IRFB17N50L, SiHFB17N50L Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg results in Simple Drive Requirement 500 RDS(on) (Ω) VGS = 10 V 0.28 Qg (Max.) (nC) 130 Qgs (nC) 33 Qgd (nC) 59 Configuration • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness • Fully Characterized Capacitance Avalanche Voltage and Current Single Available RoHS* COMPLIANT and • Low Trr and Soft Diode Recovery D • Lead (Pb)-free Available TO-220 APPLICATIONS • Switch Mode Power Supply (SMPS) G • Uninterruptible Power Supply • High Speed Power Switching S G D • ZVS and High Frequency Circuit S • PWM Inverters N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRFB17N50LPbF SiHFB17N50L-E3 IRFB17N50L SiHFB17N50L Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current Pulsed Drain VGS at 10 V TC = 25 °C TC = 100 °C Currenta ID IDM Linear Derating Factor UNIT V 16 11 A 64 1.8 W/°C mJ Single Pulse Avalanche Energyb EAS 390 Repetitive Avalanche Currenta IAR 16 A Repetitive Avalanche Energya EAR 22 mJ Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 220 W dV/dt 13 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 3.0 mH, RG = 25 Ω, IAS = 16 A (see fig. 12). c. ISD ≤ 16 A, dI/dt ≤ 347 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91098 S-81263-Rev. A, 21-Jul-08 www.vishay.com 1 IRFB17N50L, SiHFB17N50L Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 0.56 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.6 - V/°C Static Drain-Source Breakdown Voltage VDS Temperature Coefficient VGS(th) VDS = VGS, ID = 250 µA 3.0 - 5.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 500 V, VGS = 0 V - - 50 µA VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 2.0 mA Gate-Source Threshold Voltage Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 9.9 Ab VGS = 10 V VDS = 50 V, ID = 9.9 Ab - 0.28 0.32 Ω 11 - - S - 2760 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss Coss eff. Total Gate Charge Qg Gate-Source Charge Qgs VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 325 - - 37 - - 3690 - VGS = 0 V VDS = 1.0 V , f = 1.0 MHz VGS = 0 V VDS = 400 V , f = 1.0 MHz - 84 - VGS = 0 V VDS = 0 V to 400 Vc - 159 - - - 130 VGS = 10 V ID = 16 A, VDS = 400 V, see fig. 6 and 13b - - 33 Gate-Drain Charge Qgd - - 59 Turn-On Delay Time td(on) - 21 - - 51 - - 50 - - 28 - - - 16 - - 64 Rise Time Turn-Off Delay Time Fall Time tr td(off) VDD = 250 V, ID = 16 A, RG = 7.5 Ω, see fig. 10b tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time IS ISM VSD trr Qrr MOSFET symbol showing the integral reverse p - n junction diode A G S TJ = 25 °C, IS = 16 A, VGS = 0 Vb TJ = 25 °C TJ = 125 °C TJ = 25 °C IF = 16 A, dI/dt = 100 A/µsb TJ = 125 °C IRRM ton D - - 1.5 - 170 250 - 220 330 - 470 710 - 810 1210 - 7.3 11 V ns nC A Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.vishay.com 2 Document Number: 91098 S-81263-Rev. A, 21-Jul-08 IRFB17N50L, SiHFB17N50L Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 10 Bottom TJ = 150 °C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) Top VGS 15 V 12 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V 1 5.0 V 0.1 10 TJ = 25 °C 1 20 μs PULSE WIDTH TJ = 25 °C 0.01 VDS = 50 V 20 μs PULSE WIDTH 0.1 0.1 1 4.0 100 10 VDS, Drain-to-Source Voltage (V) RDS(on), Drain-to-Source On Resistance (Normalized) VGS 15 V 12 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V Bottom 5.0 V ID, Drain-to-Source Current (A) Top 5.0 V 1 20 μs PULSE WIDTH TJ = 125 °C 0.1 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91098 S-81263-Rev. A, 21-Jul-08 7.0 8.0 9.0 10.0 Fig. 3 - Typical Transfer Characteristics 100 0.1 6.0 VGS, Gate-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 10 5.0 100 3.0 ID = 16 A 2.5 2.0 1.5 1.0 0.5 VGS = 10 V 0.0 - 60 - 40 - 20 0 20 40 60 80 100 120 140 160 TJ, Junction Temperature Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFB17N50L, SiHFB17N50L Vishay Siliconix 1 000 000 100 C, Capacitance (pF) 10 000 f = 1 MHz Shorted TJ = 150 °C ISD, Reverse Drain Current (A) VGS = 0 V, Ciss = Cgs + Cgd, Cds Crss = Cgd Coss = Cds + Cgd Ciss 1000 Coss 100 10 TJ = 25 °C 1 Crss 10 1 10 100 VDS, Drain-to-Source Voltage (V) 0.6 1.3 0.9 1.6 VSD, Source-to-Drain Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 7 - Typical Source-Drain Diode Forward Voltage 1000 20 ID = 16 A OPERATING IN THIS AREA LIMITED BY RDS(on) VDS = 400 V VDS = 250 V VDS = 100 V 16 100 ID, Drain Current (A) VGS, Gate-to-Source Voltage (V) VGS = 0 V 0.1 0.2 1000 12 8 10 μs 10 100 μs 1 ms 1 10 ms 4 TC = 25 °C TJ = 150 °C Single Pulse 0 0 30 120 60 90 QG, Total Gate Charge (nC) 150 Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 0.1 10 100 1000 10000 VDS, Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91098 S-81263-Rev. A, 21-Jul-08 IRFB17N50L, SiHFB17N50L Vishay Siliconix RD VDS 20 VGS D.U.T. RG + - VDD ID, Drain Current (A) 16 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 12 Fig. 10a - Switching Time Test Circuit 8 VDS 4 0 90 % 50 25 75 150 125 100 10 % VGS TC, Case Temperature (°C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms 1 Thermal Response (ZthJC) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM 0.01 t1 t2 Notes: 1. Duty factor D = t1/ t2 2. Peak TJ = PDM x ZthJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS tp 15 V L VDS D.U.T RG IAS 20 V tp Driver + A - VDD A 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91098 S-81263-Rev. A, 21-Jul-08 IAS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFB17N50L, SiHFB17N50L Vishay Siliconix 800 ID 7A 10 A 16 A EAS, Single Pulse Avalanche Energy (mJ) TOP BOTTOM 640 480 320 160 0 25 50 75 100 150 125 Starting TJ, Junction Temperature (°C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91098 S-81263-Rev. A, 21-Jul-08 IRFB17N50L, SiHFB17N50L Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91098. Document Number: 91098 S-81263-Rev. A, 21-Jul-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1