MICROSEMI APT80GA90B

APT80GA90B
APT80GA90S
900V
High Speed PT IGBT
T
OPOWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
24
7
through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT80GA90B
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Single die IGBT
®
FEATURES
APT80GA90S
D3PAK
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
900
V
IC1
Continuous Collector Current @ TC = 25°C
145
IC2
Continuous Collector Current @ TC = 100°C
80
ICM
Pulsed Collector Current
239
VGE
Gate-Emitter Voltage
PD
Total Power Dissipation @ TC = 25°C
Vces
Parameter
1
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
Symbol
±30
V
625
W
239A @ 900V
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
°C
300
TJ = 25°C unless otherwise specified
Parameter
Test Conditions
Min
VBR(CES)
Collector-Emitter Breakdown Voltage
VGE = 0V, IC = 1.0mA
900
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
3.1
VGE = 15V,
TJ = 25°C
2.5
IC = 47A
TJ = 125°C
2.2
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
V
6
VCE = 900V,
TJ = 25°C
250
VGE = 0V
TJ = 125°C
1000
VGS = ±30V
Unit
μA
±100
nA
Typ
Max
Unit
Thermal and Mechanical Characteristics
Symbol
Characteristic
Min
RθJC
Junction to Case Thermal Resistance
-
-
0.2
°C/W
WT
Package Weight
-
5.9
-
g
10
in·lbf
Torque
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Microsemi Website - http://www.microsemi.com
052-6324 Rev B 3 - 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg3
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
APT80GA90B_S
TJ = 25°C unless otherwise specified
Test Conditions
Min
Typ
Capacitance
4560
VGE = 0V, VCE = 25V
411
f = 1MHz
62
Gate Charge
200
VGE = 15V
30
VCE= 450V
72
239
Inductive Switching (25°C)
VCC = 600V
29
Turn-Off Delay Time
VGE = 15V
149
IC = 47A
85
RG = 4.7Ω4
1652
Eoff6
Turn-Off Switching Energy
TJ = +25°C
1389
td(on
Turn-On Delay Time
Inductive Switching (125°C)
18
Current Rise Time
VCC = 600V
31
Turn-Off Delay Time
VGE = 15V
192
IC = 47A
128
Eon2
Turn-On Switching Energy
RG = 4.7Ω4
2813
Eoff6
Turn-Off Switching Energy
TJ = +125°C
2082
tf
Current Fall Time
nC
18
Turn-On Switching Energy
tr
pF
A
L= 100uH, VCE = 900V
Eon2
td(off)
Unit
IC = 47A
TJ = 150°C, RG = 4.7Ω4, VGE = 15V,
Current Rise Time
Current Fall Time
Max
ns
μJ
ns
μJ
052-6324 Rev B 3 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
V
GE
= 15V
TJ= 125°C
IC, COLLECTOR CURRENT (A)
TJ= 55°C
80
APT80GA90B_S
350
TJ= 150°C
TJ= 25°C
60
40
20
IC, COLLECTOR CURRENT (A)
100
15V 13V
10V
300
250
9V
200
8V
150
7V
100
6V
50
5V
0
1
2
3
4
5
6
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
250
IC, COLLECTOR CURRENT (A)
150
100
TJ= 125°C
TJ= 25°C
50
TJ= -55°C
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
6
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 94A
IC = 47A
3
2
IC = 23.5A
1
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
I = 47A
C
T = 25°C
J
VCE = 180V
12
10
VCE = 450V
8
VCE = 720V
6
4
2
0
0
20 40 60 80 100 120 140 160 180 200
GATE CHARGE (nC)
FIGURE 4, Gate charge
6
5
4
IC = 94A
IC = 47A
3
2
IC = 23.5A
1
0
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
150
1.10
125
IC, DC COLLECTOR CURRENT (A)
1.05
1.00
100
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
75
50
25
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6324 Rev B 3 - 2009
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.15
0
4
8
12 16 20 24
28
32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
14
2
4
6
8
10
12 14
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
0
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
200
0
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
Typical Performance Curves
APT80GA90B_S
300
VCE = 600V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
22
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
24
20
18
16
14
12
10
250
200
VGE =15V,TJ=125°C
150
VCE = 600V
RG = 4.7Ω
L = 100μH
50
0
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
100
VGE =15V,TJ=25°C
100
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
200
RG = 4.7Ω, L = 100μH, VCE = 600V
175
60
40
20
TJ = 25 or 125°C,VGE = 15V
0
0
20
40
60
80
100
Eon2, TURN ON ENERGY LOSS (μJ)
G
5000
TJ = 125°C
4000
3000
2000
TJ = 25°C
1000
0
J
Eoff,94A
6000
Eon2,47A
Eoff,47A
Eon2,23.5A
Eoff,23.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
Eon2,94A
8000
0
5000
G
4000
TJ = 125°C
3000
2000
TJ = 25°C
1000
7000
V
= 600V
CE
V
= +15V
GE
T = 125°C
V
= 600V
CE
V
= +15V
GE
R = 4.7Ω
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
12000
2000
RG = 4.7Ω, L = 100μH, VCE = 600V
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
4000
TJ = 25°C, VGE = 15V
50
0
20
40
60
80
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
0
10000
75
6000
V
= 600V
CE
V
= +15V
GE
R =4.7Ω
6000
100
0
EOFF, TURN OFF ENERGY LOSS (μJ)
7000
125
25
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
052-6324 Rev B 3 - 2009
TJ = 125°C, VGE = 15V
150
tr, FALL TIME (ns)
tr, RISE TIME (ns)
80
6000
V
= 600V
CE
V
= +15V
GE
R = 4.7Ω
G
Eon294A
Eoff,94A
5000
4000
3000
Eon2,47A
Eoff,47A
2000
Eon2,23.5A
1000
0
Eoff,23.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT80GA90B_S
1000
Cies
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
10000
1000
Coes
100
Cres
10
0
200
400
600
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
100
10
1
0.1
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0.20
D = 0.9
0.15
0.5
Note:
0.3
PDM
0.7
0.10
t2
0.05
t
0.1
0
SINGLE PULSE
0.05
10
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-2
10-3
0.1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-5
TJ (°C)
Dissipated Power
(Watts)
t1
-4
1
TC (°C)
.04874
.1508
.00909
.3886
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
052-6324 Rev B 3 - 2009
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
APT80GA90B_S
10%
Gate Voltage
TJ = 125°C
td(on)
APT30DQ100
90%
Collector Current
tr
IC
V CC
V CE
5%
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 22, Turn-off Switching Waveforms and Definitions
D3PAK Package Outline
TO-247 (B) Package Outline
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
(Heat Sink)
e3 100% Sn Plated
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
052-6324 Rev B 3 - 2009
13.41 (.528)
13.51(.532)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Drain)
and Leads
are Plated
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.