C 195 IC2 Continuous Collector Current @ TC = 100°C 100 ICM Pulsed Collector Current 1 600 SSOA PD TJ, TSTG Unit Volts Switching Safe Operating Area @ TJ = 150°C Amps 600A @ 600V Total Power Dissipation Operating and Storage Junction Temperature Range 500 Watts -55 to 150 °C Static Electrical Characteristics Min Typ Max V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 5mA) 600 - - VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 4.0mA, Tj = 25°C) 3 4 5 Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 25°C) 1.6 2.0 2.5 Collector Emitter On Voltage (VGE = 15V, IC = 200A, Tj = 125°C) - 2.5 - Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 - - 25 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 - - 1000 Gate-Emitter Leakage Current (VGE = ±30V) - - 300 VCE(ON) ICES IGES Volts μA CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Unit nA 052-6298 Rev C 5 - 2009 Symbol Characteristic / Test Conditions Dynamic Characteristic Symbol APT200GT60JR Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Min Typ Max - 8650 - - 546 - - 1180 - - 7.5 - VGE = 15V - 946 - VGE = 0V, VCE = 25V f = 1MHz Gate Charge Qg Total Gate Charge Qge Gate-Emitter Charge VCE= 300V - 58 - Gate-Collector Charge IC = 200A - 430 - TJ = 150°C, RG = 2.2Ω , VGE = 15V, 600 Qgc SSOA td(on) tr td(off) tf 3 Switching Safe Operating Area L = 100μH, VCE= 600V Current Rise Time Turn-Off Delay Time 72 - Inductive Switching (25°C) - 160 - VCC = 400V - 952 - - 212 - RG = 2.2Ω - - - TJ = +25°C - 9193 - VGE = 15V Current Fall Time IC = 200A Eon1 Turn-On Switching Energy 4 Eon2 Turn-On Switching Energy 5 Eoff Turn-Off Switching Energy 6 - 19290 - td(on) Turn-On Delay Time - 71 - Inductive Switching (125°C) - 157 - Turn-Off Delay Time VCC = 400V - 1030 - Current Fall Time VGE = 15V - 202 - Turn-On Switching Energy 4 IC = 200A - - Eon2 Turn-On Switching Energy RG = 2.2Ω - 5 - 10460 - Eoff Turn-Off Switching Energy 6 - 20210 - tr td(off) tf Eon1 Current Rise Time TJ = +125°C pF V nC A - Turn-On Delay Time Unit ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions Min Typ Max Unit RθJC Junction to Case (IGBT) - - 0.21 RθJC Junction to Case (DIODE) - - N/A WT Package Weight - 29.2 - g - - 10 in·lbf - - 1.1 N·m 2500 - - Volts °C/W Torque Terminals and Mounting Screws VIsolation RMS Voltage (50-60Hz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.) 052-6298 Rev C 5 - 2009 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages. 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves APT200GT60JR 250 V = 15V IC, COLLECTOR CURRENT (A) TJ= 25°C 175 TJ= 125°C 150 TJ= 150°C 125 100 75 TJ= 55°C 50 25 250 200 150 100 TJ= 25°C 50 TJ= -55°C TJ= 125°C 0 2 4 10V 250 200 9V 150 100 8V 50 0 5V 0 4 8 12 16 20 24 28 32 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) 20 250μs PULSE TEST<0.5 % DUTY CYCLE 300 11V 300 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 350 0 13/15V 12V 350 200 0 6 8 10 I = 200A C T = 25°C J VCE = 120V 15 VCE = 300V 10 VCE = 480V 5 0 12 0 250 500 750 GATE CHARGE (nC) FIGURE 4, Gate charge TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 5 4 IC = 400A 3 IC = 200A IC = 100A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.10 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 6 1000 5 4 IC = 400A 3 IC = 200A IC = 100A 2 1 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 0 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 250 1.05 200 1.00 0.95 0.90 0.85 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature IC, DC COLLECTOR CURRENT (A) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 150 100 50 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6298 Rev C 5 - 2009 IC, COLLECTOR CURRENT (A) GE VGE, GATE-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 225 400 Typical Performance Curves APT200GT60JR 1400 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 100 VGE = 15V 80 60 40 VCE = 400V TJ = 25°C, or 125°C RG = 2.2Ω L = 100μH 20 1200 1000 VGE =15V,TJ=25°C 600 400 VCE = 400V RG = 2.2Ω L = 100μH 200 0 0 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 400 VGE =15V,TJ=125°C 800 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 450 RG = 2.2Ω, L = 100μH, VCE = 400V RG = 2.2Ω, L = 100μH, VCE = 400V 400 350 tr, FALL TIME (ns) tr, RISE TIME (ns) 300 200 100 TJ = 25°C, VGE = 15V 300 250 200 TJ = 125°C, VGE = 15V 150 100 TJ = 25 or 125°C,VGE = 15V 50 0 0 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current V = 400V CE V = +15V GE R = 2.2Ω 35000 G 30000 25000 TJ = 125°C 20000 15000 10000 5000 TJ = 25°C 50000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 40000 0 J 80000 Eon2,400A 60000 Eoff,200A 40000 Eon2,200A 20000 30000 20000 TJ = 25°C 10000 60000 Eoff,400A Eoff,100A TJ = 125°C 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) 052-6298 Rev C 5 - 2009 V = 400V CE V = +15V GE T = 125°C G 40000 0 0 50 100 150 200 250 300 350 400 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 100000 V = 400V CE V = +15V GE R = 2.2Ω 50000 V = 400V CE V = +15V GE R = 2.2Ω G 40000 Eoff,400A 30000 20000 Eoff,200A 10000 Eon2,200A Eon2,100A 0 0 5 10 15 20 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance Eon2,400A Eon2,100A Eoff,100A 0 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT200GT60JR 1000 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) 100,000 Cies 10,000 1,000 Coes Cres 100 100 10 1 0.1 0 100 200 300 400 500 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 1 10 100 1000 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area D = 0.9 0.20 0.7 0.15 0.5 Note: PDM 0.10 0.3 t 0.1 0.05 0 t1 t2 0.05 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10 -1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 40 75°C 35 30 25 100°C 20 15 10 5 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 1.0Ω G 0 10 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6298 Rev C 5 - 2009 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT200GT60JR 10% Gate Voltage td(on) APT100DQ60 TJ = 125°C tr 90% Collector Current V CE IC V CC 10% 5% 5% A CollectorVoltage D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% TJ = 125°C Gate Voltage 90% td(off) tf 10% 0 Collector Current CollectorVoltage Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 7.8 (.307) 8.2 (.322) r = 4.0 (.157) (2 places) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 3.3 (.129) 3.6 (.143) 14.9 (.587) 15.1 (.594) 052-6298 Rev C 5 - 2009 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 1.95 (.077) 2.14 (.084) *Emitter Collector *Emitter terminals are shorted internally. Current handling capability is equal for either Emitter terminal. 30.1 (1.185) 30.3 (1.193) 38.0 (1.496) 38.2 (1.504) *Emitter Gate Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.