MICROSEMI APT44GA60S

APT44GA60B
APT44GA60S
600V
High Speed PT IGBT
TO
APT44GA60S
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
-2
47
through leading technology silicon design and lifetime control processes. A reduced Eoff D3PAK
VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT44GA60B
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Single die IGBT
®
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
600
V
IC1
Continuous Collector Current @ TC = 25°C
78
IC2
Continuous Collector Current @ TC = 100°C
44
130
Vces
Parameter
A
ICM
Pulsed Collector Current
VGE
Gate-Emitter Voltage 2
±30
V
PD
Total Power Dissipation @ TC = 25°C
337
W
1
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
VBR(CES)
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
Symbol
130A @ 600V
TJ = 25°C unless otherwise specified
Parameter
Collector-Emitter Breakdown Voltage
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
°C
300
Test Conditions
Min
VGE = 0V, IC = 1.0mA
600
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
2.5
VGE = 15V,
TJ = 25°C
2.0
IC = 26A
TJ = 125°C
1.9
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
V
6
VCE = 600V,
TJ = 25°C
250
VGE = 0V
TJ = 125°C
2500
VGS = ±30V
Unit
±100
μA
nA
Thermal and Mechanical Characteristics
Symbol
RθJC
WT
Torque
Min
Typ
Max
Unit
Junction to Case Thermal Resistance
Characteristic
-
-
.37
°C/W
Package Weight
-
5.9
-
g
10
in·lbf
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Microsemi Website - http://www.microsemi.com
052-6333 Rev C 6 - 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg3
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
APT44GA60B_S
TJ = 25°C unless otherwise specified
Test Conditions
Min
Typ
Capacitance
3404
VGE = 0V, VCE = 25V
358
f = 1MHz
43
Gate Charge
128
VGE = 15V
22
VCE= 300V
44
IC = 26A
TJ = 150°C, RG = 4.7Ω4, VGE = 15V,
L= 100uH, VCE = 600V
130
16
Current Rise Time
VCC = 400V
14
Turn-Off Delay Time
VGE = 15V
84
IC = 26A
29
Eon2
Turn-On Switching Energy
RG = 4.7Ω4
409
Eoff6
Turn-Off Switching Energy
TJ = +25°C
258
td(on
Turn-On Delay Time
Inductive Switching (125°C)
14
tr
td(off)
Current Rise Time
VCC = 400V
15
Turn-Off Delay Time
VGE = 15V
109
IC = 26A
99
Eon2
Turn-On Switching Energy
RG = 4.7Ω4
621
Eoff6
Turn-Off Switching Energy
TJ = +125°C
474
tf
Current Fall Time
Unit
pF
nC
A
Inductive Switching (25°C)
Current Fall Time
Max
ns
μJ
ns
μJ
052-6333 Rev C 6 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
APT44GA60B_S
300
100
50
25
200
150
100
TJ= 25°C
TJ= -55°C
TJ= 125°C
0 0
2
4
6
8
10
12
0
7V
6V
5V
0
4
8
12 16
20 24 28 32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
4
IC = 52A
3
IC = 26A
2
IC = 13A
1
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
0.90
0.85
0.80
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT (A)
0.95
J
12
VCE = 120V
10
VCE = 300V
8
VCE = 480V
6
4
2
0
20
40
60
80 100 120
GATE CHARGE (nC)
FIGURE 4, Gate charge
140
5
4
IC = 52A
3
IC = 26A
2
IC = 13A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
1.05
1.00
I = 26A
C
T = 25°C
14
0
1.10
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
8V
50
14
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0.75
-.50 -.25
9V
100
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
0
150
VGE, GATE-TO-EMITTER VOLTAGE (V)
250
50
10V
16
250μs PULSE
TEST<0.5 % DUTY
CYCLE
300
13V
200
0
2
4
6
8
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
350
IC, COLLECTOR CURRENT (A)
TJ= 150°C
TJ= 25°C
250
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6333 Rev C 6 - 2009
75
15V
TJ= 125°C
TJ= 55°C
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
= 15V
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
GE
IC, COLLECTOR CURRENT (A)
V
Typical Performance Curves
APT44GA60B_S
150
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
20
15
VGE = 15V
10
5
VCE = 400V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
125
100
75
VGE =15V,TJ=25°C
50
VCE = 400V
RG = 4.7Ω
L = 100μH
25
0
0
0
10
20
30
40
50
60
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
10
20
30
40
50
60
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
50
VGE =15V,TJ=125°C
160
RG = 4.7Ω, L = 100μH, VCE = 400V
RG = 4.7Ω, L = 100μH, VCE = 400V
140
40
tr, FALL TIME (ns)
tr, RISE TIME (ns)
120
30
20
TJ = 25 or 125°C,VGE = 15V
10
100
TJ = 125°C, VGE = 15V
80
60
40
TJ = 25°C, VGE = 15V
20
0
0
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
G
1600
1200
TJ = 125°C
800
400
0
10
20
30
40
50
60
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1400
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
0
10
20
30
40
50
60
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
2000
TJ = 25°C
0
Eon2,52A
2000
Eon2,52A
1500
Eoff,26A
Eon2,26A
Eoff,13A
500
Eon2,13A
0
0
1000
TJ = 125°C
800
600
400
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
TJ = 25°C
200
0
10
20
30
40
50
60
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
052-6333 Rev C 6 - 2009
J
1000
G
2000
V
= 400V
CE
V
= +15V
GE
T = 125°C
2500
1200
0
0
10
20
30
40
50
60
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
3000
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
G
1600
Eon2,52A
Eon2,52A
1200
800
Eoff,26A
Eoff,26A
400
Eon2,13A
Eoff,13A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT44GA60B_S
10000
1000
1000
Coes
100
Cres
10
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
100
10
1
0.1
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
D = 0.9
0.35
0.30
0.7
0.25
0.5
0.20
Note:
0.15
PDM
0.3
0.10
t2
t
0.1
0.05
0.05
0
t1
SINGLE PULSE
10-2
10-3
0.1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-5
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
-4
1
052-6333 Rev C 6 - 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.40
APT44GA60B_S
10%
Gate Voltage
TJ = 125°C
90%
td(on)
APT30DQ120
tr
V CE
IC
V CC
5%
Collector Current
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 22, Turn-off Switching Waveforms and Definitions
D3 Pak Package Outline
TO-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
e3 SAC: Tin, Silver, Copper
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
20.80 (.819)
21.46 (.845)
Revised
4/18/95
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
052-6333 Rev C 6 - 2009
13.41 (.528)
13.51(.532)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
Emitter
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.